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Information Extraction (IE) 
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 Steve Jobs introduced the iPhone 4's 
videoconferencing feature FaceTime at WWDC 
2010. Apple will hold a press conference 
Wednesday, where Steve Jobs is expected to 
announce the birth of new stars in his product 
galaxy, including (probably) new iPods and 
(possibly) a successor to Apple TV. 
                                 ---  From WIRED August 30, 2010 
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 Steve Jobs introduced the iPhone 4's 
videoconferencing feature FaceTime at WWDC 
2010. Apple will hold a press conference 
Wednesday, where Steve Jobs is expected to 
announce the birth of new stars in his product 
galaxy, including (probably) new iPods and 
(possibly) a successor to Apple TV. 
                                 ---  From WIRED August 30, 2010  

Labels: 

Person    Company    Product     Event     Other   
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“Extract-then-Query” –  

Standard IE Systems 

Traditional  

DBMS 

Query 

Answer 

Top-1 Entity 

Extractions Text 

Problems: 

1.  Exhaustive extraction for all entities over all in-coming documents 

2.  Loses uncertainties and probabilities which are inherent in IE 

Information 

Extraction Systems 



Exhaustive vs.  

Query-Driven Extraction Example 
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Example Query: 

SELECT persons FROM blog articles  

WHERE company = “Apple”  

 Steve Jobs introduced the iPhone 4's 
videoconferencing feature FaceTime at WWDC 
2010. Apple will hold a press conference... 

 The Big Apple lands „14 Super Bowl. Giants co-
owner Jonathan Tisch said: “The greatest game 
will be played on the greatest stage!”… 

 Apple Soufflé recipe by Julia Child: ... Pare, cut 
up, and stew …  
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Exhaustive vs.  

Query-Driven Extraction Example 
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Example Query: 

SELECT persons FROM blog articles  

WHERE company = “Apple”  

 Steve Jobs introduced the iPhone 4's 
videoconferencing feature FaceTime at WWDC 
2010. Apple will hold a press conference... 

 The Big Apple lands   

 Apple Soufflé recipes 

 How to perform fast filtering  without full inference? 
Challenge: Need to push condition Label = ‘company’ into 
inference by deep integration of inference and relational ops.   
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“Extract-then-Query” –   

Storing Extractions and Probabilities 

Probabilistic 

DBMS 

Query 

p(Answer)  

p(Entities) 

probabilities 

Still performs exhaustive extraction 

Does not have the right representations to support IE 

probabilistic models inside of PDB [Gupta,VLDB2005] 

Text 

Information 

Extraction Systems 



“Query-Time-Extraction” – BayesStoreIE 
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IE Probabilistic 

Model+ Inf. 

Engine 

Query 

Pr[Answer] 

BayesStoreIE 

Text 
      Relational 

Query Engine Pr[Entities] 

Constraints 

Our Contributions: 

• Deep Integration between Inference and Relational Operators 

• Enable Query-Driven On-line Extraction 

• Enable Probabilistic Queries over IE models 
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Conditional Random Fields (CRF) 
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2181 Shattuck North Berkeley CA USA 

X=tokens 

Y=labels 

CRF Model:  

Text (address string):  
     E.g., “2181 Shattuck North Berkeley CA USA” 

Possible Extraction Worlds: 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 



Two Query Families 
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Query Family 1: (SPJ-over-Top1)  

 Queries using only most-likely Extractions 

 

 

Query Family 2: (Probabilistic SPJ)   

 Queries using probabilistic distributions 

 



Query Family 1: Select-over-Top1 
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Example Query: 

Select * 

From Top-1 extractions of document set D 

Where company like “%Apple%” 



Viterbi Top-1 Inference on CRF 

pos street 

num 

street 

name 

city state country 
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2181 Shattuck North Berkeley 

X=tokens 

Y=labels 
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Viterbi Dynamic Programming Algorithm:  

CRF Model:  Dynamic Programming V matrix:  

pos street 

num 

street 

name 

city state country 

0 5 1 0 1 1 

1 2 15 7 8 7 

2 12 24 21 18 17 

3 21 32 32 30 26 

4 29 40 38 42 35 

pos street 

num 
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name 

city state country 

0 5 1 0 1 1 

1 2 15 7 8 7 

2 12 24 21 18 17 

3 21 32 32 30 26 

pos street 

num 

street 

name 

city state country 

0 5 1 0 1 1 

1 2 15 7 8 7 

2 12 24 21 18 17 

pos street 

num 

street 

name 

city state country 

0 5 1 0 1 1 

1 2 15 7 8 7 

pos street 

num 

street 

name 

city state country 

0 5 1 0 1 1 

pos street 

num 

street 

name 

city state country 

0 5 1 0 1 1 

1 2 15 7 8 7 

2 12 24 21 18 17 

3 21 32 32 30 26 

4 29 40 38 42 35 

5 39 47 46 46 50 



Query Family 1: Select-over-Top1 – 

Viterbi Early-Stopping Algorithm 

pos event city comp

any 

state other 

0 5 1 0 1 1 

STOP! 
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pos event city compa

ny 

state other 

0 5 1 0 1 1 

1 2 15 7 8 7 

Example Query: 

Select * 

From Viterbi-Top1 extractions of document set D 

Where company like “%Apple%” 

Big 

Apple 

lands 

`14 

Super 

Bowl 

pos event city comp

any 

state other 

0 5 1 0 1 1 

1 2 15 7 8 7 

2 12 24 21 18 17 

Implemented in PostgreSQL using recursive queries and array functions 



Query Family 2: Probabilistic Join 
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Example Query: 
Select  Top-1 results 
From extraction distributions of documents in D1, D2  
Where D1.city = D2.city 

Probabilistic Join 



Query Family 2: Probabilistic Join 
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Naïve algorithm:  

First compute top-k extractions for both input document sets, then 

compute join 

Problem:  

k needed to compute Top-1 results varies for different documents 

Solution:  

Probabilistic Rank-Join algorithm based on Incremental Ranked 

Access to the List of Possible Extractions 

Example Query: 
Select  Top-1 results 
From extraction distributions of documents in D1, D2  
Where D1.city = D2.city 



Accessing Ranked List of Extractions –

Incremental Viterbi Algorithm 
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 A novel variation of the Top-1 Viterbi algorithm, which computes 

the next highest-probability extraction incrementally and more 

efficiently 

pos street 

num 

street 

name 

city state countr

y 

0 5 1 0 1 1 

1 2 15 7 8 7 

2 12 24 21 18 17 

3 21 32, 32 30 26 

4 29 40 38 42 35 

5 39 47 46 46 50 

Sacramento 

Avenue 

San 

Francisco 

CA 

USA 



Accessing Ranked List of Extractions –

Incremental Viterbi Algorithm 
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 A novel variation of the Top-1 Viterbi algorithm, which computes 

the next highest-probability extraction incrementally and more 

efficiently 

pos street 

num 

street 

name 

city state countr

y 

0 5 1 0 1 1 

1 2 15,10 7 8 7 

2 12 24,18 21 18 17 

3 21 32, 32,31 30 26 

4 29 40 38 42,38 35 

5 39 47 46 46 50,48 

Sacramento 

Avenue 

San 

Francisco 

CA 

USA 

3rd  highest-probability extraction can be computed by another call… 



Probabilistic Rank-Join  
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Rank-join is applied to each pair of “joinable” document to 

compute Top-1 join results  

key Ext. p 

A .83 

B .12 

C .02 

key Ext. p 

D .77 

C .15 

A .03 

O_top 

O_bottom 

I1_top 

I1_bottom 

k 

Outer Doc_i Inner Doc_j 



Probabilistic Rank-Join 
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A  set of rank-joins are computed simultaneously for a 

set of outer documents and a set of inner documents 

 key Ext. p 

A .83 

B .12 

C .02 

key Ext. p 

D .77 

C .15 

B .03 

key Ext. p 

C .95 

D .02 

A .01 

……… 

O_top 

O_bottom 

I1_top 

I1_bottom 

k 

Outer Doc_1 
Inner Doc_1 

Inner Doc_n 

……… 



Other Algorithms 
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 Probabilistic Selection  

 Probabilistic Projection 

 Query-Driven Join-over-Top1 
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Evaluation 1: [Efficiency Improvement] 

Exhaustive vs. Query-Driven Extraction 

with Inverted Index  
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Select-over-Top1 Queries 



Evaluation 2: [Efficiency Improvement]  

Query-Driven Extraction  

Inverted Index vs. Early-Stopping 
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Take-away: Query-Driven Extraction improves Efficiency. 

Select-over-Top1 Queries 



Evaluation 3: [Accuracy Improvement] 

Probabilistic Join vs. Join-over-Top1 
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Take-away: Probabilistic SPJ improves accuracy at a computation cost 

A Query Design Space: efficiency vs. accuracy 



Conclusion 
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 Querying Probabilistic IE 

 BayesStoreIE framework 

 Deep Integration of Relational and Inference 

 Query-Driven Extraction 

 Probabilistic SPJ Queries 

 

 Current & Future Work 

 MCMC inference in DB  

 Conditional and Aggregation Queries in IE 

 Optimizer for Inference Operators (cost-accuracy co-
optimization) 



Thank you! ... Questions?  
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BayesStore Project Page: 
http://www.cs.berkeley.edu/~daisyw/BayesStore.html 

 


