US007082473B2

US 7,082,473 B2
Jul. 25, 2006

a2 United States Patent

Breitbart et al.

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR OPTIMIZING (56) References Cited
OPEN SHORTEST PATH FIRST U.S. PATENT DOCUMENTS
AGGREGATES AND AUTONOMOUS 5201477 A+ 31994 Lj 370238
,291, TEW trviieeeiriineerriennns
¥g£‘§g§§ DOMAIN INCORPORATING 6,016,306 A * 1/2000 Le Boudec et al. 370/235
6,256,675 B1* 7/2001 Rabinovich 709/241
6,363,319 B1* 3/2002 HSU ..coovvrrnrereeeeneeenn. 701/202
(75) Inventors: Yuri J. Breitbart, Madison, NI (US); 6,587,684 Bl1* 7/2003 Hsu et al.o 455/419
Minos N. Garofalakis, Morris, NJ 6,633,544 B1* 10/2003 Rexford et al. 370/238
(US); Amit Kumar, Ithaca, NY (US); 2002/0078238 Al* 6/2002 Troxel et al. 709/245
g;g()eev Rastogi, New Providence, NJ * cited by examiner
Primary Examiner—Glenton B. Burgess
(73) Assignee: Lucent Technologies Inc., Murray Hill, Assistant Examiner—Yasin Barqadle
NI (US)
57 ABSTRACT
(*) Notice: Subject. to any dlsclalmer,. the term of this Systems and method for selecting open shortest path first
patent is extended or adjusted under 35 . .
U.S.C. 154(b) by 895 days (OSPF) aggregates and aggregate weights for a particular
B Y s area. In one embodiment, an aggregate selecting. system
21 Appl. No.: 09/775.329 includes: (1) a database for containing data pertaining to
(1) Appl. No ’ candidate OSPF aggregates and corresponding weights and
(22) Filed: Feb. 1, 2001 (2) an aggregate selector, associated with the database, that
selects at least a subset of the OSPF aggregates such that the
(65) Prior Publication Data shortest path length between the particular source and des-
tination subnets resulting from advertisement of a set of
US 2002/0147842 Al Oct. 10, 2002 weighted aggregates approaches the shortest path length
between the particular source and destination subnets irre-
(51) Imt. Cl spective of the advertisement. In one embodiment, a weight
GO6F 15/173 (2006.01) selection system includes: (1) a database for containing data
HO4L 12/28 (2006.01) pertaining to candidate OSPF aggregates and (2) a weight
assigner, associated with the database, that assigns, for the
(52) US.Cl . 709/241; 709/238; 370/392 OSPF aggregates, weights based on either an average dis-
(58) Field of Classification Search 709/238-241, tance of subnets in the area for a particular area border router

709/249, 200, 223, 224, 227, 232, 245; 370/238,
370/255, 389-392
See application file for complete search history.

(ABR) of the area or a search heuristic.

20 Claims, 9 Drawing Sheets

| 1.16.0/24 0.1 024
Area . .0.1 2 0.0.0.2
bl b2
200
Area 0.0.0.0 200
100 100
3 b4
0o 1 re2 0.0.03
500 100
10.1.5.0/24 10.1.6.0/24
10.1.4.0/24 10.1.7.0/24

US 7,082,473 B2

Sheet 1 of 9

Jul. 25, 2006

U.S. Patent

L 2ANOId

YC/O°L 101 ve/O'e 101 Ye/Ov 1°01
s21

0001

$200°9°1°01 VTS T 0T
szl
00z LL 0s
£0°070 v YTIOT 101

¥4 £q

00t

0°0°0°0 By

| #7i ,E

100 ey
\ 7

12400} ._.wf\m 57 m ’— ¥e/09L° 101
;_\

ol

2000

US 7,082,473 B2

Sheet 2 of 9

Jul. 25, 2006

U.S. Patent

Z JUNOI
YZOETOl $Z/OT 0l $Z/0°L'T°01 PUO9T01 $T/0°S 101 LAy asy:
N/ ~_ 7 ~._
€2/0'T1°01 €2/0'9°1°01 €Z/0'Y'1°01
/\
T2/0'0'1°01 2O 101
/ \\
12/0:0'1°01

U.S. Patent Jul. 25, 2006 Sheet 3 of 9 US 7,082,473 B2

procedure COMPUTEMINERROR{Aggregate z, Aggregate y, integer [)
1. if subTreefz, ¥, l}.computed = true

2 return [subTree(z, y, I].error, subTreefz, y, i].aggregates]

3. minError ;== minErrorl := minError2 := co

4. ifzis aleaf {

5. minBrrorl :=) 5 D(s,t) * (Isp(s, 7, {y}, Wa) — Isp(s, 7))

6. HI>0

7. minError2 := 37 ¢ D(s, t) * (Isp(s, z, {z}, Wa) ~ lsp(s; z))

8. if minErrorl < minError2

9. [subTreelz, y, {].error, subTreefz, y, I].aggregates] := [minErrorl, 9]
10. else

11. [subTree[z, y, I].error, subTreefz, y, I].aggregates] := [minError2, {z}]
12. }

13. if z has a single child u {

14. [minFrrorl, aggregatesl] := CoMPUTEMINERROR(u, ¥, {)

15. #I>0

16. [minError2, aggregates?] := COMPUTEMINERROR(u, z, | — 1)

17. if minErrorl < minError2

18. [subTreelz, y, I).error, subTree|z, y, I].aggregates] := [minErrorl, aggregatesl)
19. else

20. [subTree[z, y, i].error, subTreefz, y, I].aggregates] := [minError2, aggregates2 U {z}]
21. }

22. if z has children » and v {

23. fori:=0tol{

24. - [minFrrorl, aggregatesl] := COMPUTEMINERROR(u, y, 7)

25. [minError2, aggregates2] := COMPUTEMINERROR(v, ¥, k —©)
26. if minErrorl + minError2 < minError

27. minError := minErrorl + minError2

28. aggregates := aggregatesl U aggregates2

29. 1}

30. fori:=0tol—-1{

31. {minErrorl, aggregatesl] := CoMPUTEMINERROR(u, =, 1)

32. [minError2, aggregates2} := CoMPUTEMINERROR(», z, k~i - 1)
33. if minErrorl + minFrror2 < minError

34 minError := minErrorl + minError2

35. aggregates := aggregatesl U aggregates2 U{z}

36. }

37. [subTree[z, y, !].error, subTree|z, ¥, I].aggregates] := [minError, aggregates]
38.}

39. subTree(r, y, I].computed := true
40. return [subTree[z, y, [J.error, subTreefz, y, !].aggregates]

FIGURE 3

U.S. Patent Jul. 25, 2006 Sheet 4 of 9 US 7,082,473 B2

procedure COMBINEMINERROR()
fori=1tom
for j=0tok {
T;[7]-Jerror, aggregates] := CoMPUTEMINERROR(r{T;), ¢, 7}
X;[j).lerror, aggregates] := [0, 6]

for j=0tok
X[} fervor, aggregates] := T1[j].[error, aggregates]

1
2
3
4,
5.)
6
7
8. fori=1ltom
9

forj=0to%
10. fori=0¢toj
11. if (X;_1[f].error + T;[j — {]-error < X{j].exrror) {
12. X;[f].exror = X;_;[{].error + T3[j — {].error
13. X;[7]-aggregates = X;_1[l].aggregates U Ti[j — I]-aggregates
14. }

FIGURE 4

US 7,082,473 B2

Sheet 5 of 9

Jul. 25, 2006

U.S. Patent

¢ ANOId

ve/0°L 1701 yeiOv1°01

¥2/0'9°1°01 v2/0°6'1°01

002 0°'0'0°0 B3V

US 7,082,473 B2

Sheet 6 of 9

Jul. 25, 2006

U.S. Patent

{fe)

Q=9
M= mm—

d. 3dnoid
o= %.0 AQV

001=2 001=3
p+m=ds] pp-m=ds]

=3
m = ds]

0=9°

3"&&

9 INOId

~ =9 ~ﬂo
7p-m=ds| [p+m=ds]

\ZA= -1 DIE
e = 1.»0 A.mv
g 1D 3
= =2
M m ds] m = dsj
001=2 Q0=
cp+m=dsy pp-m=ds
W
X
q
0=°
m = ds|
Xg

U.S. Patent Jul. 25, 2006 Sheet 7 of 9 US 7,082,473 B2

procedure COMPUTEWEIGHTSCUMULATIVE()
for each b € B; set Wpin(b) =0
fori:=1ltor{
W = Whin
Choose a random subset R C B; of ABRs
for each b € R set W (b) to a random weight in [0, L]
if Zses e(s,B(s,W)) < ngs e(s, B(s; Wiin))
Wmin =W
}

reture Whin

© 00 M B W 00 P

FIGURE 8

U.S. Patent Jul. 25, 2006 Sheet 8 of 9 US 7,082,473 B2

procedure ComputeWeightsMax(Q)
1. for each b € B, set Wold(b) := 0
2. while (Pb,B

i Wold(b} < (

3 B;3*(3 B;3-1)

2) *lspmax) £3. Let

00 be a new set of inequalities that result when the value Wold(b) is
substituted for each variable W (b)only on the LHS of each ineguality
in Q 4. Set Wnew(b) to the smallest possible value such that each
inequality in Q0 is satisfied when Wnew(b} is substituted for variable

W (b) in Q0 5. if Wnew = Wold 6. return Wnew 7. else 8. Wold := Wnew 9.
g 10. return "there does not exist a weight assignment W "

FIGURE 9

U.S. Patent Jul. 25, 2006 Sheet 9 of 9 US 7,082,473 B2

procedure COMPUTEWEIGHTSTWOABR()

1. Set T/;pf, = U(S;}, E = Egpg = ESES 8(3, b})
2. forj:=1lton {

3. E = E +e(s;,b2) —e(s;,61)

4, if £ < Eopf

5. ropg = U(Sj+1), Egpt =F

6. }

7. return ‘K)pt

FIGURE 10

US 7,082,473 B2

1

SYSTEM AND METHOD FOR OPTIMIZING
OPEN SHORTEST PATH FIRST
AGGREGATES AND AUTONOMOUS
NETWORK DOMAIN INCORPORATING
THE SAME

TECHNICAL FIELD OF THE INVENTION

The present invention is directed, in general, to network
routing and, more specifically, to a system and method for
optimizing open shortest path first (OSPF) aggregates and an
autonomous network domain incorporating the system or the
method.

BACKGROUND OF THE INVENTION

OSPF is a widely used protocol for routing within an
autonomous system domain. OSPF implements a two-level
hierarchical routing scheme through the deployment of
OSPF areas. Each OSPF area consists of a collection of
subnets interconnected by routers. Information about links
and subnets within an area is flooded throughout the area. As
a result, every router connected to an area knows the exact
topology of the area—this includes the subnets and the links
connecting routers in the area. However, details of an area’s
topology are not advertized beyond the area’s borders and
are thus hidden from other areas. Instead, subnet addresses
within each area are aggregated and only aggregates are
flooded into the rest of the network (thus, making an area’s
subnets reachable from the remainder of the network). This
task of advertizing aggregate information about subnets in
an area is carried out by area border routers (ABRs), that is,
routers attached to two or more areas.

OSPF areas and address aggregation enable OSPF to scale
when networks contain hundreds or thousands of subnets.
Specifically, they help to optimize router and network
resource consumption, as follows:

1. Router memory. Routing tables only need to contain
entries corresponding to aggregate addresses for areas not
connected to the router. Only for areas directly connected to
the router, are individual subnet addresses in the area stored
in its routing table. This leads to smaller routing table sizes
and thus lower memory requirements at routers.

2. Router processing cycles. The link-state database is
much smaller since it only includes summary information
for subnets belonging to areas that are not directly connected
to the router. Consequently, the cost of the shortest-path
calculation decreases substantially.

3. Network bandwidth. For subnets within each area, only
aggregate address information (and not individual subnet
addresses) is flooded into the rest of the network. As a result,
the volume of OSPF flooding traffic necessary to synchro-
nize the link-state databases is significantly reduced.

However, despite the above-mentioned benefits of
address aggregation, trade-offs are involved. This is because
address aggregation necessarily results in loss of informa-
tion, which, in turn, can lead to suboptimal routing. In order
to see this, one must examine in more depth how routing
works in the presence of aggregation.

During routing, each ABR attaches a weight to each
aggregate advertized by it. This weight is foundational for
determining the path used by a router external to the area to
reach subnets covered by the aggregate. From among all the
ABRs advertizing the aggregate (with possibly different
weights), the external router chooses the one (say b) for
which the sum of the following two is minimum: (1) the
length of the shortest path from the external router to the

20

25

30

35

40

45

50

55

60

65

2

border router b, and (2) the weight advertized by b for the
aggregate. IP packets from the external router to every
subnet covered by the aggregate are thus forwarded along
the shortest path from the external router to b and subse-
quently along the shortest path from b to the subnet. How-
ever, for a certain subnet, this path may be suboptimal since
there may be a shorter path from the external router to the
subnet through an ABR different from b. The following
example, made with reference to FIG. 1, illustrates this
problem.

FIG. 1 illustrates an exemplary autonomous network,
generally designated 100. The network 100 is illustrated as
having areas 0.0.0.0, 0.0.0.1, 0.0.0.2 and 0.0.0.3. The net-
work 100 includes various routers 111, 112, 113, 114, 115,
116, 117, 118, 119 interconnecting subnets 121, 122, 123,
124, 125, 126, 127, 128. FIG. 1 also illustrates various
subnet addresses and weights of each link connecting a pair
of routers (e.g., routers 113, 115). The ABR b, 113 belongs
to the area 0.0.0.1, the ABR b, 114 to te area 0.0.0.2, and the
ABRs b, 115 and b, 116 to the area 0.0.0.3. Subnet addresses
in the area 0.0.0.3 can be aggregated to different degrees. For
instance, the aggregate 10.1.0.0/21 covers all the subnets in
the area 0.0.0.3. In contrast, 10.1.4.0/22 covers only subnets
10.1.4.0/24, 10.1.5.0/24, 10.1.6.0/24 and 10.1.7.0/24, while
10.1.2.0/23 covers only subnets 10.1.2.0/24 and 10.1.3.0/24.

Suppose one of the aggregate addresses advertised by the
ABRs of the area 0.0.0.3 is 10.1.4.0/22. Suppose further that
each ABR assigns a weight to the aggregate which is
essentially the distance of the furthest component in the
aggregate from the router. Thus, router b; 115 advertizes
10.1.4.0/22 with a weight of 1100 (the distance of the subnet
10.1.6.0/24 from ABR b; 115), while the router b, 116
advertizes 10.1.4.0/22 with a weight of 1250 (the distance of
the subnet 10.1.4.0/24 from the ABR b, 116). Thus, the ABR
b, 114 belonging to the area 0.0.0.1 forwards all packets to
the subnets in 10.1.4.0/22 through the ABR b; 115, since the
shortest path to the aggregate through the ABR b; 115 has a
length of 100+1100=1200, while the shortest path through
the ABR b, 116 has length 200+1250=1450. Note, however,
that the path from the ABR b, 114 to the subnets 10.1.6.0/24
and 10.1.7.0/24 passing through the ABR b; 115 has a length
1200 and is suboptimal. The shortest path from the ABR b,
114 to the subnets is through the ABR b, 116 whose length
is only 400.

Further, note that considering different weight assign-
ments for the aggregates does not alleviate the problem. The
root of the problem is that a single ABR is selected by the
ABR b, 114 for reaching all subnets in 10.1.4.0/22. If the
ABR b, 116 is chosen instead of the ABR b, 115, then the
paths from the ABR b, 114 to the subnets 10.1.4.0/24 and
10.1.5.0/24 through ABR b, 116 become much longer
(whose length is 200+1250=1450) than the shortest paths to
the subnets that pass through the ABR b; 115 (whose length
is 100+50=150).

From the above example, it follows that address aggre-
gation can potentially introduce an error in the optimal route
calculation which is based on shortest paths. For instance, as
illustrated in the example, when the aggregate address
10.1.4.0/22 is advertized with weights 1100 and 1250 by the
ABRs b; 115 and b, 116, the router b, 111 selects the ABR
b, 114 for the aggregate. This results in an error of 800 in the
selected path from the ABR b, 114 to each of the subnets
10.1.6.0/24 and 10.1.7.0/24. The introduced error is essen-
tially the difference between the length of the selected path
(1200) and the length of the shortest path from the router b,
111 to each of the subnets (400). Note that the selected paths
from the router b, 111 to the other two subnets 10.1.4.0/24

US 7,082,473 B2

3

and 10.1.5.0/24 are the shortest paths, and so no error is
introduced due to the subnets 10.1.4.0/24 and 10.1.5.0/24.

The primary reason for suboptimal paths being selected
when subnets are aggregated is that a single weight is used
by each ABR for all the subnets in the aggregate. A single
weight may be incapable of accurately capturing the dis-
tance of the border router to every subnet covered by the
aggregate. The problem is further exacerbated when the
subnets are spread across the area with some subnets being
closer to one border router while others being closer to a
different border router. This was precisely the case in FIG.
1, where the aggregate 10.1.4.0/22 spans the subnets
10.1.5.0/24 (closer to the ABR b, 115) and 10.1.6.0/24
(closer to the ABR b, 116), the distance between whom is
greater than 1000. As a result, a single weight advertized for
aggregate 10.1.4.0/22 is not representative of the distance
between a border router and subnets in 10.1.4.0/22.

Accordingly, what is needed in the art is a better way to
select OSPF aggregates and their associated weights thereby
to avoid suboptimization of routing in a network.

SUMMARY OF THE INVENTION

To address the above-discussed deficiencies of the prior
art, the present invention provides systems and method for
selecting open shortest path first (OSPF) aggregates and
aggregate weights for a particular area. In one embodiment,
an aggregate selecting system includes: (1) a database for
containing data pertaining to candidate OSPF aggregates
and corresponding weights and (2) an aggregate selector,
associated with the database, that selects at least a subset of
the OSPF aggregates such that the shortest path length
between the particular source and destination subnets result-
ing from advertisement of a set of weighted aggregates
approaches the shortest path length between the particular
source and destination subnets irrespective of the advertise-
ment. In one embodiment, a weight selection system
includes: (1) a database for containing data pertaining to
candidate OSPF aggregates and (2) a weight assigner, asso-
ciated with the database, that assigns, for the OSPF aggre-
gates, weights based on either an average distance of subnets
in the area for a particular area border router (ABR) of the
area or a search heuristic.

The present invention therefore introduces a better way to
optimize transmission of data through a network. In one
embodiment of the present invention, the aggregate selector
selects the at least the subset such that the shortest path
length between the particular source and destination subnets
resulting from advertisement of a set of weighted aggregates
approaches the shortest path length between the particular
source and destination subnets irrespective of the advertise-
ment.

In one embodiment of the present invention, the aggregate
selector treats errors in the shortest path length as having
unequal degrees of importance. In a related embodiment, the
weight assigner treats errors in path lengths in the area as
having unequal degrees of importance. In alternative
embodiments, the degree of importance for each error is
assumed to be equal.

In one embodiment of the present invention, the weight
assigner employs a search heuristic to assign the weights. In
a manner to be illustrated and described, the problem of

assigning weights is shown to be ##-hard. In such cases, a

search heuristic is appropriate for determining weights.
The foregoing has outlined, rather broadly, preferred and

alternative features of the present invention so that those

20

25

30

35

40

45

55

60

65

4

skilled in the art may better understand the detailed descrip-
tion of the invention that follows. Additional features of the
invention will be described hereinafter that form the subject
ofthe claims of the invention. Those skilled in the art should
appreciate that they can readily use the disclosed conception
and specific embodiment as a basis for designing or modi-
fying other structures for carrying out the same purposes of
the present invention. Those skilled in the art should also
realize that such equivalent constructions do not depart from
the spirit and scope of the invention in its broadest form.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, reference is now made to the following descriptions
taken in conjunction with the accompanying drawings, in
which:

FIG. 1 illustrates an exemplary autonomous network;

FIG. 2 illustrates an aggregate tree for eligible aggregates
covering subnets in area 0.0.0.3;

FIG. 3 illustrates a procedure ComputeMinError () for
computing aggregates that minimize tree error;

FIG. 4 illustrates a procedure CombineMinError () for
combining aggregates for a set of trees;

FIG. 5 illustrates an exemplary autonomous network;

FIG. 6 illustrates a diagram of values of 1sp and e for each
literal,

FIGS. 7A and 7B illustrate values of Isp and e for each
conjunct;

FIG. 8 illustrates a procedure ComputeWeightsCumula-
tive () for computing weights;

FIG. 9 illustrates a procedure Compute WeightsMax () for
computing a W that satisfies Q; and

FIG. 10 illustrates a procedure Compute WeightsTwoABR
() for computing weights for two ABRs.

DETAILED DESCRIPTION

Referring initially to

The primary reason for suboptimal paths being selected
when subnets are aggregated is that a single weight is used
by each ABR for all the subnets in the aggregate. A single
weight may be incapable of accurately capturing the dis-
tance of the border router to every subnet covered by the
aggregate. The problem is further exacerbated when the
subnets are spread across the area with some subnets being
closer to one border router while others being closer to a
different border router. This was precisely the case in the
aforementioned example, where aggregate 10.1.4.0/22 spans
subnets 10.1.5.0/24 (closer to b;) and 10.1.6.0/24 (closer to
b,), the distance between whom is greater than 1000. As a
result, a single weight advertized for aggregate 10.1.4.0/22
is not representative of the distance between a border router
and subnets in 10.1.4.0/22.

One possible way to reduce the error due to the selection
of suboptimal paths in the presence of aggregation is to
avoid aggregating distant subnets that are close to multiple
border routers. Thus, in the example set forth above in the
Background of the Invention section, instead of advertizing
a single aggregate 10.1.4.0/22, one can choose to advertize
two aggregates 10.1.4.0/23 (with weights 50 and 1250 at b,
and b,, respectively) and 10.1.6.0/23 (with weights 1100 and
200 at b, and b, respectively) This reduces the error in the
selected paths to 0. Thus, there is a trade-off between the
number of aggregates advertized (and thus, the size of the
routing table) and the error in the selected paths. Note that
the aggregates advertized by border routers do not have to be

US 7,082,473 B2

5

disjoint. That is, for a pair of advertized aggregates, one may
contain the other. In such a scenario, the longest match
property of IP routing causes the more specific aggregate to
take precedence for route computation to subnets within the
aggregate. The following example illustrates how, by care-
fully selecting the aggregates as well as the associated
weights, all the subnets in area 0.0.0.3 in the above example
can be advertized using only two aggregates and incurring
Zero error.

Consider the autonomous network from FIG. 1. One way
to ensure that the error in the selected paths to area 0.0.0.3’s
subnets is zero is to have the ABRs advertize the following
three aggregates: 10.1.4.0/23, 10.1.2.0/23 and 10.1.6.0/23.
The reason for this is that it is possible to choose weights for
each aggregate at each border router such that the weight
equals the distance of the border router to every subnet
covered by the aggregate. For instance, for aggregate
10.1.2.0/23, weights of 1050 and 250 at border routers b,
and b, respectively, reflect the exact distances of the border
routers to subnets in it.

However, achieving zero error with only two aggregates
is more challenging. Note that all the subnets in area 0.0.0.3
can be covered by the single aggregate 10.1.0.0/21—how-
ever, this aggregate by itself, cannot result in zero error.
Another possibility is to consider the two disjoint aggregates
10.1.4.0/22 and 10.1.2.0/23 which cover all the subnets.
However, as illustrated above, since subnets 10.1.4.0/23 and
10.1.6.0/23 covered by 10.1.4.0/22 are closer to different
routers (and distant from each other), this cannot result in
zero error either. Thus, the key to optimizing the error is to
bundle 10.1.4.0/23 into one aggregate, and 10.1.2.0/23 and
10.1.6.0/23 into the other. It turns out that this can be
achieved by advertizing the following two aggregates:
10.1.0.0/21 and 10.1.4.0/23. The longest match characteris-
tic of IP routing causes the latter aggregate to be used for
routing to subnets in 10.1.4.0/23 and the former to be used
to route to subnets in 10.1.2.0/23 and 10.1.6.0/23.

One question still remains: what weights must be assigned
to each aggregate? While this is straightforward for the
aggregate 10.1.4.0/23 (since the two subnets 10.1.4.0/24 and
10.1.5.0/24 covered by it are at the same distance from any
given border router), it is somewhat less obvious for the
aggregate 10.1.0.0/21. Simply assigning the weight to be the
distance of the most distant subnet may not result in the least
error. To see this, suppose b; and b, advertize 10.1.0.0/21
with weights 1100 and 1250, respectively (the maximum
distance to a subnet contained in the aggregate). This causes
b, to select border router b; for subnets in 10.1.0.0/21, and
the resulting cumulative error in the selected paths from b,
to the subnets is
2*(150-150)+2*%(1150-450)+2*(1200-400)=3000. On the
other hand, a lower cumulative error can be achieved if b,
and b, advertize 10.1.0.0/21 with weights 730 and 570,
respectively (the average distance to the subnets contained
in the aggregate) . In this case, b, selects border router b, to
access subnets in 10.1.0.0/21, and the cumulative error is
2*(1450-150)+2%(450-450)+2%(400-400)=2600, which is
lower than the error for the earlier mentioned selection of
weights.

Thus, configuring border routers b; and b, to advertize
aggregates 10.1.0.0/21 and 10.1.4.0/23, b, with weights 730
and 50, and b, with weights 570 and 1450, causes the error
to reduce to 0. This is because b, selects ABR b, for subnets
in 10.1.4.0/23 and ABR b, for the remaining subnets (that is,
subnets in 10.1.0.0/21 but not contained in 10.1.4.0/23).
Thus, the selected paths after aggregation are indeed the
shortest paths from b, to the subnets in area 0.0.0.3.

20

25

30

35

40

45

50

55

60

65

6

From the above examples, it follows that the two impor-
tant problems related to address aggregation in OSPF are the
following: (1) selection of the aggregates to advertize at
each ABR, and (2) assignment of weights to each advertized
aggregate at each ABR. These two problems are addressed
separately. First, for a given k and a given assignment of
weights to each aggregate, a dynamic programming tech-
nique is presented to compute the k best aggregates to
advertize such that the cumulative/maximum error in the
selected paths between source destination subnets is mini-
mized. This problem is relevant when there is a limit on the
number of aggregates that can be advertized in order to
bound the routing table sizes, number of entries in the
link-state database or the amount of network traffic due to
OSPF advertizements. The objective then is to choose the k
aggregates to advertize such that the selected paths are as
close to the shortest paths as possible. The technique of the
present invention can be extended to solve variants in which
the minimum number aggregates is desired to be computed
so that the error in selected paths is less than a certain
user-specified threshold.

Later, the problem of choosing weights for each aggregate
at each ABR such that the deviation of selected paths from
the shortest paths is minimized is addressed. Specifically, the
following problem is solved: for each aggregate, determine
an assignment of weights to the aggregate at each ABR such
that the error in the selected paths between source destina-
tion subnets is minimum. While for certain restricted cases,
the above problem can be solved in polynomial time, the

general problem itself is ¥ %-hard. Search heuristics are
presented for selecting weights for both the cumulative error
as well as the maximum error minimization cases.

System Model and Problem Formulation

The network is modeled as an undirected graph. Nodes in
the graph correspond to either routers or subnets. Edges in
the graph connect routers with other routers or subnets. A
link exists between two routers if the two routers can directly
exchange IP packets without going through an intermediate
router (that is, the two routers are either connected to the
same subnet or are connected by a point-to-point link) . A
link exists between a subnet and a router if the subnet is
connected to the router. Each link has an associated weight,
which is the OSPF weight assigned to the link (that is, the
interface to which the link is connected to). For simplicity,
it is assumed that the link is assigned the same weight at both
ends—the techniques, however, are applicable even if link
weights are not symmetric. Table 1 describes the notation
employed herein.

TABLE 1

Symbol Description

Number of aggregates to be selected
Source, destination subnets

Set of OSPF areas

Generic term for OSPF area

Set of all subnets in autonomous system domain
Set of subnets in area R;

Set of all ABRs

Set of ABRs for area R;

Generic letters for an ABR

Set of aggregates eligible for advertising in
area R;

Set of aggregates eligible for advertising in
area R;

Generic letters for advertized aggregates
Generic letters for sets of advertized
aggregates

-

2

> »IEW
(e}

P
1<k<

US 7,082,473 B2

TABLE 1-continued
Symbol Description
D, Degree of importance of the source destination
subnet pair
W, Weight assignment function for aggregates in X
Ist (s, t) Length of shortest path between subnets s and t
Ist (s, t, X, W) Length of shortest path between subnets s and t

when aggregates in X are advertized with
weights in W,

The set of subnets S in the network is partitioned into
disjoint areas. The set of areas is denoted by R and the set
of subnets in area R, ER are denoted by S,. A router is said
to be attached to area R, if it is directly connected to a subnet
in S,. A router that is attached to two or more areas is called
an area border router (ABR). B, is the set of ABRs attached
to area R,. In addition to area R, (and possibly other areas),
every ABR in B, is also attached to a special backbone area.
The backbone area serves to connect the subnets in the
various other areas. 1sp(s,t) denotes the length of the shortest
path between s and t. Here, if s and t belong to the same area
R,, then the shortest path between s and t is defined to be
over links in area R,. In case s and t belong to distinct areas
R; and R, respectively, the shortest path between s and t
involves two ABRs b&EB, and ¢&B,, and consists of three
path segments: the first is the shortest path between s and b
involving links in R, the second is the shortest path between
b and c over links in the backbone area and the final segment
is the shortest path between ¢ and t all of whose links belong
to area R;. Note that Isp can be defined in a similar fashion
if either of the subnets s and t above are replaced by routers.

In OSPF, information relating to links and subnets in an
area are flooded throughout the area. Consequently, routers
attached to area R, have detailed knowledge of R,’s topol-
ogy. As a result, IP packets originating in any subnet s
belonging to area R, destined to a subnet t in the same area
are forwarded along the shortest path between s and t.
However, in order to ensure smaller routing table sizes and
reduce network traffic overhead, detailed information about
individual subnets within an area are typically not be advert-
ized beyond the area’s borders. Instead, area R;’s ABRs will
typically be configured to advertize a set of aggregates X
that cover subnets in S; and a separate weight for each
aggregate in X. W_(x,b) denotes the weight assigned to an
aggregate XX by ABR bEB,;. Each ABR in B, floods in the
entire backbone area, every aggregate x&X along with the
weight assigned to x by it; this causes ABRs belonging to
every other area to receive x. An ABR ¢E€B,, in turn, floods
x into area R, with an adjusted weight equal to minbEB,{Isp
(b,c)+W(x,b)}. Thus, a subnet s in S, in order to reach
aggregate X that covers subnets in S, selects a path passing
through ABR bEB, for which 1sp(s,b)+W 1(x,b) is minimum.

Note that, due to the longest match property of IP routing,
the most specific aggregate covering a subnet determines the
path to the subnet. An aggregate x is said to be more specific
than an aggregate y if x is contained in y, which xEy
denotes. Thus, for a subnet t in S,, if X is the most specific
aggregate in X that covers t, then a subnet s in S, in order
to reach t, selects the path comprising of the shortest path
from s to b and then from b to t, where bEB,; is the ABR for
which 1sp(s,b)+ W (x,b) is minimum. 1sp(s,t,X, W) denotes
the length of this selected path from s to t for the set of
advertized aggregates X and weight assignment W. Thus,
Isp(s,t,X, W)=lsp(s,b)+1sp(b.t), and the error in the selected
path is simply Isp(s,t,X,W;)-1sp(s,t). When s and t belong to

20

25

30

35

40

45

50

55

60

65

8

the same area, 1sp(s,t,X, W) is defined to be equal to Isp(s,t).

Note that Isp(s,t,X, W)= if X does not contain an aggre-

gate that covers t (the implication here is that t is unreach-

able from s).

Further addressed is the problem of computing the set of
aggregates X advertized across all the areas and the weight
assignment function W such that the error in the selected
paths is minimized. Note that certain restrictions on X and
W need to be imposed to ensure the reachability of remote
subnets in a different area. First, X should be complete, that
is, every subnet in S should be covered by some aggregate
in X. The next two restrictions serve to ensure that an ABR
cannot advertize an aggregate covering a subnet in S, unless
it belongs to B,. An aggregate x is eligible if all the subnets
in covered by it belong to a single area. Thus, in the
autonomous network of FIG. 1, aggregate 10.1.0.0/21 is
eligible, since it only covers subnets in area 0.0.0.3; how-
ever, aggregate 10.1.0.0/20 is not, since it covers subnets
10.1.8.0/24 and 10.1.4.0/24 that belong to different areas.
Let A denote the set of all eligible aggregates such that every
aggregate in A covers at least one subnet in S. Note that S
< A. Further, let Ai = A denote the set of eligible
aggregates that cover subnets in S,. For purposes of the
illustrated embodiment, it is required that the set of adver-
tised aggregates X < A. Further, it is required that only
ABRs in B; advertize aggregates in A,. One way to model
this is by requiring that W (x,b)=00 if x=A, and b&B,.

Now, two problems to be addressed herein may be set
forth.

1. Aggregate selection problem: Given a k and a weight
assignment function W ,, compute a complete set X = A
containing at most k aggregates such that 1sp(s,t, X,W)-
Isp(s,t) is minimum.

2. Weight selection problem: For an aggregate XA, com-
pute a weight assignment function Wi, such that
2, esexdlsp(s,t,{X}, Wn)-lIsp(s;t) is minimum.

Note that in the above-mentioned two problems, every
source destination subnet pair is assigned the same degree of
importance. In other words, in the final error, the error in the
selected path between every subnet pair is treated equally,
that is, given an equal degree of importance. However, this
is somewhat restrictive since minimizing the error in the
selected paths for certain source destination subnets may be
more important. This may happen, for instance, for subnet
pairs between which there is a disproportionately high
volume of traffic, or subnet pairs carrying high-priority or
delay-sensitive traffic like voice. Thus, one can consider a
“degree of importance” function D which for a pair of
subnets s,t returns a real value D(s,t) that reflects the
importance of minimizing the error in the selected path
between subnets s and t. Note that D(s,t) can be any arbitrary
function of the volume/priority of traffic flowing between
subnets s and t. Subnet pairs for whom the error in the
selected path does not matter (either due to very low traffic
volume or due to low priority data traffic) can be assigned
low values for D(s,t) or even zero. The generalized aggre-
gate and weight selection problems incorporating the
degrees of importance are then as follows.

1. Generalized aggregate selection problem: Given a k and
a weight assignment function W, compute a complete set
X < A containing at most k aggregates such that XD
(s, *(Isp(s,t,X, W)-1sp(s,t)) is minimum.

2. Generalized weight selection problem: For an aggregate
XEA,, compute a weight assignment function W y,such
that 2, =sD(s,t)*(Isp(s,t, X, WA)-Isp(s,t)) is minimum.
In the above problem formulations, the cumulative error

across all source destination subnet pairs is attempted to be

US 7,082,473 B2

9

minimized. An alternative problem of interest is to minimize
the maximum error across all the source destination subnets.
This formulation is similar to the above described problems
except that instead of minimizing 2_ () the objective is to
minimize max, =).

Generalized Aggregate Selection Problem

This section presents a dynamic programming technique
for the generalized aggregate selection problem. The tech-
nique of the present invention exploits the fact that the
containment structure of aggregates in A is a set of trees.
Defined is the notion of error for each tree when certain
aggregates in it are chosen, and shown is the cumulative
error of the selected paths when a set of aggregates X is
advertized is equal to the sum of the errors of the trees when
aggregates in X are selected in them. Next presented is a
dynamic programming technique for selecting k aggregates
in a single tree that minimize its error. Then, a technique for
combining the results for the collection of trees to derive the
final k aggregates that yield the minimum error is set forth.
Finally, set forth is how the techniques of the present
invention can be extended for minimizing the maximum
error.

Aggregate Trees

The containment relationship among the eligible aggre-
gates in A naturally form a set of trees. For aggregates
X,YEA, an edge from x to y exists if x covers y and every
other aggregate ZEA that covers y also covers x. FIG. 2
illustrates an aggregate tree for the eligible aggregates that
cover subnets in area 0.0.0.3 (from FIG. 1). Observe that
since A contains aggregates 10.1.4.0/22, 10.1.6.0/23 and
10.1.7.0/24, there is an edge from 10.1.6.0/23 t0 10.1.7.0/24;
however, there is no edge from 10.1.4.0/22 to 10.1.7.0/24 in
the tree. Also, the internal nodes in the aggregate tree have
either one or two children, but no more than two children.
For instance, in FIG. 2, 10.1.0.0/22 has only one child since
10.1.0.0/23 does belong to A (subnet 10.1.1.0/24 does not
exist in the network). Note that each leaf of an aggregate tree
is a subnet in S. Further, the root r(T) of tree T is basically
an aggregate that is not covered by any other eligible
aggregate.

Next defined is the error of a tree T when a set of
aggregates in it have been selected. Suppose X is an aggre-
gate in the tree T,y is the most specific selected aggregate
covering X in the tree, and X is the set of selected aggregates.
The error of the subtree rooted at x is recursively defined as
follows:

minE(x, y, k, Wy) =

E(x, y, ¢, Wa)

min{minE(u, y, k, W), minE(u, x, k - 1, Ws)}

20

25

30

35

40

45

50

10

D Ely, X, Wa)

(xu)eT

Eu, x, X, Wy)

(xu)eT

DD, 0 Uspls, %, {yh Wa) = Ispls, 1)

se§

> Ds, 0y (lspls, %, 4xh, Wa) = Isp(s, x))

se§

Ex, y, X, Wa) =

The first condition applies if x has children and x&EX.

The second condition applies if x has children and x&X.

The third condition applies if x has a leat and xEX.

The fourth condition applies if x has a leaf and x&X.

The error for an entire tree T with the set of selected
aggregates X is then simply E(r(T),e,X,W) (e denotes the
empty aggregate that does not cover any other aggregate)
Note that each recursive invocation of E on x’s children
propagates x as the most specific selected aggregate if x&X.
Consequently, whenever E is invoked for the subtree rooted
at an aggregate, X,y is always the most specific selected
aggregate covering X. As a result, the error of a tree is simply
the sum of the errors of all the leaf subnets in it, where the
error of a subnet t is X D(s,t)*(Isp(s,t,{y }, W)-lsp(s,t)),
where y is the most specific aggregate in X that covers t.
Thus, since every subnet in S is contained in one of the trees,
the sum of errors of all the trees is essentially the cumulative
error in the selected paths, which is the metric that should be
minimized.

Thus, the aggregate selection problem has been reduced
to the problem of computing a set X containing at most k
aggregates such that the sum of the errors of all the trees is
minimum. This is then broken into two subproblems that
will now be addressed. A dynamic programming technique
is first presented to compute for a single tree the set of
aggregates X containing at most k aggregates such that the
error of the tree is minimum. Then, the computed aggregates
that minimize the error of each tree are shown how to be
combined to yield the set of aggregates the minimize the
error of the entire collection of trees.

Computing Optimal Aggregates for a Single Tree

A set of recursive equations is now presented for com-
puting a tight lower bound on the error of a tree assuming
that at most k arbitrary aggregates in the tree can be selected.
The equations form the basis of a dynamic programming
technique that can be used to compute the k best aggregates
to select in order to minimize the error of the tree. Suppose
that x is an aggregate in the tree T and y is the most specific
aggregate in the tree covering x that has already been
selected. Then, the minimum error of the subtree rooted at
x if at most k aggregates in the subtree may be chosen, is as
follows.

if k=0
if k>0 and x has a single child «

min{ming;z AminE(u, y, i, Wa) + minE(v, y, k —i, Wa)},

if £ >0 and x has children u, v

Mingici—y AMinE(w, X, i, Wy) + minE(v, x, k, =1 — i, W)}

minEx, y, ¢, Wa), E(x, v, {x}, W)}

if k>0 and x is a leaf

US 7,082,473 B2

11

The intuition underlying the above set of equations is that
if k=0, then, since no aggregates in the subtree can be
selected, the minimum error is simply the error of the
subtree when no aggregates in it are chosen. In case k>0 and
X has children, and if X is the set of aggregates in the subtree
rooted at x that if selected result in the minimum error, then
the following hold for X: (1) either x&X or x&X, and (2) of
the remaining aggregates in X, i are in the subtree rooted at
its left child and the remaining k—i or k—i-1 aggregates
(depending on whether x&X) are in the subtree rooted at its
right child. Thus, since the error of the subtree with x as root
is simply the sum of the errors of its left and right subtrees,
the minimum error can be computed for (the subtree rooted
at) x by first computing the minimum error of its left and
right subtrees for 0=i=k selected aggregates and for the
cases when x is either selected or not selected, and then
choosing the combination with the smallest error. Finally, if
k>0 and x is a leaf, then there are only two possible
alternatives for selecting aggregates in x’s subtree: either to
select x or not to select x. The minimum error for these two
cases then yields the desired minimum error.

Theorem 1: minE(x,y,k,W) is equal to the minimum of
Ex,y,k,W ,), where X is any arbitrary set containing at most
k aggregates in the subtree rooted at x.

From Theorem 1, it follows that minE (r(T),e,k,W)
returns the minimum possible error for a tree T when at most
k aggregates in the tree can be selected. Procedure Comp-
uteMinError in FIG. 3 uses dynamic programming to com-
pute the k aggregates that result in the minimum possible
error for the subtree rooted at x and y is the most specific
aggregate covering X that has already been selected. The
procedure is invoked with arguments that include the root
aggregate of the tree r(T), € and k. The key ideas are similar
to those described earlier for the computation of minFE, the
minimum error for the tree. For instance, if an aggregate x
has children, then procedure ComputeMinError (x,y,]) recur-
sively invokes itself for each of its children for the cases
when x is selected and when x is not selected. Furthermore,
in the case that x has two children, the procedure is invoked
for each child for all the possibilities for the number of
aggregates in each child subtree.

The only difference is that in addition to the minimum
error, the procedure also computes the aggregates that are
responsible for minimizing the tree error. Thus, every invo-
cation of procedure ComputeMinError, in addition to return-
ing the minimum error for the subtree rooted at x, also
returns the set of aggregates in the subtree that cause the
error to be minimum. This set is derived by taking the union
of the optimal aggregates for the subtrees rooted at its
children, and adding {x} to it if selecting x is required for
minimizing the error (steps 11, 20 and 35). Note also that in
order to improve computational efficiency, the optimal
aggregates and the minimum error for the subtree rooted at
x with y as the most specific aggregate and at most I selected
aggregates are stored in subTree[x,y,l].aggregates and sub-
Tree[x,y,1].error, respectively. The first invocation of Com-
puteMinError (x,y,]) causes the body of the procedure to be
executed, but subsequent invocations simply return the
previously computed and stored values.

Combining the Aggregates for Set of Trees

Suppose there are m aggregate trees T,, T,, . . ., T,,.
Further, let T,[j]. [error, aggregates] denote the minimum
error and the set of at most j aggregates in T, responsible for
minimizing T,’s error. Then, X,[j] . [error, aggregates], the
minimum error for the set of trees T, . . ., T, and the j

25

30

35

40

45

50

55

60

65

12
aggregates that minimize their cumulative error can be
computed using the result of the following theorem.

Theorem 2: For the set of trees T, . .., T

ms

ifi=1

ming.);{X;_; [{]-error + T;[j —] - error otherwis

Ti[j]-error
X;[i] - error = {

Procedure CombineMinError in FIG. 4 computes in
X,,[k]. [error, aggregates] the minimum cumulative error
and the k aggregates that minimize the error for the trees
T,...,T,,. After computing the error and aggregates for each
individual tree in steps 1-5, in each iteration of steps 814,
the X,[j]’s are computed for increasing values of 1 based on
the individual tree errors and the X,[j]’s computed in the
previous iteration (as stated in Theorem 2). For each X [j],
the aggregates are computed by taking the union of the
aggregates for the X, ,[1] and T,[j-1] that result in the
minimum error for X,[j].

Time and Space Complexity

Suppose that d is the maximum depth of an aggregate tree,
the number of aggregates in A is N and the number of
subnets in S is n. Note that for 32-bit IP addresses, d=32.
Then the time complexity of the procedure ComputeMinEr-
ror can be shown to be O(n*+Ndk?). The reason for this is
that Isp (s,t), the shortest path between subnets s and t needs
to be computed for all subnet pairs. The time complexity of
this step is O(n®). Also, for each subnet x and every
aggregate y covering it, one can precompute and store
3. esDGs,)*(Asp(s,x,{y}, W)-lsp(s,x)), thus enabling this
information to be accessed in constant time. Further, the
body of ComputeMinError is executed at most once for each
combination of x, y and 1. For a specific x, there are at most
dk different possibilities for y and 1 for which the body of the
procedure is executed. This is because y has to be an
ancestor of x in the tree and 1=k. Each execution of the body
of ComputeMinError makes at most 2’+1 recursive calls,
and thus, since there are N possible aggregates, the total
number of times ComputeMinError is invoked is O(Ndk?).
As a result, the time complexity of procedure ComputeM-
inError is O(n®>+Ndk?). Further, the space complexity of the
procedure is O(n*+Ndk), O(n?) to store the shortest path and
error information for subnets, and O(Ndk) to store the error
and aggregate values for each of the Ndk® possible combi-
nations of values for x, y and 1.

It is fairly straightforward to observe that the three for
loops spanning steps 8-14 of procedure CombineMinError
execute O(mk?) steps. Thus, the overall time complexity of
the procedure is O(n*+Ndk>+mk?), where the first two terms
are the time complexity of computing the aggregates that
minimize the error for the m trees. Note that even though
CombineMinFError makes independent successive invoca-
tions to ComputeMinError (r(Ti),e,j) for j=0, . . . , k, the
results computed in subTree during an invocation are shared
between the invocations. The space complexity of procedure
CombineMinFError is simply O(mk) to store the X, and T,
arrays.

Minimizing Maximum Error

Note that instead of minimizing the cumulative error over
source destination subnet pairs, the techniques set forth
herein can be adapted to minimize the maximum error over
source destination pairs. In order to do this, the error of a tree
should be redefined to be the maximum error of the leaf
subnets in it (instead of the sum of errors). Thus, the
recursive definition of the error of the subtree rooted at x

US 7,082,473 B2

13

given that y is the most specific selected aggregate covering
x in the tree and X is the set of selected aggregates, is as
follows:

max Eu, y, X, Wa)

(xu)eT
max E(u, x, X, Wy)
(xu)eT
Elx, y, X, Wy) =
manD(s, 1) = (Isp(s, x, {y}, Wa) — Isp(s, x))
SE.

manD(s, 1) = (Isp(s, x, {x}, Wa) —Isp(s, X))

The first condition applies if x has children, and x&X.

The second condition applies if x has children, and x€X. |5

The third condition applies if x is a leaf and x&X.

The fourth condition applies if x is a leaf and xEX.

Further, the minimum error of the subtree rooted at x if at
most k aggregates in the subtree can be chosen (given that
y is the most specific aggregate in the tree covering x and
that has already been selected), is as follows:

minE(x, y, k, Wa) =

E(x, y, 9. Wa)
mintminE(u, y, k, Ws), minE(u, x, k - 1, Ws)}

min{ming.; {minE(y, y, i, Wa) + minE(v, y, k — i, Wa)},
Mingejeg—1 {minE (e, x, i, Wo) + minE(v, x, k, =1 =i, W)}}

minEx, y, ¢, Wy), E(x. y, {x}, Wa)}

Note that, unlike the cumulative error case, where one
was interested in the distributing the aggregates amongst the
subtrees of x rooted at children u and v so that the sum of
the errors of the subtrees was minimized, for the maximum
error case, one is now interested in minimizing the maxi-
mum of the errors of the two subtrees (since the error of the
subtree rooted at x is the maximum of the errors of its two
child subtrees). Thus, the following modifications need to be
made to procedure ComputeMinError to compute the k
aggregates that minimize the (maximum) error for the tree:
(1) replace 2, D(s,t)*(Isp(s,x,{y},W)-lsp(s,x)) in steps 5
and 7 by max D (s,0)*(Isp(s,x,{y },W)-Isp (s,x)), and (2)
replace minErrorl+minError2 in steps 26, 27, 33 and 34
with maxfminError]l, minError2g. Similarly, the following
simple modification to procedure CombineMinError enables
it to compute the minimum error of a set of trees for the
maximum error case: replace X,_;[1].error+T,[j-1].error error
in steps 11 and 12 by max{X,_,[1].error, T,[j-1].error}.

Weight Selection Problem

In the previous section, for a given weight assignment
function W, techniques were set forth for computing the
optimal set of aggregates X for which the error in the
selected paths is minimized. However, the final error and set
of optimal aggregates X are very sensitive to the weight that
a border router advertizes for each aggregate. Thus, the
weight assignment problem is important for ensuring that
selected paths are of high quality, and is the subject of this
section.

Recall that the weight assignment problem is to compute
a weight assignment function Wy, for a single aggregate
X€EA such that the error in the selected paths from all subnets
to destination subnets covered by x is minimized. The
weight assignment function W, assigns a weight to x at

3

4

4

5

5

6

6

o

0

5

0

o

<

o

14

each ABR bEB,. Note that the objective is computing the
optimal weights for x under the assumption that no other
aggregates covering subnets in X are concurrently being
advertized. Also, since the aggregate x is fixed, the subscript
(x} for W is dropped; thus W(b) denotes the weight assigned
to x by ABR bEB,.

Intuitively, since W(b) is supposed to represent the dis-
tance between b and subnets covered by x, two possible
logical choices for W(b) are the following:

max,c, {Isp(b,t)}. 1.

(V/EKNZ,dsp(bst) . 2.

The first choice is simply the maximum distance of a
subnet in aggregate x from the border router b, while the
latter is the average distance of subnets in x from b. Note
that, since both choices are independent of the source
subnets (not covered by x) and the error to be minimized, as
illustrated in the examples below, for most cases, neither
choice optimizes the objective error function. In the follow-

if k=0
if k>0 and x has a single child &

if k>0 and x has children «, v

if k>0 and x is a leaf

ing two examples, it is shown that choosing W(b) to be
max,c {Isp(b,t)} minimizes neither the cumulative error nor
the maximum error.

Example 2: consider the network in FIG. 1. Suppose one
is interested in computing weights for the aggregate
10.1.0.0/21 that covers all the subnets in area 0.0.0.3. If each
border router chose the maximum distance to a subnet in
10.1.0.0/21 as the weight for it, by assigns 10.1.0.0/21 a
weight of 1100 (distance of b; from 10.1.6.0/24) and b,
assigns to 10.1.0.0/21 a weight of 1250 (distance between b,
and 10.1.6.0/24). Consequently, both subnets 10.1.16.0/24
and 10.1.8.0/24 select the path through ABR b, to access the
subnets in 10.1.0.0/21 which has a cumulative error of
2*0+2*700+2%800=3000 (for 10.1.16.0/24) and
2*0+2%900+2%1000=4800 (for 10.1.8.0/24). In contrast,
assigning weights 1000 and 500 to 10.1.0.0/21 at ABRs b,
and b, respectively, causes the selected paths to be through
b, which results in a much lower cumulative error 2*1300+
2%0+2*0=2600 (for 10.1.16.0/24) and
2*1100+2*0+2*0=2200 (for 10.1.8.0/24).

Example 3: consider the network in FIG. 5. Suppose one
is interested in computing weights for the aggregate
10.1.0.0/21 that covers all the subnets in area 0.0.0.3. If each
border router chose the maximum distance to a subnet in
10.1.0.0/21 as the weight for it, by assigns 10.1.0.0/21 a
weight of 900 (distance of b; from 10.1.6.0/24) and b,
assigns to 10.1.0.0/21 a weight of 1100 (distance between b,
and 10.1.4.0/24). Consequently, both subnets 10.1.16.0/24
and 10.1.8.0/24 select the path through ABR b, to access the
subnets in 10.1.0.0/21 which has a maximum error of
max{0,700}=700 (for 10.1.16.0/24) and max{0,900}=900
(for 10.1.8.0/24). In contrast, assigning weights 1000 and
500 to 10.1.0.0/21 at ABRs b, and b, respectively, causes
the selected paths to be through b, which results in a lower

US 7,082,473 B2

15
value for maximum error max{700,0}=700 (for 10.1.16.0/
24) and max{500,0}=500 (for 10.1.8.0/24).

Choosing W(b)=(1/x)Z ., {Isp(b,t) yields somewhat bet-
ter results, because intuitively this is more representative of
the distance between b and subnets in x than max,. {Isp
(b,0)}. As a matter of fact, setting W(b) to be the average
distance of b to subnets in x can be shown to minimize the
cumulative error for the weight selection problem. However,
it does not optimize the maximum error, as Example 4
illustrates.

Example 4: consider the network in FIG. 1. Suppose one
is interested in computing weights for the aggregate
10.1.0.0/21 that covers all the subnets in area 0.0.0.3. If each
border router chose the average distance to a subnet in
10.1.0.0/21 as the weight for it, b, assigns 10.1.0.0/21 a
weight of 730 and b, assigns to 10.1.0.0/21 a weight of 570.
Consequently, both subnets 10.1.16.0/24 and 10.1.8.0/24
select the path through ABR b, to access the subnets in
10.1.0.0/21 which has a maximum error of 1300 for
10.1.16.0/24 and 1100 for 10.1.8.0/24. In contrast, assigning
weights 500 and 1000 to 10.1.0.0/21 at ABRs b; and b,,
respectively, causes the selected paths to be through b,
which results in a lower value for maximum error 700 for
10.1.16.0/24 and 900 for 10.1.8.0/24.

The following subsections first show that selecting
W(b)=(1/&DZ . Isp(b,t) results in the minimum cumulative
error and is a solution to the weight selection problem.
However, the generalized weight selection problem that
involves minimizing the product of the cumulative error of

selected paths and their degrees of importance is an #$-hard
problem. Consequently, search-based heuristics are pre-
sented to solve the generalized weight selection problem and
a pseudo-polynomial time technique to solve the weight
selection problem when the objective is to minimize the
maximum error. Finally, efficient techniques are shown for
the generalized weight selection problem when B, contains
only two ABRs.

Problem Formulation

Some of the notation can now be simplified and new
terminology can be introduced to address the weight selec-
tion problem which is: for an aggregate XA, compute a
weight assignment function W, such that =_ Isp(s,t,{x},
W)-lIsp(s,t) is minimum. For each source s, the selected
paths to subnets covered by x is through the ABR bEB, for
which Isp(s,b)+W(b) is minimum (among all the ABRs).
The ABR selected for source s is designated by B(s,W). Note
that for t€x, Isp(s,t,{x},W)=lsp(s,B(s, W))+lsp(B(s,W),t) .
Further, suppose e(s,b) denotes the error in the selected paths
to subnets in x if ABR b is selected for source s. Thus,
e(s,b)=2,o Isp(s,b)+Isp(b,t)-1Isp(s,t). Then, e(s,B(s,W))=
3o dsp(st, {x},W)-Isp(s,t), and thus the weight selection
problem becomes that of computing a weight assignment W
such that 2 _ .e(s,B(s,W)) is minimum.

The above problem formulation is for minimizing the
cumulative error. If one wishes to minimize the maximum
error, then e(s,b)=max . {Isp(s,b)+lsp(b,t)-lsp(s,t)} and the
weight assignment W must be such that max . ;e(s,B(s,W))
is minimum.

Weight Selection Problem (Cumulative Error)

For the cumulative error case, it can be shown that
choosing W(b) to be the average distance of b to subnets in
X minimizes the cumulative error in the selected paths
between sources and destination subnets in X.

Theorem 3: the weight assignment function W which
assigns a weight W(b)=(1/x)Z,. Isp(b,t) to ABR b results in
the minimum value for 2 .e(s,B(s,W)).

20

25

30

35

40

45

50

55

60

65

16

Generalized Weight Selection Problem (Cumulative Error)
For the cumulative error case, e(s,b)=2;Isp(s,b)+lsp(b,
t)-lsp(s,t) is closely related to the criterion for selecting an
ABR b for s which is that 1sp(s,b)+W(b) is minimum (note
that 2, Isp(s,t) is a constant) . However, for the generalized
cumulative error case, e(s,b)=2, D(s,0)*(Isp(s,b)+1sp(b,t)-
Isp(s,t)) and thus e(s,b) can be any arbitrary value based on
the value of D(s,t). This fact that e(s,b) can be any arbitrary
value makes the problem of computing a weight assignment
function W that minimizes 2 e(s,B (s,W)) intractable.

Theorem 4: for arbitrary values of e(s,b) and constant E,
determining if there exists a weight assignment function W
for which 2 .e(s,B(s,W))=E is ##-hard.

FIG. 8 illustrates a randomized technique for computing
the weights that minimize the cumulative error. The proce-
dure keeps track of the best weight assignment found so far
in W, and in each iteration, assigns random weights
between 0 and L to some subset of ABRs. Here L is chosen
to be a fairly large constant —a reasonable value for L is one
or two times the maximum distance between pairs of sub-
nets.

Generalized Weight Selection Problem (Maximum Error)

Recall that, if one is interested in minimizing the maxi-
mum error, then e(s,b)=max,. {Isp(s,b)+lsp(b,t)-Isp(s,t)}
and the weight assignment W must be such that max e(s,
B(s,W)) is minimum. Thus, one can employ an technique
similar to the randomized search technique to compute a
weight assignment function that minimizes the maximum
error. The only difference is that 2 __e(s,B(s,W)) should be
replaced with max . ce(s,B(s,W)) in the procedure Compute-
WeightsCumulative().

However, one can devise a more efficient pseudo-poly-
nomial technique for computing the weight assignment that
minimizes the maximum error. Suppose there exists a pro-
cedure P that computes a weight assignment W (if one
exists) such that max . .e(s,B(s,W))=E for some constant E.
Then, a simple procedure for computing the weight assign-
ment that minimizes the maximum error is as follows: (1)
Sort the errors e(s,b) between source ABR pairs (let
E,, ..., Er be the errors in order of increasing value), (2)
Repeatedly invoke the procedure P for increasing values of
i, until P returns a weight assignment W for which max e
(5,B(s,W))=E,. Thus, E, is the smallest value for which a
weight assignment exists and represents the minimum pos-
sible value for the maximum error. Further, W is the weight
assignment that minimizes the maximum error. Note that
instead of considering each E, sequentially, one can also use
a binary search procedure to compute the minimum value
for the maximum error more efficiently.

The next task is to develop the procedure P that computes
a weight assignment W (if there exists one) such that
max se(s,B(s,W))=E for some constant E. The problem of
computing a W such that the maximum error is at most E is
equivalent to solving a set of inequalities involving the
W(b)s as variables. For a source s, let R denote the set of
ABRs bEB, for which e(s,b)=E; thus, for the remaining
ABRs bEB,-R.e(s,b)>E. Consequently, since the error for
each source can be at most E, the computed W must be such
that one of the ABRs in R is selected for s. For this, W is
required to satisfy the following set of inequalities:
mingcx{ W(b)+lsp(s,b)} = W(c)+lsp(s,c) for all cEB,-R.

Thus, for each source s, the set of inequalities described
above is obtained. Note that the Ws in the equations are
variables and the Isps are constants. Suppose Q denotes the
set of inequalities over all the sources. It is straightforward
to observe that, for a W, the maximum error is E if and only

US 7,082,473 B2

17

if W is a solution for the set of equations Q. Thus, one needs
to focus on computing a W that satisfies the inequalities in
Q. Observe that, if, for a source s, the set R is empty, then
a W for which the set of inequalities Q is satisfiable does not
exist. The reason for this is that for the source, inequalities
of the form min{}=W(c)+lsp(s,c) are obtained which can-
not be satisfied since min{}=1. Also, no equations are
generated for a source s if R=b, (that is, the error for the
source s is at most E irrespective of the chosen ABR).

Procedure ComputeWeightsMax in FIG. 9 is an iterative
procedure for computing a W that satisfies Q. In each
iteration, a new weight assignment W, is computed after
substituting the previous weight assignment W, for the
W’s only on the LHS of each inequality in Q (Steps 3 and
4). Note that each inequality in Q' has the form C=W(c)+
Isp(s,c), where C and Isp(s,c) are constants and W(c) is a
variable. Also, Isp,,,, is the maximum value for Isp(s,b) for
a source ABR pair.

ComputeWeightsMax returns a W that is a solution to Q
if and only if Q is satisfiable. In order to show this, in the
following lemmas, it is evident that: (1) for any W that
satisfies Q, W _,,(b)=W(b) and (2) if Q is satisfiable, then a
W exists that is a solution to Q for which Pb,b,W(b)=(jbj*
(jbj-1)2)*1sp,,,.- Thus, since W_,, does not decrease
between successive iterations and the procedure terminates
only when a W is found or Pb,b,W_, (b) becomes greater
than (jbj*(bj-1)2)*1sp,,,., ComputeWeightsMax com-
putes W correctly.

Lemma 1: for every ABR bEb,, Wj+1_,(b)*Wj_,Ab).

Lemma 2: for every weight assignment W that is a
solution to Q, W(b)*W_,(b).

Lemma 3: if Q is satisfiable, then there exists a weight
assignment W that is a solution to Q and for which Pb,b,
W(D)=(Gbg* (jbj-1)2) *1sp,,pn-

Theorem 5: if Q is satisfiable, then procedure Compute-
WeightsMax returns a weight assignment W that is a solu-
tion to Q.

Generalized Weight Selection Problem (2 ABRs)

For the special case when b, contains only 2 ABRs, b, and
b, it is possible to devise an efficient technique whose time
complexity is O(nlogn) where n is the number of sources.
Now comes time to address the problem of computing a
weight assignment W such that the cumulative error 2 e
(s,B(s,W)) is minimized; however, it is straightforward to
modify the technique of the present invention to minimize
the maximum error.

The error for a source s is e (s,b,) if W(b,)+Isp(s,b;)=W
(by)+1sp(s,b,) and e(s,b,) otherwise. For source s, suppose
that v(s)=lsp(s,b,)-1sp(s,b,) and (without loss of generality)
let v(s1), . . . ,v(sn) denote the values in the sorted order.
Also, let s, and s,,,, be two dummy sources with zero error
to both ABRS, v(s,)=- and v(s,,,,)=°. Then, for 0=j=n,
if v(s)<W(b,)-W(b,)=v (s;,,) the cumulative error is X, , e
(s1:b)+Z, e(s,,b,) . Thus, the problem of computing a W
reduces to that of computing the v(s)), v(s,,,) pair for which
the cumulative error is the smallest.

Procedure ComputeWeightsTwoABR in FIG. 10 com-
putes in variable V ,, the upper value of the v(s)), v(s,,) pair
with the minimum cumulative error (that is stored in B,).
Variable E in the procedure is used to keep track of the
cumulative error for the v(s)), v(s,,,) pair that is currently
under consideration in the for loop. Thus, choosing values
for W(b,) and W(b,) such that W(b,)*>* W(b,)=V,,, yields
the desired weight assignment function W that minimizes
the cumulative error.

20

25

30

35

40

45

50

55

60

65

18

Although the present invention has been described in
detail, those skilled in the art should understand that they can
make various changes, substitutions and alterations herein
without departing from the spirit and scope of the invention
in its broadest form.

What is claimed is:

1. A system for selecting open shortest path first (OSPF)
aggregates to advertise, comprising:

a database configured to include candidate OSPF aggre-
gates and corresponding weights, said candidate OSPF
aggregates represented by trees; and

an aggregate selector, associated with said database, con-
figured to select subsets of each of said trees to reduce
an error thereof and combine said subsets to yield a
subset to reduce an error associated with said trees, said
subset to be advertised by an area border router such
that a path length between a particular source and
destination subnets selected from advertisement of
weights corresponding to said subset approaches a
shortest path length between said particular source and
destination subnets irrespective of said weights adver-
tised.

2. The system as recited in claim 1 wherein said aggregate
selector treats errors in said selected path length as having
unequal degrees of importance.

3. The system as recited in claim 1 further comprising:

a weight assigner, associated with said database, that
assigns, for said OSPF aggregates, said weights based
on an average distance of subnets in an area to said area
border router.

4. The system as recited in claim 3 wherein said weight

assigner employs a search heuristic to assign said weights.

5. The system as recited in claim 3 wherein said weight
assigner treats errors in path lengths in said area as having
unequal degrees of importance.

6. The system as recited in claim 1 further comprising:

a weight assigner, associated with said database, that
employs a search heuristic to assign said weights for
said OSPF aggregates.

7. The system as recited in claim 6 wherein said weight
assigner treats errors in path lengths in said area as having
unequal degrees of importance.

8. A method of selecting open shortest path flint (OSPF)
aggregates for advertising, comprising:

storing data pertaining to candidate OSPF aggregates and
corresponding weights, said candidate OSPF aggre-
gates represented by trees;

selecting subsets of each of said trees to reduce an error
thereof; and

combining said subsets to yield a subset to reduce an error
associated withh said trees, said subset to be advertised
by an area border router such that a path length between
a particular source and destination subnets selected
from advertisement of weights corresponding to said
subset approaches a shortest path length between said
particular source and destination subnets irrespective of
said weights advertised.

9. The method as recited in claim 8 wherein said selecting
comprises computing a lower bound of error for said can-
didate OSPF aggregates employing a set of recursive equa-
tions.

10. The method as recited in claim 8 further comprising:

assigning, for said OSPF aggregates, said weights based
on an average distance of subnets in an area to said area
border router.

11. The method as recited in claim 10 wherein said
assigning comprises employing a search heuristic.

US 7,082,473 B2

19

12. The method as recited in claim 10 wherein said
assigning comprises treating errors in path lengths in said
area as having unequal degrees of importance.

13. The method as recited in claim 8 further comprising:

employing a search heuristic to assign said weights for

said OSPF aggregates.

14. The method as recited in claim 13 wherein said
employing comprises treating errors in path lengths in said
area as having unequal degrees of importance.

15. An autonomous network domain, comprising:

a plurality of routers and interconnecting segments that

cooperate to form subnets and paths therebetween; and

a system for selecting open shortest path first (OSPF)

aggregates for advertising, including:

a database for containing candidate OSPF aggregates
and corresponding weights, said candidate OSPF
aggregates represented by trees, and

an aggregate selector, associated with said database,
that selects subsets of each of said trees to reduce an
error thereof and combines said subsets to yield a
subset to reduce an error associated with said trees,
said subset to be advertised by an area border router
such that a pat length between a particular source and
destination subnets selected from advertisement of
weights corresponding to said subset approaches a

20

20

shortest path length between said particular source
and destination subnets irrespective of said weights
advertised.

16. The domain as recited in claim 5 wherein said system

further includes:

a weight assigner, associated with said database, that
assigns, for said OSPF aggregates, said weights based
on an average distance of said subnets in said domain
to said area border router.

17. The domain as recited in claim 16 wherein said weight

assigner employs a search heuristic to assign said weights.

18. The domain as recited in claim 16 wherein said weight

assigner treats errors in path lengths in said area as having
unequal degrees of importance.

19. The domain as recited in claim 15 wherein said system

further comprises:

a weight assigner, associated with said database, that
employs a search heuristic to assign said weights for
said OSPF aggregates.

20. The domain as recited in claim 19 wherein said weight

assigner treats errors in path lengths in said area as having
unequal degrees of importance.

