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motivation

* numerous emerging data management applications require to
continuously generate, process and analyze massive amounts of
data

- e.g. continuous event monitoring applications: network-event
tracking in ISPs, transaction-log monitoring in large web-server
farms

+ the data streaming paradigm

- large volumes (~Terabytes/day) of monitoring data arriving at high
rates that need to be processed on-line

* analysis in data streaming scenarios rely on building and
maintaining approximate synopses in real time and in one pass
over streaming data

- require small space to summarize key features of streaming data
- provide approximate query answers with quality guarantees

problem formulation

+ our focus: maintain a wavelet synopsis over data streams
+ algorithmic requirements:
- small memory footprint (sublinear in data size)
- fast per stream-item process time (sublinear in required memory)
- fast query time (sublinear in data size)
- quality guarantees on query answers

stream processing model
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assume data vector a of size N
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wavelet synopses

the (Haar) wavelet decomposition hierarchically decomposes a data vector

- for every pair of consequent values, compute the average and the semi-
difference (a.k.a. detail) values (coefficients)

- iteratively repeat on the lower-resolution data consisting of only the averages
- final decomposition is the overall average plus all details

to obtain the optimal, in sum-squared-error sense, wavelet synopsis only keep the
highest in absolute normalized value coefficients

- implicitly set other coefficients to zero
easily extendable to multiple dimensions




the AMS sketch (1/2)

the AMS sketch is a powerful data stream synopsis structure serving

as the building block in a variety of applications:
join size, constructing histograms and wavelet

- e.g. estimatin (mulﬁ—way)*
synopses, finding frequent items and quantiles
it consists of atomic sketches
an atomic AMS sketch X of a is a randomized linear projection
where ¢ denotes a random vector of four-wise

independent random variables
- the random variable can be generated in just bits space for seeding,
using standard pseudo-random hash functions

is updated as stream updates arrive:
atomic &)
sketch & —
— update
log(1/8) (i)

the AMS sketch (2/2)

the AMS sketch estimates the L, horm (energy) of
- let Z be the -wise median of -wise means of the

square of independent atomic AMS sketches
- then 7 estimates within (w.h.p. )
- it can also estimate inner products

an improvement: fast AMS sketch
- introducing a level of hashing reduces update time by while
providing the same guarantees and requiring same space
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our approach (1/3)

two shortcomings of existing approach [GKMS] (using AMS sketches):
1. updating the sketch requires O(|sketchl) updates per streaming item
2. querying for the largest coefficients requires superlinear (2(NlogN) time (even when using
range-summable random variables)
blows up in the multi-dimensional case

can we fix it? use the fast-AMS sketch to speed up update time (not enough)

we introduce the GCS algorithm that satisfies all algorithmic requirements
makes summarizing large multi-dimensional streams feasible
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our approach (2/3)

the GCS algorithm relies on fwo ideas:
(1) sketch the wavelet domain
(2) quickly identify large coefficients

(1) is easy to accomplish: translate updates in the original domain to updates in the
mp P 9 p
wavelet domain
- just polylog more updates are required, even for multi-d

d do o
translatior (?3'.(>§w
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our approach (3/3)
for (2) we would like to perform a binary- [@ @ @ @ @ @ @J

search-like procedure

enforce a hierarchical grouping on
coefficients

prune groups of coefficients that are not ( j( N (- j
L,-heavy, as they may not contain L,-heavy @ @ @ @ O i ) Q Q
coefficients

only the remaining groups need to be
examined more closely

iteratively keep pruning until you reach (@ @ (@ @(\/) Q) (Q ‘3)

singleton groups

but, how do we estimate the L, (energy) for groups of coefficients?
this is a difficult task, requiring a novel technical result
more difficult than finding frequent items!

enter group count sketch




group count sketch (1/2)

| goal: estimate the L, of all k groups forming a partition on the domain of a |

the group count sketch (6CS) consists of b buckets each having c sub-
buckets, repeated 1 times

this gives a total of t:b-c counters s[1][1][1] through s[t][b][c]

fr(i)

hr (id(i))

update g e
(i,20) N

b >

update the sketch per stream element (i, +u)

id identifies the group of an item
h,. hashes groups into buckets

.. hashes items into sub-buckets
4-wise random variables {+1} ¢

repeat * times:

get item's group -> hash into a bucket -> hash into a
sub-bucket -> update counter by {+1}-u

group count sketch (2/2)

estimate L, of group g
return the median of m instances of Z (s[m][h, (9)1[j1)? forall jin[c]

he(g) = N
SNEE A
grouf g N R . /
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estimates are (w.h.p. 1-3) within additive error ¢||al|?

analysis results: t=0(log(1/8)) b=0(1/¢) c=0(1/¢?)
+space O(1/¢7 log(1/8)) counters
-update cost O(log(1/4))
+query cost O(1/¢% log(1/d)




finding L,-heavy items

keep one GCS per level of hierarchy
space and update time complexities increase (roughly) by a factor of logN
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query: find all items with L, greater than o||a||?
query time increases by 1/¢-logN (1/9 L,-heavy items per level)

w.h.p. we get all items with L, greater than (¢+2)||al|?
w.h.p. we get no items with L, less than (0-2)||al|?

sketching the wavelet domain

the GCS algorithm:
- translate updates into the wavelet domain
- maintain log N group count sketches
- find L, heavy coefficients with energy above v||a]|?

note: changing the degree (r) of the search tree allows for query-update
time trade-off

but, what should the threshold ¢ be?
assuming the data satisfies the small-B property:
there is a B-term synopsis with energy at least n||a||?

setting ¢ = £n/B we obtain a synopsis (with no more than B coeffs)
with energy at least (1-£)n||al|?
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update and query time vs sketch size
6CS-r is 6CS with search tree of degree 2°

1e+07

e enaa o
- pe O 1e406 —
i
s X ‘@ 100000 fast-GKMS —x
1000 £ % GCS-1 -+ 3 GCS-logn =
% GCS-2 % @ GCs-8 &
* GCS4 ¥ E 10000 GCS-4 -
g . R s B &I
n
o M " {astOKMS — ¢ = 1000
& = - L
100 El *
z z 100 * a ”
*
10 =1 »
o S ¥ S—— Y X *
360KB 1.2vB 29MB 360KB 1.2MB 2.9mMB
sketch size sketch size
two-dimensional update and query time
for both wavelet decomposition forms
1e+06 1e+06 T T T T
100000 ~ 100000 -
10000 9 10000
1000 1000
i N
8 100 - 4 8 100 -
o o
£ 10 - 1 £ 10 -
g 1 12 1
01 9 01
0.01 - 4 0.01 -
0.001 q 0.001
0.0001 = 0.0001

fast-
GKM:

GCS-1 GCS-2 GCS-4 GCS-6 GCS-8 GCS-7
S

method

standard form

logn

s S % L]
fast- GCS-1 GCS-2 GCS-4 GCS-6 GCS-8 GCS-

GKMS

method

non-standard form

logn

10



experiments

multi-dimensional update and query fime
for both wavelet decomposition forms
S: standard NS: non-standard
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conclusions

the GCS algorithm allows for efficient tracking of wavelet
synopses over multi-dimensional data streams

the Group Count Sketch satisfies all streaming requirements:

- small polylog space

- fast polylog update time

- fast polylog query time

- approximate answers with quality guarantees

future research directions:
- other error metrics
- histograms
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http://www.dblab.ntua.gr/
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