Fast Approximate Wavelet Tracking on Streams

Graham Cormode

cormode@bell-labs.com

Minos Garofalakis

minos.garofalakis@intel.com

Dimitris Sacharidis

dsachar@dblab.ntua.gr

outline

- introduction
 - motivation
 - problem formulation
- background
 - wavelet synopses
 - the AMS sketch
- · the GCS algorithm
 - our approach
 - the Group Count Sketch
 - finding L2 heavy items
 - sketching the wavelet domain
- · experimental results
- conclusions

motivation

- numerous emerging data management applications require to continuously generate, process and analyze massive amounts of data
 - e.g. continuous event monitoring applications: network-event tracking in ISPs, transaction-log monitoring in large web-server forms
- · the data streaming paradigm
 - large volumes (~Terabytes/day) of monitoring data arriving at high rates that need to be processed on-line
- analysis in data streaming scenarios rely on building and maintaining approximate synopses in real time and in one pass over streaming data
 - require small space to summarize key features of streaming data
 - provide approximate query answers with quality guarantees

outline

- introduction
 - motivation
 - problem formulation
- background
 - wavelet synopses
 - the AMS sketch
- the GCS algorithm
 - our approach
 - the Group Count Sketch
 - finding L2 heavy items
 - sketching the wavelet domain
- experimental results
- conclusions

wavelet synopses

- the (Haar) wavelet decomposition hierarchically decomposes a data vector
 - for every pair of consequent values, compute the average and the semidifference (a.k.a. detail) values (coefficients)
 - iteratively repeat on the lower-resolution data consisting of only the averages
 - final decomposition is the overall average plus all details

- to obtain the optimal, in sum-squared-error sense, wavelet synopsis only keep the highest in absolute normalized value coefficients
 - implicitly set other coefficients to zero
- · easily extendable to multiple dimensions

the AMS sketch (1/2)

- the AMS sketch is a powerful data stream synopsis structure serving as the building block in a variety of applications:
 - e.g.: estimating (multi-way) join size, constructing histograms and wavelet synopses, finding frequent items and quantiles
- it consists of $O(1/\epsilon^2) \times O(\log(1/\delta))$ atomic sketches
- an atomic AMS sketch X of a is a randomized linear projection
 - X = $\langle a, \xi \rangle$ = $\Sigma_i a[i]\xi(i)$, where ξ denotes a random vector of four-wise independent random variables $\{\pm 1\}$
 - the random variable can be generated in just O(logN) bits space for seeding, using standard pseudo-random hash functions
- \times X is updated as stream updates (i, $\pm u$) arrive: X := X $\pm u\xi(i)$

the AMS sketch (2/2)

- the AMS sketch estimates the L_2 norm (energy) of a
 - let Z be the $O(\log(1/\delta))$ -wise median of $O(1/\epsilon^2)$ -wise means of the **square** of independent atomic AMS sketches
 - then Z estimates $||a||^2$ within $\pm \varepsilon ||a||^2$ (w.h.p. $\ge 1-\delta$)
 - it can also estimate inner products
- an improvement: fast AMS sketch
 - introducing a **level of hashing** reduces update time by $O(1/\epsilon^2)$ while providing the same guarantees and requiring same space

outline

- introduction
 - motivation
 - problem formulation
- background
 - wavelet synopses
 - the AMS sketch
- the GCS algorithm
 - our approach
 - the Group Count Sketch
 - finding L2 heavy items
 - sketching the wavelet domain
- experimental results
- conclusions

our approach (1/3)

two shortcomings of existing approach [GKMS] (using AMS sketches):

- 1. updating the sketch requires O(|sketch|) updates per streaming item
- 1. updating the sketch requires O(|sketch|) updates per streaming term 2. querying for the largest coefficients requires superlinear $\Omega(|sketch|)$ time (even when using range-summable random variables) blows up in the multi-dimensional case

can we fix it? use the fast-AMS sketch to speed up update time (not enough)

we introduce the GCS algorithm that satisfies all algorithmic requirements makes summarizing large multi-dimensional streams feasible

streaming requirements	GKMS	fast- GKMS	GCS
small space	√	√	√
fast update time	×	√	√
fast query time	×	×	√

our approach (2/3)

the GCS algorithm relies on two ideas:

- (1) sketch the wavelet domain
- (2) quickly identify large coefficients
- (1) is easy to accomplish: translate updates in the original domain to updates in the wavelet domain
 - just polylog more updates are required, even for multi-d

our approach (3/3)

for (2) we would like to perform a binarysearch-like procedure

- enforce a hierarchical grouping on coefficients
- prune groups of coefficients that are not L₂-heavy, as they may not contain L₂-heavy coefficients
- only the remaining groups need to be examined more closely
- iteratively keep pruning until you reach singleton groups

but, how do we estimate the L_2 (energy) for groups of coefficients?

- · this is a difficult task, requiring a novel technical result
- · more difficult than finding frequent items!

enter group count sketch

finding L₂-heavy items

keep one GCS per level of hierarchy

space and update time complexities increase (roughly) by a factor of logN

query: find all items with L_2 greater than $\phi ||a||^2$ query time increases by $1/\phi \cdot logN$ ($1/\phi \cdot L_2$ -heavy items per level)

w.h.p. we get all items with L_2 greater than $(\phi + \epsilon) ||a||^2$ w.h.p. we get no items with L_2 less than $(\phi - \epsilon) ||a||^2$

sketching the wavelet domain

the GCS algorithm:

- translate updates into the wavelet domain
- maintain log_N group count sketches
- find L_2 heavy coefficients with energy above $\varphi||a||^2$

note: changing the degree (r) of the search tree allows for query-update time trade-off

but, what should the threshold φ be? assuming the data satisfies the small-B property:

there is a B-term synopsis with energy at least $\eta ||a||^2$

setting $\phi = \epsilon \eta/B$ we obtain a synopsis (with no more than B coeffs) with energy at least $(1-\epsilon)\eta||a||^2$

outline

- · introduction
 - motivation
 - problem formulation
- background
 - wavelet synopses
 - the AMS sketch
- the GCS algorithm
 - our approach
 - the Group Count Sketch
 - finding L2 heavy items
 - sketching the wavelet domain
- experimental results
- conclusions

experiments

multi-dimensional update and query time

for both wavelet decomposition forms

S: standard NS: non-standard

conclusions

- the GCS algorithm allows for efficient tracking of wavelet synopses over multi-dimensional data streams
- the Group Count Sketch satisfies all streaming requirements:
 - small polylog space
 - fast polylog update time
 - fast polylog query time
 - approximate answers with quality guarantees
- future research directions:
 - other error metrics
 - histograms

thank you!

http://www.dblab.ntua.gr/