Sketching Techniques for
Massive Data Streams

Minos Garofalakis

Internet Management Research Department Lmr P @
Bell Labs, Lucent Technologies

We m
ake the things that make communications work ™

Disclaimers e

* Personal, biased view of data-streaming world
- Revolve around own line of work, interests, and results
- Focus on a couple of basic algorithmic tools
+ A lot more out there . ..

* Interesting research prototypes and systems work not covered
- Aurora, STREAM, Telegraph, . . .

» Discussion necessarily short and fairly high-level
- More detailed overviews

+ 3-hour tutorial at VLDB'02, Motwani et al. [PODS'02], overview
article by S. Muthukrishnan

- Ask questions!

- Talk Yo me afterwards

Data-Stream Management oz O

e

e Traditional DBMS - data stored in finite, persistent data sets

» Data Streams - distributed, continuous, unbounded, rapid, time
varying, hoisy, . . .

* Data-Stream Management - variety of modern applications

- Network monitoring and traffic engineering
- Telecom call-detail records

- Network security

- Financial applications

- Sensor networks

- Manufacturing processes

- Web logs and clickstreams

- Massive data sets

Networks Generate Massive Data Streams: it 0

NetFlow records Center (NOC)

Example NetFlow IP Session Data

Source | Destination | Duration | Bytes |Protocol
10.1.0.2 16.2.3.7 12 20K http
18.6.7.1 12.4.03 16 24K http
13.9.4.3 11.6.8.2 15 20K http
15229 17.1.2.1 19 40K http
12438 14.8.7.4 26 58K http
10.5.1.3 13.0.0.1 27 100K ftp
11.1.0.6 10.3.4.5 32 300K ftp
19.7.1.2 16.5.5.8 18 80K ftp

_ Converged IP/MPLS
3 Network g

Enterprise
Networks

- FR, ATM, IP VPN DSL/Cable * Broadband - Voice over IP
' ' Networks Internet Access

PSTN

« SNMP/RMON/NetFlow data records arrive 24x7 from different parts
of the network

* Truly massive streams arriving at rapid rates
- AT&T collects 600-800 GigaBytes of NetFlow data each day!

« Typically shipped o a back-end data warehouse (off site) for off-line
analysis

Real-Time Data-Stream Analysis - 0
EE-= SRR

e —— —

E Back-end Data Warehouse

What are the top (most frequent) 1000 (source,
/ dest) pairs seen by R1 over the last month?

Off-line analysis - Data
access is slow, expensive

Network Operations
Center (NOC)

How many distinct (source, dest) pairs have
been seen by both R1 and R2 but not R3?

Set-Expression Query

R2 &=

Converged IP/MPLS R&
Network

SELECT COUNT (R1.source, R1.dest)
FROM R1, R2
WHERE R1.source = R2.source

Enterprise
Networks

Dpk/cable o SQL Join Query
* Need ability to process/analyze network-data streams /n rea/-time
- As records stream in: look at records only once in arrival order!
- Within resource (CPU, memory) limitations of the NOC
* Critical to important NM tasks
- Detect and react to Fraud, Denial-of-Service attacks, SLA violations
- Real-time traffic engineering to improve load-balancing and utilization

5

Talk Outline iz O

Bell Labs Innovats

* Infroduction & Motivation
 Data Stream Computation Model
* Two Basic Sketching Tools for Streams

-Linear-Projection (aka AMS) Sketches
* Applications: Join/Multi-Join Queries, Wavelets
-Hash (aka FM) Sketches
* Applications: Distinct Values, Set Expressions
* Extensions
-Correlating XML data streams

« Conclusions & Future Research Directions

Data-Stream Processing Model e e @

Stream Synopses .
(GigaBytes) | (in mem?)lry? (KiloBytes)

Continuous Data Streams

RI[
- \
Stream

Approximate Answer

a / E:;«i:rel:smg with Error Guarantees
"Within 2% of exact
Rk [I answer with high
Query Q probability”

» Approximate answers often suffice, e.g., trend analysis, anomaly detection

* Requirements for stream synopses
- Single Pass: Each record is examined at most once, in (fixed) arrival order
- Small Space: Log or polylog in data stream size
- Real-time: Per-record processing time (to maintain synopses) must be low
- Delete-Proof: Can handle record deletions as well as insertions
- Composable: Built in a distributed fashion and combined later

Synopses for Relational Streams wosmese O

* Conventional data summaries fall short

- Quantiles and 1-d histograms [MRL98,99], [6KO1], [6KMS02]
+ Cannot capture attribute correlations
+ Little support for approximation guarantees

- Samples (e.g., using Reservoir Sampling)
+ Perform poorly for joins [AGMS99] or distinct values [CCMNOO]
+ Cannot handle deletion of records

- Multi-d histograms/wavelets

+ Construction requires multiple passes over the data

« Different approach: Pseudo-random sketch synopses
- Only logarithmic space
- Probabilistic guarantees on the quality of the approximate answer

- Support insertion as well as deletion of records

Linear-Projection (aka AMS) Sketch Synopses™= O
L e =

* Goal: Build small-space summary for distribution vector (i) (i=1,..., N) seenasa
stream of i-values 5

1 1 1

Data stream:|3, 1, 2, 4, 2, 3, 5, ... | > ’7

f(1) f(2) £f(3) f(4) f(3)

e Basic Construct: Randomized Linear Projection of () = project onto inner/dot
product of f-vector

<f.&>= f (i)& Wwhere ¢ = vector of random values from an
¢ z Ol appropriate distribution

- Simple to compute over the stream: Add &, whenever the i-th value is seen
DaTasTream:|3, 1, 2, 4,2,3,5, ... | —)> El +2<rz +2£3 +<r4 +<rs

Generate & 's in small (logN) space using pseudo-random generators

Tunable probabilistic guarantees on approximation error

Delete-Proof: Just subtract & to delete an i-th value occurrence
Composable: Simply add independently-built projections

Example: Binary-Join COUNT Query Lucent T 6

* Problem: Compute answer for the query COUNT(R D, S)
+ Example: 3

. 2
DatastreamRA:[4 1 2 4 1 4| 1CR(')'|_|L| 0
1 2 3

4

£6): 1= 2
DatastreamS.A:[3 1 2 4 2 4 S LA
1 2 3 4

COUNT(R X, S)= Zifp(i) £ (i)
=10 (2+2+0+6)

* Exact solution: too expensive, requires O(N) spacel!
- N = sizeof(domain(A))

Basic AMS Sketching Technique [AMS96] iz O

-~ S

* Key Intuition: Use randomized linear projections of f() to define
random variable X such that

- X is easily computed over the stream (in small space)
- E[X]= COUNT(R pp S)

. :> Probabilistic error guarantees
- Var[X]is small (e.g., actual answer is 10+1 with

probability 0.9)

* Basic Idea:
- Define a family of 4-wise independent {-1, +1} random variables
{&:i=1,..,N}
-Pr[&=+1]1=Pr[&=-1]=1/2
- Expected value of each &, E[£]1=0
- Variables &; are 4-wise independent
- Expected value of product of 4 distinct & =0

- Variables & can be generated using pseudo-random generator using
only O(log N) space (for seeding)!

AMS Sketch Construction e

» Compute random variables: X, =" £(i)& and X5 = ()¢
- Simply add & to Xg(Xs) whenever the i-th value is observed in the
R.A (S.A) stream

* Define X = XpXs to be estimate of COUNT query

 Example:) 3
Data stream RA:[4 1 2 (4\1 4| fR(')‘|_|L| 0

| 1 2 3 4

Xe =X+, Xe =24 +&,+34,

£0): 2 2
Datastream s.A:[3 (th2 4 2 4] S L1
l 1 2 3 4

Xs =X+ Xs=¢+285,+6,+2¢,

Binary-Join AMS Sketching Analysis e

e

* Expected value of X = COUNT(R Dd, S)
EIX]=E[X:X]

=E[> f()&ED £()E]
=E[Zifk(i) Efs(i E[Zm'fk(i) Efs(l')f.f. ‘
DPAOLEAO

¢

* Using 4-wise independence, possible to show that
Var[X]1<2(SJ(R) [ST(S)

« ST(R) =D £(i)* is self-join size of R

Boosting Accuracy e

* Chebyshev's Inequaﬁ‘ry:

Pr(| X-E[X]|z €E[X]) < Var[X]

e? E[XT

* Boost accuracy to € by averaging over several independent copies
of X (reduces variance)

...-

;=8 [(28J(R)5J(S)) E[Y]=E[X]=COUNT(R D4 S)
g2 COUNT?

copies

_Var[X] _&* COUNT?
* By Chebysheyv: Var[¥]= s = 8

Var[Y] 1
Pr(|Y-COUNT |2 COUNT) < . varl¥l 1
(| NTe[COUNT) < o oUNT? =8

Boosting Confidence e 0
L e

« Boost confidence to 1-3 by taking median of 2log(1/8)
independent copies of Y

e Each Y = Binomial Trial

‘FAILURE”: Pr<1/8
]
B \ ° ° \c‘

2|og(1/6) a (1-€)COUNT COUNT (1+€)COUNT
copies mediah ——

o Pr>1-6

Pr[|median(Y)-COUNT| = € [COUNT]

= Pr[# failures in 2log(1/d) trials >= log(1/3)]
<3 (By Chernoff Bound)

Summary of Binary-Join AMS Sketching iz O

T e

+ Step 1: Compute random variables: X, = Z.fp(‘)f. and X, = Zifs(i)gﬁ
* Step 2: Define X= XpXg

* Steps 3 & 4: Average independent copies of X; Return median of averages

BRSTRISI(S) o
€2 COUNT?
« e @ EEg)y O
° o ° °
2log(1/3) . ° ° °
coiges) I @ [Y]—— median
(] (-} o (]
o (-] o (-]
« e @ EEmy O

* Main Theorem (AGMS99): Sketching approximates COUNT to within a
relative error of € with probability >1-8 using space

SJ(R)5J(S) og(1/9) [lng)
€2 COUNT?
- Remember: O(log N) space for "seeding” the construction of each X

O(

16

AMS Sketching for Multi-Join Aggregates ... §
[D6GROZ] e
FESL e

=

« Problem: Compute answer for COUNT(RB<G,SB<pT) :Zijﬁ(i)fs(i,j)fT(j)
* Sketch-based solution
- Compute random variables Xp, X5 and Xt

Stream RA:[4_ 1 2 (4)\1 7] X =2 k()¢

Independent families —
of {-1,+1} random {EI} 1 =2+, + 3{4
variables X=X +44

Stream S: A[3[2 1 2 1 Xs=ziljfs(i,j)<ﬁej
B[13/]4 3 43 = &,6, +34,6, +2&,6,

{6}
Xs =Xs +465 .
StreanT&:[E 13 3 14 X~ zjfT(J)Hj
=26, +26,+26,
- Return X=XpXsX1 (E[X]= COUNT(RD 4, SP4T))

SR AOBAGR)IEACE)6&6,6,1=0 ifizi'orj#j'

AMS Sketching for Multi-Join Aggregates ‘=time: O
T

* Sketches can be used to compute answers for general multi-join COUNT
queries (over streams R, S, T,)

- For each pair of attributes in equality join constraint, use independent family
of {-1, +1} random variables

- Compute random variables Xp, Xg, X1,

StreamS:A|3(/1\2 1 2 1
13V 3 4 3| X_= N i k 0.1 (I
Independent éc 21411 2 3 1 S Z:,J,kmmfs(J :D]IEE. ik
families of {-1,+1} o o\oflo o o o
random variables ° e © o oo
{361 AN X=X +&6,A, [

- Return X=XpXgX oo (E[X]= COUNT(RBASBITI))
Var[X]< 2" (5J(R)(5J(S)5J(T) D

- Explosive increase with the number of joins!

L

Boosting Accuracy by Sketch Partitioning: ..qpe. O

Basic Idea
B S5 e
2 2
* For € error, need Var[Y]< ECOSUNT

o 82" SI(R)ST(S) M)

& COUNT? copies
2 2
Var[y] = Vars[X] <E CO;)NT

* Key Observation: Product of self-join sizes for partitions of streams
can be much smaller than product of self-join sizes for streams

- Reduce space requirements by partitioning join attribute domains

* Overall join size = sum of join size estimates for partitions

- Exploit coarse statistics (e.g., histograms) based on historical data or
collected in an initial pass, o compute the best partitioning

Sketch Partitioning Example: Binary-Join . .wpu O

COUNT Quer‘z |

Without Partitioning With Partitioning (P1={2 4}, P2={1,3})

10 10 : 10 10
i 2 1 fu 2 1 fo:
I | — |
2 4 1 3
P23 e SI(R1)=5 }
SJ(R)=205 SJ(R2)=200
30 30
30 30 far: f,:
f.: 2 1
s C—ee——
2 1 1
I 2 4 3
1 2 3 4 S5J(S1)=1800 5J(52)=5
SJ(5)=1805
VAR[X1]=2BJ(R1)(5J(S1) VAR[X2]=2[5J(R2)[5J(S2)

VAR[X] = 2SI (R)(5J(S)
720D X = X1+X2, E[X]= COUNT(RDS)

VAR[X] = VAR[X1] +VAR[X2]

20

10

Overview of Sketch Partitioning i O

B~ S5 e —
* Maintain independent sketches for partitions of join-attribute space

» Improved error guarantees
- Var[X] =Z Var[Xi] is smaller (by /intelligent domain partitioning)
- "Variance-aware” boosting: More space to higher-variance partitions

* Problem: Given total sketching space S, find domain partitions p1,..., pk
and space allotments sl,..,sk such that 2. sj < 'S, and the variance

Var[X1] N Var[X2] B Var[Xk]
sl s2 sk

is minimized

- Solved optimal for binary-join case (using Dynamic-Programming)
- NP-hard for =2 joins

+ Extension of our DP algorithm is an effective heuristic -- optimal
for independent join attributes

* Significant accuracy benefits for small number (2-4) of partitions

21

Other Applications of AMS Stream e)
Sketching

I e
« Key Observation: |R1><R2| =Z f,0)f,0) =<1, f,> = inner product!

* General result: Streaming (£,0) estimation of “large” inner products
using AMS sketching

* Other streaming inner products of interest
- Top-k frequencies [CCF02] 1

* Item frequency = < f, "unit_pulse"” >

- Large wavelet coefficients [GKMSO01]

« Coeff(i)= < f, w(i)> where w(i) = i-th wavelet basis vector
1/N

w(0) =

1 N I_
w(i) =
1 I N

22

11

More Recent Results on Stream Joins e O

Bell Labs Innovations

* Better accuracy using "skimmed sketches” [GGR04]

- "Skim" dense items (i.e., large frequencies) from the AMS sketches
- Use the "skimmed" sketch only for sparse element representation
- Stronger worst-case guarantees, and much better in practice

- Same effect as sketch partitioning with no apriori knowledge!
¢ Sharing sketch space/computation among mu/tiple queries [DGGR0O4]
Naive

Sharing
Ba < sqe 0 af S 6 5] GO
=R X=Y £ X=X K08, .
2R0E %6=2.,804 > E/X=T 40k % =24GR
ga A af R
X =Y (A X, =Y (i)A P 83107 %= f(%
Same family of
random variables 2
Talk Outline Laent echmologe 6

* Introduction & Motivation
* Data Stream Computation Model
* Two Basic Sketching Tools for Streams

-Linear-Projection (aka AMS) Sketches
* Applications: Join/Multi-Join Queries, Wavelets

-Hash (aka FM) Sketches
* Applications: Distinct Values, Set Expressions
* Extensions

-Correlating XML data streams

« Conclusions & Future Research Directions

24

12

Distinct Value Estimation RS

» Problem: Find the number of distinct values in a stream of values with
domain [0,...,N-1]

- Zeroth frequency moment ., LO (Hamming) stream norm
- Statistics: number of species or classes in a population
- Important for query optimizers

- Network monitoring: distinct destination IP addresses,
source/destination pairs, requested URLs, etc.

* Example (N=64) Da‘ras’rream:|3 05301751037

Number of distinct values: 5

* Hard problem for random sampling! [CCMNOO]

- Must sample almost the entire table to quar‘an‘ree the estimate is
within a factor of 10 with probability >1/2, regardless of the
estimator used!

25

Hash (aka FM) Sketches for Distinct o
Value Estimation [FM85]

» Assume a hash function h(x) that maps incoming values x in [O,..., N-1]
uniformly across [O,.., 2°L-1], where L = O(logN)

* Let Isb(y) denote the position of the least-significant 1 bit in the binary
representation of y

- A value x is mapped to Isb(h(x))

* Maintain Hash Sketch= BITMAP array of L bits, initialized to O

- For each incoming value x, set BITMAP[Isb(h(x)) =1 prrmap

5 4 3 2 1 0
x =5 = h(x) = 101100 Isb(h(x)) = 2 olojJoJ1]lo|oO

26

13

Hash (aka FM) Sketches for Distinct e O
Value Estimation [FM85]

* By uniformity through h(x): Prob[BITMAP[k]=1]= Prob][1047 =

2k+]

- Assuming d distinct values: expect d/2 to map to BITMAP[O],

d/4 to map to BITMAP[1], ... BITMAP

L-1 0

ofofo|o|lolo |t|oftdofr|afefe]1|1]1]1
- J feeet \— _/

Y Y

* Let R = position of rightmost zero in BITMAP
- Use as indicator of log(d)

« [FM85] prove that E[R] = log(¢d) , where ¢ =.7735
- Estimate d = 2%/g

- Average several iid instances (different hash functions) to reduce
estimator variance

27

Hash Sketches for Distinct Value e reteoiogi 0
Estimation
» [FM85] assume “ideal” hash functions h(x) (N-wise independence)

- [AMS96]: pairwise independence is sufficient

* h(x)= (alx+b)ymodN , where a, b are random binary vectors
in [0,...,2"L-1]

- Small-space (£,0) estimates for distinct values proposed based on
FM ideas

» Delete-Proof: Just use counters instead of bits in the sketch locations
- +1 for inserts, -1 for deletes

» Composable: Component-wise OR/add distributed sketches together
- Estimate |S1U S2U..U Sk| = set-union cardinality

28

Processing Set Expressions over oo @
Update Streams [GGRO3]
AT

« Estimate cardinality of general set expressions over streams of updates

- E.g., number of distinct (source,dest) pairs seen at both R1 and R2
but not R3? | (R1(R2) - R3 |

o 2-Level Hash-Sketch (ZLHS) stream synopsis: Generalizes FM sketch

- First level: ©(logN) buckets with exponentially-decreasing
probabilities (using Isb(h(x)), as in FM)

- Second level: Count-signature array (logN+1 counters)
+ One “total count” for elements in first-level bucket

+ logN "bit-location counts” for 1-bits of incoming elements

insert(17) — lsb(h|(17))

1

: +1 +1 +1

| TotCount | count7 | counté | count5 | count4 | count3 | count2 | countl | countO |
17 = 0 0 0 1 0 0 0 1 2

Processing Set Expressions over et ()

Update Streams: ey Ideas

 Build several indepeﬁden‘r 2LHS, fix a level |, rand look for singleton
first-level buckets at that level |

level /

+ Singleton buckets and singleton element (in the bucket) are easily
identified using the count signature

Singleton bucket count signature
[Tota=11 [0[0Jo0Jo0[ti]o [1i]o] mmmp Singleton element = 1010,= 10

* Singletons discovered form a distinct-value sample from the union of
the streams

- Frequency-independent, each value sampled with probability %m

» Determine the fraction of "witnesses” for the set expression E in the
sample, and scale-up to find the estimate for |E|

30

15

Example: Set Difference, |A-B]| oo O

* Parallel (same hash function), independent 2LHS synopses for input
streams A, B

« Assume robust estimate G for |AUB| (using known FM techniques)
« Look for buckets that are singletons for AUB at level |= ﬂog lﬂ
- Prob[singleton at level 1] > constant (e.g., 1/4)

- Number of singletons (i.e., size of distinct sample) is at least a
constant fraction (e.g., > 1/6) of the number of 2LHS (w.h.p.)

* "Witness” for set difference A-B: Bucket is singleton for stream A and
empty for stream B

- Prob[witness | singleton] = |A-B| / |AUB|

witnesses for A-B xG

» Estimat A-B| =
imate for |A-B| # singleton buckets

31

Estimation Guarantees e—
* Our set-difference cardinality estimate is within a relative error of €

with probability >1-3 when the number of 2LHS is O(M)
| AUB |A-B|e?
* Lower bound of Q(lA—LBJlﬁl) space, using communication-complexity

arguments
* Natural generalization to arbitrary set expressions E = f(S1,..,5n)
- Build parallel, independent 2LHS for each S1,..., Sn

- Generalize “witness" condition (inductively) based on E's structure

|S1U...USnllog(1/5),

- (£,0) estimate for |E| using O(€&
€

2LHS synopses

» Worst-case bounds! Performance in practice is much better [6GGRO3]

32

16

Application: Detecting TCP-SYN-Flooding €
DEoS Attacks s O

* Monitor potential DDoS activity over large ISP network - cannot maintain state
for each potential destination/victim

* Top-k based on traffic volume gives high traffic destinations (e.g., Yahoo!)
- Attack traffic may not be high
- Cannot distinguish attacks from "flash crowds”

o 'Right” metric: Top-k destinations wrt number of distinct connecting sources
- Deletions to remove legitimate TCP connections from synopses

* Novel, space/time efficient, hash-based streaming algorithm - 2LHS used as a
component for distinct-value estimation

Spoofed :
IP sources .
Attack Mechanism =

= Flood of small SYN packets to
victim from spoofed source addrs]
= SYN-ACK responses to spoofed

IP sources l Victim
= Many “half-open” connections mmp Server
Resources exhausted 3
Talk Outline e

* Introduction & Motivation
* Data Stream Computation Model
* Two Basic Sketching Tools for Streams

-Linear-Projection (aka AMS) Sketches
* Applications: Join/Multi-Join Queries, Wavelets

-Hash (aka FM) Sketches

* Applications: Distinct Values, Set Expressions
* Extensions
-Correlating XML data streams
« Conclusions & Future Research Directions

34

Processing XML Data Stream stz O

28 m—— —
e XML: Much richer, (semi)structured data model
- Ordered, node-labeled data trees

 Bulk of work on XML streaming: Content-based filtering of XML documents
(publish/subscribe systems)

- Quickly match incoming documents against standing XPath subscriptions

(X/Yfilter, Xtrie, etc.)

« Essentially, simple selection queries over a stream of XML records!
* No work on more complex XML stream queries

- For example, queries trying to correlate different XML data streams

35

Processing XML Data Stream e

« Example XML stream correlation query: Similarity-Join

—— O\
1 T |SimJoin(S1, S2)| =
T [{(T1,T2)LIsixs2: dist(T1,T2) <6 }|
eb Source />>\ /
2 ™ Degree of content similarity between

streaming XML sources

Different data representation for same
information (DTDs, optional elements)

e Correlation metric: Tree-edit distance ed(T1,T2)
- Node relabels, inserts, deletes - also, allow for subtree moves

ublication
P delete publication

— T
book aper ~
S /PP\[------ /book/ \paper

title author title ’.:gu‘rhorSE

...... N title author title quthor author

atthor author
36

18

How About AMS Sketches? e

= o ——
 Randomized linear projections (aka AMS sketches) are useful for points
over a numeric vector space

- Not structured objects over a complex metfric space (free-edit

distance)
N []
Stream Atomic Sketch
R(A,B) [) .
-) X, =Zfreq(i,j)|}ﬁj
(9]
O(logN)
N
O(N?)

37

Our Appr'oach [6K03] e

 Key idea: Build a /low-distortion embedding of streaming XML and the
tree-edit distance metric in a multi-d normed vector space

ed(T1,T2) Distances are
Med(TZ T3) v(12) (approximately)

[] .
preserved in the
image vector space!/

map V())
° V(T3)
\/ V(T1)
ed(T1,T3)

* Given such an embedding, sketching techniques now become relevant in
the streaming XML context!

- E.g., use AMS sketches fo produce synopses of the data distribution
in the image vector space

38

19

Our Approach [GKO3] (cont.) oo O

- - -
* Construct low-distortion embedding for tree-edit distance over
streaming XML documents -- Requirements:

- Small space/time

- Oblivious: Can compute V(T) independent of other trees in the
stream(s)

- Bourgain's Lemma is inapplicable!

e First algorithm for low-distortion, oblivious embedding of the tree-edit
distance metric in small space/time

- Fully deterministic, embed into L1 vector space

- Bound of O(log” nlog"n) on distance distortion for trees with <n
nodes

IV(S) =V (M) I,= Y IV(S)[i]-V(T)[i]I= Oclog® nlog" n) [&d(S,T)

o Worst-case bound! Distortions much smaller over real-life data

- Factors of 5-10 for 15K-node trees, consistently overestimate
39

Our Approach [GKO3] (cont.) p—e)

* Applications in XML stream query processing

- Combine our embedding with existing pseudo-random linear-
projection sketching techniques

- Build a small-space sketch synopsis for a massive, streaming XML
data free

+ Concise surrogate for tree-edit distance computations
- Approximating tree-edit distance similarity joins over XML streams

in small space/time
* First algorithmic results on correlating XML data in the streaming model
» Other important algorithmic applications for our embedding result

- Approximate tree-edit distance in (near-linear) O(nlog' n) time

40

20

Embedding Algorithm e

FEST
* Key Idea: Given an XML free T, build a h/erar'ch/ca/ parsing structure over T by
intelligently grouping nodes and contracting edges in T

- At parsing level i: T(i) is generated by grouping nodes of T(i-1) (T(0)=T)

- Each node in the parsing structure (T(i), foralli=0,1,..) corresponds to
a connected subtree of T

- Vector image V(T) is basically the characteristic vector of the resulting
multiset of subtrees (in the entire parsing structure)

WTIx] = no. of times subtree x appears in the parsing structure for T

* Our parsing guarantees
- O(log|T|) parsing levels (constant-fraction reduction at each level)
- V(T)is very sparse: Only O(|T|) non-zero components in V(T)
- Even though dimensionality = O((41g)") (0O = label alphabet)
- Allows for effective sketching
- V(T) is constructed in time O(T Ilog" IT1)

41

Embedding Algorithm (cont.) wmzpzese O

» Node grouping at a given parsing level T(i): Create groups of 2 or 3 nodes of
T(i) and merge them into a single node of T(i+1)

- 1. Group maximal sequence of contiguous
leaf children of a node

- 2. Group maximal sequence of contiguous
nodes in a chain

- 3. Fold leftmost lone leaf child into parent

 Grouping for Cases 1,2: Deterministic coin-tossing process of Cormode and
Muthukrishnan [SODA'02]

- Key property: Insertion/deletion in a sequence of length k only affects the
grouping of nodes in a radius of log" k+5 from the point of change

42

21

Embedding Algorithm (cont.) oo O
 Example hierarchical tree parsing

TO)=T T(1)

T(@)

“empty" label
X = ’)S V(MIyl+=1

V(MIx]+=1

« O(log| T|) levels in the parsing, build V(T) in time O(T Ilog™ I T)

43

Main Embedding Result e

* Theorem: Our embedding algorithm builds a vector V(T) with O(| T|) non-
zero components in time O(Tllog ITI) ; further, given trees T, S with

n = max{| T|, |S|}, we have:

ed(S, T) <50V (S)-V(T)Il,=0(log” nlog” n)[&d(S,T)

+ Upper-bound proof highlights

- Key Idea: Bound the size of “influence region” (i.e., set of affected node
groups) for a tree-edit operation on T (=T(0)) at each level of parsing

+ We show that this set is of size O(ilog n) at level i

- Then, it is simple to show that any tree-edit operation can change 11V (),
by at most O(log” nlog™ Nn)
- L1 norm of subvector at level i changes by at most O(|influence region|)

44

22

Main Embedding Result (cont.) iz O

e -

 Lower-bound proof highlights

- Constructive: "Budget” of at most 5[V (S)—V(T)Il, tree-edit operations
is sufficient to convert the parsing structure for S into that for T

* Proceed bottom up, level-by-level

* At bottom level (T(0)), use budget to insert/delete appropriate labeled
nodes

* At higher levels, use subtree moves to appropriately arrange nodes

+ See PODS'03 paper for full details . . .

45

Sketching a Massive, Streaming XML Tree~ === @

T e

 Input: Massive XML data tree T (n = |T| > available memory), seen
in preorder (e.g., SAX parser output)

* Output: Small space surrogate (vector) for high-probability, approximate
tree-edit distance computations (to within our distortion bounds)

o Theorem: Can build a O(logl) -size sketch vector of V(T) for
approximate tree-edit distance computations in O(d log” n(log” n)*)
space and O(logdlog” nlog' n)*) time per element

- d=depthof T, J = probabilistic confidence in ed() approximation
- XML trees are typically "bushy” (d«n or d = O(polylog(n)))

46

23

Sketching a Massive, Streaming XML e |

Tree ‘cam‘. Z

» Key Ideas

- Incrementally parse T to produce V(T) as elements stream in

- Just need to retain the /nfluence region nodes for each parsing
level and for each node in the current root-to-leaf path

T(O(
T=T(0) T @ (Ollogn)
...... FON
,’ ‘l Influence
i ! Regions
1 1
L
\
O(lognlog" n)

- While updating V(T), also produce an LI sketch of the V(T) vector
using the techniques of Indyk [FOCS'00]

47

Approximate Similarity Joins over XML .. O
Streams

|SimJoin(S1, S2)| =

s2: AX\Q)\ e l(T1,72) Usixs2: ed(T1,72) <6)

» Input: Long streams S1, S2 of N (short) XML documents (< b nodes)
 Output: Estimate for |SimJoin(S1, S2)|

s Theorem: Can build an atomic sketch-based estimate for |SimJoin(S1,
S2)| where distances are approximated to within O(log”blog”b) in
space O(b+log Elog N) and O(% +blog b) time per document

- O = probabilistic confidence in distance estimates

48

24

Approximate Similarity Joins over XML opien. O
Streams (cont.

» Key Ideas

e

- Our embedding of streaming document trees, plus two distinct levels
of sketching

* One to reduce L1 dimensionality, one to capture the data
distribution (for joining)

* Finally, similarity join in lower-dimensional L1 space

: Join Sketch
V(T) Llsketch (dim. distributi
T . (distribution)
reeEmbed ° reduction) ° X(S)

1
O(log 5) dimensions

+ Some technical issues: high-probability L1 dimensionality
reduction is not possible, sketching for L1 similarity joins

+ Details in the paper . ..

49

Conclusions it O

TR

* Analyzing massive data streams: Real problem with several real-world
applications

- Fundamentally rethink data management under stringent constraints
- Single-pass algorithms with limited memory/CPU-time resources

* Pseudo-random sketching is a viable technique for a variety of
streaming tasks

- Limited-space randomized approximations
- Probabilistic guarantees on the quality of the approximate answer
- Delete-proof (supports insertion and deletion of records)

- Composable (ideal for distributed computation)

50

25

Future Work: Tracking Continuous ... 0O
Streams in Small Time

Query Stream 7
é@ = Synopsis

Update

* Update/Query times are typically Q(| synopsis|) -- fine as long as synopsis
sizes are small (polylog), BUT...

- Small synopses are often /mpossible (strong communication-complexity lower
bounds)

+ E.g., set expressions, joins, . ..

* Synopsis size may not be the crucial limiting factor (PCs with Gigabytes of RAM)

* Guaranteed small (polylog) update/query times are critical for high-speed streams

- Time-efficient streaming algorithms -- Q(Isynopsisl) times are not
adequatel!

- Have some initial results for small-time tracking of set expressions and joins

51

Future Work: Disfributed 0

Approximate Stream Tracking =
Coordinator - ’ /
=

=
_E e = =

Hierarchical Fully Distributed
* Goal: Effective tracking of a global quantity/query over the union of a
distributed collection of streams
- Composability of sketches makes them ideal for distributed computation
- Additional concern: Communication Efficiency
* Minimize message exchanges involved for a given accuracy guarantee
» Some initial results on distributed “top-k frequency” monitoring [BOO3]
- Deterministic guarantees, using full space -- no sketching/synopses employed

- More complex distributed tracking problems (e.g., joins) are wide open!

52

26

Other Future Research Directions e

e -

* Sketches/synopses for richer types of streaming data and queries

- Spatial data streams, queries over sliding windows, mining/querying
streaming graphs, . ..

 Other metric-space embeddings in the streaming model

* Stream-data processing architectures and query languages
-Progress: Aurora, STREAM, Telegraph, . ..

* Integration of streams and static relations
- Effect on DBMS components (e.g., query optimizer)

* Novel, important application domains

- Sensor networks, financial analysis, security, . ..

53

Thank you! e O

54

27

Using Sketches to Answer SUM Queries = ‘iimes O

T e =
* Problem: Compute answer for query SUMg(R DX, S) =Z,»fp(i) [BUM(i)

- SUM(i) is sum of B attribute values for records in S for whom S.A = i
* Sketch-based solution

- Compute random variables Xp and Xg 3
. 2
Stream RA:[4 1 2 (4\1 4| f(i): L o
| T 2 3 a4

Xe =Xe +¢4 Xe =2 R(0)6 =26 +& +3¢,

3 3
- . 2 2
Stream S: A [3 [1)\2 4 2 3| SUM(): T]
B[1\3/]2 2 11 -

2 3 4
Xs =Xs +3¢, Xs =Y SUM (1) =3¢, +3¢, +2¢, +2¢,

- Return X=XgXs (E[X]= SUMg(R D4 S))

55

Stream Wavelet Approximation using e @
AMS Sketches [GKMSO01]

. Smg'e—join approximation with sketches [AGMS99]
- Construct approximationto [R1>IR2| = Y. f,()f,(i) withina

relative error of & with probability >1-J using space
Odlog N og(1/)/(£*A")) , where

1> f30) 0!
O 2O D)

» Observation: [R1>aR2|= > f(i)f,(i)=<f,f,>

A<

= |R1>IR2| / Sqrt([|self-join sizes)

- General result for inner-product approximation using sketches

 Other inner products of interest:

- Haar wavelet decomposition = inner products of signal/distribution

with specialized (wavelet basis) vectors
56

Space Allocation Among Partitions e O

L e -

* Key Idea: Allocate more space to sketches for partitions with higher
variance

sl copies
KK K] = s 8 8 [@/ E[Y] = COUNT(RD4S)

s2 copies

Var[Y] =

Var[X1] N Var[X2] < £ COUNT?
sl s2 8
 Example: Var[X1]=20K, Var[X2]=2K
- For s1=52=20K, Var[Y]=10 +0.1=11
- For s1=25K, s2=8K, Var[¥]=0.8 + 0.25 = 1.05

57

Sketch Partitioning Problems e

R
* Problem 1: Given sketches X1,, Xk for partitions P1, ..., Pk of the join
attribute domain, what is the space sj that must be allocated to Pj (for
sj copies of Xj) so that
2 2
Var[X1] N Var[X2] +B Var[Xk] <€ COUNT
sl s2 sk 8

Var[Y]=
and ZJSJ is minimum

* Problem 2: Compute a partitioning P1, ..., Pk of the join attribute domain,
and space sj allocated to each Pj (for sj copies of Xj) such that

Var[X1] , Var[X2] | & Var[XK] < £ COUNT?

Var[Y] =
arl], sl s2 sk 8
GndZJSJ is minimum

* Solutions also apply to dual problem (Min. variance for fixed space)

58

29

Optimal Space Allocation Among Partitions ‘uime: O
L e

* Key Result (Problem 1): Let X1,, Xk be sketches for partitions P1, ...,
Pk of the join attribute domain. Then, allocating space

sj= 8,/Var‘(Xj)(zj,/Var(Xj))

£? COUNT? 2 COUNT?
to each Pj (for sj copies of Xj) ensures that Var[Y]< g LPVNL
and ;S is minimum 8
8(Y,Var(X)))

* Total sketch space requil"ed:zj Sy = g2 COUNT?

* Problem 2 (Restated): Compute a partitioning P1, ..., Pk of the join
attribute domain such that ZJ. Var(Xj) is minimum

- Optimal partitioning P1, ..., Pk minimizes total sketch space

59

Binary-Join Queries: Binary Space v @
Partitioning Tlnsegts

* Problem: For COUNT(R B, S), compute a partitioning P1, P2 of A's
domain {1, 2, ..., N} such that \/Var(X1) +/Var(X2) is minimum

- Note: Var(Xj) =23 &) >, £ ()

* Key Result (due to Breiman): For an optimal partitioning P1, P2,

mitopt, oizopz, R0 (%(2)
(i) f(3i2)

* Algorithm
- Sort values i in A's domain in increasing value of @

- Choose partitioning point that minimizes 20

\/ZZiDPl ‘62 (i)z ZiDPl fs(i)z + \/ZZiDPZ fR (i)z ZiDPZ fs (i)z

60

30

Binary Sketch Partitioning Example etz O
-~ S -
Without Partitioning With Optimal Partitioning
10 10 -
. ' (i)
2 3 4 O 0, @ O
30 30 i— 4 2 1 3
£ Optimal
S 5) Point
1 2 3 4 < S(ZJ ’VOI"(X\]))Z
space = BLVarlX] Pace = COUNT?
T2 AL INIT2
e* COUNT (X, JVar(X))* = (~18000 ++/2000)* (32D
Var[X].@b
(Var[X1]=18K, Var[X2]=2K)
61
Binary-Join Queries: K-ary Sketch e |
Par"l'iﬁoning

* Problem: For COUNT(RD 4S), compute a partitioning P1, P2, ..., Pk of
A’'s domain such that Zj,/Var(XJ) iS minimum
* Previous result (for 2 partitions) generalizes to k partitions

* Optimal k partitions can be computed using Dynamic Programming
i
- Sort values i in A's domain in increasing value of R

130,

- Let ¢(u,1) be the value of ZJ. \/Zzimpjﬁz(i)z Zﬂ,j f,(i)’when [1,u] is split
optimally into t partitions P1, P2, ..., Pt

o(u D) =min., (o(v,t -0+ 2X" KO Y, R

i=v+l i=v+l

T G -

(o
1

« Time complexity:O(kN?)

62

31

Sketch Partitioning for Multi-Join Queries ‘= utzzz:

o e =—

* Problem: For COUNT(RB4, SB4pT), compute a partitioning
R*P*...R.A(R*PE...R.") of A(B)'s domain such that k4kgek,
and the following is minimum

W=D D e Var(X e ps))

* Partitioning problem is NP-hard for more than 1 join attribute

* If join attributes are independent, then possible to compute
optimal partitioning
- Choose k1 such that allocating k1 partitions o attribute A and k/kl1 to
remaining attributes minimizes Y

- Compute optimal k1 partitions for A using previous dynamic
programming algorithm

O

63

Experimental Study etz O

I s
* Summary of findings
- Sketches are superior to 1-d (equi-depth) histograms for answering
COUNT queries over data streams

- Sketch partitioning is effective for reducing error

* Real-life Census Population Survey data sets (1999 and 2001)
- Attributes considered:
+ Income (1:14)
+ Education (1:46)
- Age (1:99)
* Weekly Wage and Weekly Wage Overtime (0:288416)

| actual —approx |
actual

* Error metric: relative error (

)

64

32

Join (Weekly Wage)

Lucent Technologies 0
Bell Labs Innovations.

08 .

07 -

06 -

05 N

Relative Error

04

03

02

sketch —— o

01+ \\M
‘

1 I
0 500 1000 1500 2000 2600 3000
Memory{words)

1
3500 4000

65

Join (Age, Education)
T e

Lucent Technologies 0
Bell Labs Innovations.

012 T T T

011 | PR

sketch ——
histogram ---»-—

0.07

Relatve Error

008

005

0.04

! ! 1
Q 1000 2000 3000 A000 5000 6000

Memory{words)

!
7000 8000

66

33

Star Join (Age, Education, Income)
L e

Lucent Technologies

og
Bell Labs Innovations

016

014 -

012 -

Relative Emror

008 -

004 -

01 -

008 -

sketch —+—
histogram -——-¢--- |

o002

1
A000

6000
Memorylwords)

8000

10000 12000

O

67

Wage)

0.07
0.085
0.06
0.055

0.05

Relative Error

0.045

0.04

0.035

0.03

Join (Weekly Wage Overtime = Weekly

Lucent Technologi
Bell Labs Innovations.

T

25 buckets —+—
50 buckets ———»—
100 buckets ---%---

Number of Partitions

- O

68

More work on Sketches... Lucent Technologes @

L e

* Low-distortion vector-space embeddings (JL Lemma) [IndO1] and applications
- E.g., approximate nearest neighbors [IM98]

* Wavelet and histogram extraction over data streams [66102, GIMO2,
GKMSO01, TGIK02]

+ Discovering patterns and periodicities in time-series databases [IKMOO,
CIKO2]

* Quantile estimation over streams [GKMS02]

» Distinct value estimation over streams [CDI02]

* Maintaining fop-k item frequencies over a stream [CCFO2]
» Stream norm computation [FKS99, Ind00]

* Data cleaning [DIMO2]

69

Sketching for Multiple Standing Queries = “™&== O

« Consider queries Q1 = COUNT(R B, SB<pT) and Q2 = COUNT(R bd,_pT)
* Naive approach: construct separate sketches for each join
- ¢, 6, Aare independent families of pseudo-random variables

mAt age 6 b
X =Y f0E X=X £60.)6 X=X k0

X =2 (DA Xp =3 (A

70

35

Sketch Sharing ez O

L e

* Key Idea: Share sketch for relation R between the two queries
- Reduces space required to maintain sketches

Xs :Z;/jfs(ilj)éigj
B G B El

Xy = ijT(\])gj

Same family of
random variables

Xe =2 R0 Xr =2 50

* BUT, cannot also share the sketch for T
- Same family on the join edges of Q1

71

Sketching for Multiple Standing Queries e O

* Algorithms for sharing sketches and allocating space among the
queries in the workload

- Maximize sharing of sketch computations among queries

- Minimize a cumulative error for the given synopsis space
* Novel, interesting combinatorial optimization problems

- Several NP-hardness results :-)

* Designing effective heuristic solutions

72

36

Set Expressions to Sketch Expressions e e @
- Given set expression E = f(S1,..,5n), level of inference |

- Again, look for buckets that are singletons for the union of S1,...,
Snat level |

"Witness” Condition for E: Create boolean expression B(E) over
parallel sketches inductively

1. Replace Si by isSingleton(sketch(Si), I)
2.Replace E1(1 E2 by B(E1) AND B(E2)
3.Replace E1-E2 by B(E1) AND (NOT B(E2))
4. Replace E1UJE2 by B(E1) OR B(E2)

. Then, Prob[witness | singleton] = |E| / |S1U ..U Sn|

73

Application: Robust, Real-Time DDoS e |

Attack Detection
Declarative Query
- Provide declarative interface for specifying

: Ww——
DDoS/anomaly queries over large ISP network ~ Recl-fime daic=

stream analysis

+ E.g., fop-k destinations with respect to number
of distinct connecting sources onter (o9

SNMP,RMON,
- Continuously track these queries over network-"<""" s"e
measurement data streams in small space/time &R

e Innovations =_Converged IP/MPLS R
. Network >
- Small-footprint, hash-based synopses for

approximate DDoS query fracking Enterprise
eers BSL/Cable A

Networks

- Small update time per network-stream tuple

+ Log/poly-log space & time tracking bucket

sighature

- Strong, probabilistic approximation guarantees
- “within 2% of exact answer with high probability” hash function

- Robust, real-time detection of DDoS anomaly

conditions in the network
o) (source, dest)
+ E.g., tracking “half-open” connections to

distinguish DDoS attacks from flash-crowds
Hash-Sketch Synopsis

74

