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FIG. 4A

METHOD LUB (p, q)

Input: p and ¢ are tree patterns.
Output: A tree pattern representing the LUB of p and q.

1) if (g p) thenreturn p;
2) if(p C q) then return g;
3) Initialize TCSubPatv, w) = 0,

¥v € Nodes(p), ¥ w € Nodes(g);
4) Let Voot AN Wy denote the root nodes of p and g, resp.;
5) foreach v € Child{v,, 4, p) do
6)  foreach w e Child(w_,, q) do
7) TCSubPat[v, w] = LUB_SUB (v, w, TCSubPut);
8) Create a tree pattern z with root node label /. and

the set of child sub-patterns

\J  TCSubPatv, w]

veChild(v, oy, P), weChild(w, 4, 9)
9) return MINIMIZE (z);
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FIG. 4B
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METHOD LUB_SUB (v, w, TCSubPat)

Input: v, w are nodes in tree patterns p, g (respectively),
TCSubPat is o 2-dimensional array such that

TCSubPat[v, w] is the set of tightest container
sub-patterns of Subtree(v, p) and Subtree(w, q).

Output: TCSubPat[v, w].

1) if (TCSubPat[v, w] # B) then

2)  return TCSubPat[v, w];

3) else if (Subtree(w, q) C Subtree(v, p)) then

4)  retum {Subtree(v, p)};

5) elseif (Subtree(v, p) = Subtree(w, q)) then

6)  retum {Subtree(w, q)};

7) else

8) Initilize R = @; R'= 0; R"= 0;

9)  for each v' € Child(v, p) do
10)  for each w' € Child(w, q) do
1 R =R U LUBSUB (v, w, TCSubPat);

)
)
) for each v' € Child(v, p) do
3) R =R U LUB_SUB (v, w, TCSubPat)
) for each w' € Child(w, q) do
) R"=R"U LUB_SUB (v, w, TCSubPut);
)

and set of child subtree patterns R;

17) Let 2’ be the pattern with root node label //
and set of child subtree patterns R’;

18) Let z" be the pattern with root node label //
and set of child subtree patterns R”;

19)  retum TCSubPat[v, w] = {z, 7', 2"};

Let z be the pattem with root node label MazLabel(v, w)
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FIG. 54
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METHOD CONTAINS (p, q)
Input: p and ¢ are two tree patterns.

Output: Returns {rue if g C p; false otherwise.
1) Initialize Status[v, w] = null,
Vv € Nodes(p), Vw € Nodes(q);

2) Let Uroot and Wroo

)

3) it (Chald(v, 4, p) = 0) then
4)  retum true;
5) else

)

6)  return CONTAINS_SUB (v

root’ Yroot” Status)

t denote the root nodes of p and g, resp.;
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FIG. 5B
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METHOD CONTAINS_SUB (v, w, Status)

Status[v, w] € $ndl, false, true}.
Output: Status[v, w].
1) if (Status[v, w] # null) then
2)  retun Status[v, w);
3) if (v is a leaf node in p) then
4)  Status[v, w] = (label(w) < label(v));
5) elseif (label(w) £ label(v)) then

6)  Status[v, w] = fulse;
7) else
8) Status[v, w] =

veChild(v, p} \ w'eChild(w, q)
10)  Status[v, w] =
/\veChild(v, p)

w'eChild(w, q)
13) return Status[v, w];

Input: v, w are nodes in tree patterns p, q (respectively),
Status is a 2-dimensional array such that each

A\ < \/ CONTAINS_SUB (v, w, Status)>;
9) if (Status[v, w] = fulse) and (label(v) = //) then
CONTAINS_SUB (v', w, Status);

1) if (Status[v, w] = false) and (Jabel(v) = //) then
12)  Statusfv, w] = \/CONTAINS_SUB (v, w', Status);
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FIG. 7
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METHOD SEL(v, )

Output: SelSubPat[v, t].

1) if (SelSubPat[v, t] is already computed) then
2)  return SelSubPat[v, t];
3) elseif (lubel(t) # label(v)) then
£ retum SelSubPutfu, {] = 0;
5) elseif (v is o leaf) then
6)  retun freq(t)/N;

7} for each child v; € Child(v, p) do
)
)

B)  Sela = mazy copiggft r)iSEL (e, o)l

9) e = 11 comtafy ) Sebe

10) if (label(v) = //) then

1) Sely = cheChz'l d(v,p)SEL(vc, t);

12)  Sel = max{Sel, Sely};
)
)
)

13 Sely = moxtceChild(t,DT)§SEL(”’ tc)fi
14)  Sel = max{Sel, Sely];
15) retumn SelSubPat[v, t] = Sel

Input: v is a node in tree pattern p, ¢ is a node in IT.
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FIG. 8

METHOD AGGREGATE (S, k)
Input; S is a set of tree patterns, k is a space constraint.
Output: A set of tree patterns S’ such that ST §'

and  Ypcslp| < k.
1) Initialize S' = S
2) while (Ypesilp| > k) do
) Ci=f{z |z = PRUNE(p, [pl - 1), p € S}
) Cy=fo|z=PRUNE(pUg, [p| + lgl - 1), p g € S

(45 [ Sy ¥ ¥

) Select z € C such that Benefit(z) is maximum;
) S=8-fp|pCepeStulsh
8) return S';

~J O
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TECHNIQUES FOR INFORMATION
DISSEMINATION USING TREE PATTERN
SUBSCRIPTIONS AND AGGREGATION THEREOF

FIELD OF THE INVENTION

[0001] The present invention relates generally to commu-
nication over networks, and, more particularly, to commu-
nication of electronic information over networks.

BACKGROUND OF THE INVENTION

[0002] TLarge amounts of document transfer occur over
networks every day, and standards have been implemented
to make the document transfer easier. On the Internet, for
instance, extensible markup language (XML) has become a
dominant standard for encoding and exchange of docu-
ments, including electronic business transactions in both
Business-to-Business (B2B) and Business-to-Consumer
(B2C) applications. Given the rapid growth of document
traffic on the Internet, the effective and efficient delivery of
documents such as XML documents has become an impor-
tant issue. Consequently, there is growing interest in the area
of content-based filtering and routing, which addresses the
problem of effectively directing high volumes of document
traffic to interested users based on document contents. In
conventional routing, packets are routed over a network
based on a limited, fixed set of attributes, such as source/
destination Internet protocol (IP) addresses and port num-
bers. By contrast, content-based document routing is based
on information in document contents, and is therefore more
flexible and demanding.

[0003] In a system that provides filtering and routing for
document dissemination, users typically specify their sub-
scriptions. Subscriptions indicate the type of content that
users are interested in, and generally use some pattern
specification language. For each incoming document, a
content-based document router matches the document con-
tents against a set of subscriptions to identify a set of
interested users, and then routes the document to any inter-
ested users. Thus, in content-based routing, the “destination”
of a document is generally unknown to the data producer and
is computed dynamically based on the document contents
and a set of subscriptions. Effective support for scalable,
content-based routing is crucial to enabling efficient and
timely delivery of relevant documents to a large, dynamic
group of users.

[0004] Unfortunately, there are problems with current
document dissemination systems that limit scalability. One
problem is space requirements, as user subscriptions can
become quite large, potentially having gigabytes of infor-
mation. A competing problem is the speed at which a
determination can be made as to whether a document should
be disseminated to users. Ideally, as network streaming
speed increases, the speed at which document comparison
takes place also should increase. Both speed and space
requirements are impacted by increased numbers of sub-
scriptions and therefore affect scalability, as more subscrip-
tions place burdens on both speed and space.

[0005] Consequently, a need exists for information dis-
semination techniques for networks that allow a high num-
ber of subscriptions yet also provide high speed document
dissemination.
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SUMMARY OF THE INVENTION

[0006] The present invention provides techniques that
provide information dissemination through, among other
things, subscriptions in the form of tree patterns and tree
pattern aggregation.

[0007] In an aspect of the invention, a set of subscriptions
are provided, where one or more subscriptions comprise a
tree pattern. A tree pattern illustratively comprises one or
more interconnected nodes having a hierarchy and are
adapted to specify content and structure of information. The
set of subscriptions is used to select information for dis-
semination to users. Generally, the one or more subscrip-
tions having the tree pattern describe information the users
are interested in receiving. Illustratively, subscriptions that
use tree patterns are more expressive and practical than
conventional subscriptions.

[0008] In another aspect of the invention, techniques are
presented for determining an aggregation from the subscrip-
tions. An aggregation may be determined from the set of
subscriptions, and the aggregation comprises a set of aggre-
gate patterns. The set of subscriptions may comprise a
number of tree patterns, and the aggregate patterns generally
also comprise tree patterns comprising one or more inter-
connected nodes having a hierarchy and adapted to specify
content and structure of information.

[0009] Tlustratively, the set of aggregate patterns is
smaller than the set of subscriptions in that the number of
aggregate pattern is less than the number of tree patterns in
the subscriptions and the number of nodes in the set of
aggregate patterns is smaller than the number of nodes in the
set of subscriptions. Broadly, the aggregate patterns “com-
press” the subscriptions and therefore provide smaller
memory requirements and generally faster comparisons
between information and the aggregation. There may be
some loss of precision due to the “compression,” but the loss
of precision is generally kept low through techniques
described below.

[0010] In a further aspect of the invention, the aggregation
techniques can be applied using a space constraint. The
space constraint can be imposed, for example, by system
configuration. The space constraint may be used to limit the
size of memory available for storing an aggregation. The
space constraint is generally expressed in bytes and can be
measured with respect to the number of nodes in the set of
aggregate patterns of the aggregation.

[0011] In another aspect of the invention, a systematic
study of least upper bound patterns is described. The least
upper bound of a set of tree patterns can be considered a
most precise aggregation of the set. A theoretical foundation
for the existence of the most precise aggregation is
described, as is a complexity of the computation for the least
upper bound, techniques for computing a least upper bound,
and techniques for minimizing a least upper bound.

[0012] In yet another aspect of the invention, when the
least upper bound of a set of subscriptions is larger than the
given space constraint, techniques are presented for com-
puting an approximation of the least upper bound in order to
meet the space constraint. The least upper bound of a set of
subscriptions may be considered to be the most precise
aggregation for the set. The approximation of the least upper
bound is an aggregation that satisfies the space constraint
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and minimizes loss of precision as much as possible. The
approximation may be determined by setting a candidate set
of tree patterns to be the tree patterns in the subscriptions.
The following steps may be performed and iterated: a set of
candidate aggregate patterns may be identified from the
plurality of tree patterns and similar tree patterns determined
from the candidate set of tree patterns; each candidate
aggregate pattern may be pruned by deleting or merging
nodes; a chosen tree pattern may be selected from the
candidate aggregate patterns having a predetermined mar-
ginal gain; and all tree patterns, in the candidate set of tree
patterns, that are contained in the chosen tree pattern may be
replaced by the chosen tree pattern.

[0013] Additionally, the pruning process may be directed
by using selectivity of information, in that only nodes with
low selectivity, i.e., low frequency of document matching,
can be removed. Thus, loss of preciseness is reduced. The
frequency of matching is determined by sampling informa-
tion and thereby determining selectivity of the information.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 is a block diagram of an exemplary com-
munication system providing document routing using tech-
niques of the present invention;

[0015] FIGS. 2A through 2E illustrate example tree pat-
terns and an XML tree;

[0016] FIGS. 3A through 3D illustrate examples of tree
patterns;

[0017] FIGS. 4A and 4B show pseudocode of exemplary
methods used to compute a least upper bound;

[0018] FIGS. 5A and 5B show pseudocode of exemplary
methods used to compute containment, which determines
whether one tree pattern is contained in another;

[0019] FIGS. 6A through 6l illustrate examples of tree
patterns;
[0020] FIG. 7 shows pseudocode of an exemplary method

for tree pattern selectivity estimation; and

[0021] FIG. 8 shows pseudocode of an exemplary method
for tree pattern aggregation.

DETAILED DESCRIPTION

[0022] For ease of reference, the present disclosure is
divided into the following sections: Introduction; Problem
Formulation; Computing Precise Aggregates; and Selectiv-
ity-Based Aggregation Methods.

[0023] 1. Introduction

[0024] Turning now to FIG. 1, a communication system
100 is shown. Communication system 100 comprises a
network 120, a document router 130, and subscriptions 180.
Network 120 is used to transport a number of XML docu-
ments 110 and generally transports a stream of such XML
documents 110. XML documents 110 contain information to
be routed to users. Document router 130 comprises a net-
work interface 130 coupled to a processor 140, which is
coupled to memory 145. Memory 145 comprises a filter
module 145 that comprises an aggregation 155. The aggre-
gation 155 comprises a set of aggregate patterns 160. The
subscriptions 180 comprise a set of tree patterns 185. In this
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example, subscriptions 180 are separate from document
router 130 and could be accessed, for example, over network
120.

[0025] Broadly, XML documents 110 pass through net-
work 120. In a conventional communication system 100, the
document router 130 selects, via filter module 150, XML
documents 110 by comparing the documents to the subscrip-
tions 180. The XML documents 110 that compare favorably
with subscriptions 180 are routed to users. It should be noted
that conventional systems generally did not use tree patterns
185. As explained above, as subscriptions 180 increase, the
memory requirement for subscriptions 180 increases. Addi-
tionally, the speed at which comparisons between the XML
documents 110 and the subscriptions 180 need to be per-
formed by the filter module 150 increases.

[0026] The present invention solves these problems by,
among other things, providing subscriptions 180 that are tree
patterns 185. The tree patterns 185 have interconnected
nodes (shown below) having a hierarchy and adapted to
specify content and structure of information. Broadly, the
subscriptions 180 describe information that users are inter-
ested in receiving. One suitable technique for describing the
tree patterns is by using the XML pattern specification
language called XPath, as described in XML Path Language
(XPath) 1.0, World Wide Web Consortium (W3C) (1999),
the disclosure of which is hereby incorporated by reference.
Although XML documents will be described herein for use
with the present invention, the present invention may be
used for any hierarchically structured documents. Similarly,
although tree patterns using XPath are described herein, any
hierarchical patterns having interconnected nodes and a tree
structure may be used.

[0027] The present invention also provides aggregation of
subscriptions that are tree patterns. Broadly, given a large
volume of potential users, system scalability and efficiency
mandate the ability to judiciously aggregate the set of
subscriptions 180 to a smaller set of patterns. Goals are to
both reduce the storage space requirements of the subscrip-
tions 180, as well as speed up the filtering of incoming XML
document 110 traffic. For instance, a document router 130 in
a B2B application may choose to aggregate subscriptions to
create aggregation 155 based on geographical location,
affiliation, or domain-specific information (e.g., telecommu-
nications). Aggregation generally involves compressing an
initial set of subscriptions 180, S, into a smaller set A such
that any document that matches some subscription in S also
matches some subscription in A, and furthermore the size of
A is larger than a predefined space constraint. However,
since there is typically a “loss of precision” associated with
such aggregation, the documents matched by the aggregated
set A is, in general, a superset of those matched by the
original set S. As a result, an XML document 110 may be
routed to users who have not subscribed to it, thus resulting
in an increase in the amount of unwanted document traffic.
In order to avoid such spurious forwarding of documents, it
is desirable to minimize the number of such “false matches”
(e.g., which minimize the loss in precision) with respect to
the given space constraint for the aggregated subscriptions.

[0028] The present disclosure describes, among other
things, a subscription aggregation problem where subscrip-
tions 180 are specified using an expressive model of tree
patterns 185. Tree patterns 185 represent an important
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subclass of, for instance, XPath expressions that offers a
natural means for specifying tree-structured constraints in
XML and lightweight directory access protocol (LDAP)
applications. Compared to earlier work based on attribute/
predicate-based subscriptions, effectively aggregating tree
patterns 185 poses a much more challenging problem since
subscriptions 180 involve both content information (e.g.,
node labels) as well as structure information (e.g., parent-
child and ancestor-descendant relationships). Briefly, a tree
pattern aggregation problem can be stated as follows: Given
an input set of tree patterns 185 (referred to as “S,” as the
subscriptions 180 are assumed for exposition to be tree
patterns) and a space constraint, aggregate S into a smaller
set of aggregate patterns 160 that meets the space constraint,
and for which the loss in precision due to aggregation is
minimized.

[0029] Thus, the document router 130 can create a set of
aggregate patterns 160 from the tree patterns 185. The
aggregation 155 that results is smaller than the subscriptions
180 and can more appropriately fit in memory 1485.

[0030] 1t should be noted that the memory 145 may
contain a routing table (not shown) that correlates aggregate
patterns 160 with users. For example, one user may request
documents concerning space travel, and the aggregate pat-
terns 160 associated with space travel will have correspond-
ing destination addresses for the user. The routing table is
used by document router 130 to route XML documents 110
to the user.

[0031] The filter module 150 is a module which when
executed by processor 140 implements all or a portion of the
present invention. The techniques described herein may be
implemented through hardware, software, firmware, or a
combination of these. Additionally, the techniques may be
implemented as an article of manufacture comprising a
machine-readable medium, as part of memory 145 for
example, containing one or more programs that when
executed implement embodiments of the present invention.
For instance, the machine-readable medium may contain a
program configured to perform some or all of the steps of the
present invention. The machine-readable medium may be,
for instance, a recordable medium such as a hard drive, an
optical or magnetic disk, an electronic memory, or other
storage device.

[0032] The following example is illustrative of problems
associated with tree patterns 185. Consider the two similar
tree-pattern subscriptions p, and p,,, shown in FIGS. 2A and
2B, where p, matches any document with a root element
labeled “CD” that has both a sub-element labeled “SONY”
as well as a sub-element with an arbitrary label that in turn
has a sub-element labeled “Bach”. Also, p, matches any
document that has some element labeled “CD” with a
sub-element labeled “Bach”. Here the node labeled ‘*’
(called a “wildcard”) matches any label, while the node
labeled ¢//* (called a “descendant™) matches some (possibly
empty) path. The XML document T shown in FIG. 2E
matches or “satisfies” p, but not p, , because the sub-element
labeled “Bach” in T does not have a parent element labeled
“CD”. For efficiency reasons, one might want to aggregate
the set of tree patterns {p,, p,} into a single tree pattern. Two
examples of aggregate tree patterns for {p,, p,} are p, and
Pas shown in FIGS. 2C and 2D respectfully, since any
document that satisfies p, or p,, also satisfies both p, and p,.
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Although both p_ and p4 have the same number of nodes, p.
is intuitively “more precise” than py with respect to {p,, p,}
since p, preserves the ancestor-descendant relationship
between the “CD” and “Bach” elements as required by p,
and p,. Indeed, any XML document that satisfies p. also
satisfies p, (and thus, as explained in detail below, it is said
that p, “contains” p.).

[0033] The present disclosure describes efficient methods
for deciding tree pattern containment, minimizing a tree
pattern, and computing the most precise aggregate (i.c., the
“least upper bound”) for a set of patterns. Additionally, an
efficient method is proposed that exploits coarse statistics on
the underlying distribution of XML documents to compute
a“precise” set of aggregate patterns within the allotted space
budget. Specifically, disclosed techniques employ document
statistics to estimate the selectivity of a tree pattern, which
is also used as a measure of the preciseness of the pattern.
Thus, an aggregation problem can be reduced to finding a
compact set of aggregate patterns with minimal loss in
selectivity, for which a greedy heuristic is presented herein.

[0034] The usefulness of the present invention on tree
patterns and their aggregation is not limited to content-based
routing, but also extends to other application domains such
as the optimization of XML queries involving tree patterns
and the processing and dissemination of subscription queries
in a multicast environment (e.g., where aggregation can be
used to reduce server load and network traffic). Further, the
present invention is complementary to recent work on
efficient indexing structures for XPath expressions. The
focus of earlier research was to speed up document filtering
with a given set of XPath subscriptions using appropriate
indexing schemes. In contrast, the present invention focuses
on effectively reducing the volume of subscriptions that
need to be matched in order to ensure scalability given
bounded storage resources for routing.

[0035] 2. Problem Formulation
[0036] 2.1 Definitions

[0037] A tree pattern is an unordered node-labeled tree
that specifies content and structure conditions on an XML
document. More specifically, a tree pattern p has a set of
nodes, denoted by Nodes(p), where each node v in Nodes(p)
has a label, denoted by label(v), which can either be a tag
name, a “*” (wildcard that matches any tag), or a “//” (the
descendant operator). In particular, the root node has a
special label “/.”. The terminology Subtree (v, p) is used to
denote the subtree of p rooted at v, referred to as a sub-
pattern of p. Some examples of tree patterns are depicted in
FIGS. 3A through 31.

[0038] To define the semantics of a tree pattern p, the
semantics are first given of a sub-pattern Subtree (v, p),
where v is not the root node of p. Recall that XML
documents are typically represented as node-labeled trees,
referred to as XML trees. Let T be an XML tree and t be a
node in T. It is said that T satisfies Subtree (v, p) at node t,
denoted by (T, t)=Subtree (v, p), if the following conditions
hold: (1) if label (v) is a tag, then t has a child node t' labeled
label (v) such that for each child node v' of v, (T,t')=Subtree
(v', p); (2) if label (v)=*, then t has a child node t' labeled
with an arbitrary tag such that for each child node v' of v,
(T,t)=Subtree (v', p); and (3) if label (v)=//, then t has a
descendant node t' (possibly t'=t) such that for each child v'

of v, (T,t")=Subtree (v', p).



US 2004/0260683 Al

[0039] The semantics of tree patterns are now defined. Let
T be an XML tree with root t,__,, and p be a tree pattern with
root v, .. It can be said that T satisfies p, denoted by Tkp,
if for each child node v of v, (1) if label (v) is a tag a, then
t,o0 1S labeled with a and for each child node v' of v, (Tt,.,)

Subtree (v', p) (here label (v) specifies the tag of t,,.,); (2)
if label (v)=*, then t_, may have any label and for each
child node v' of v, (T, t,_ JESubtree (v', p); (3) if label (v)=//,
then ., has a descendant node t' (possibly t'=t,,) such that
T'ep', where T' is the subtree rooted at t', and p' is identical
to Subtree (v,p) except that ¢/.” is the label for the root node
v (instead of label(v)). Observe that v, is treated differ-
ently from the rest of the nodes of p. The motivation behind
this is illustrated by p; in FIG. 31, which specifies the
following: for any XML tree T satisfying p;, its root must be
labeled with a and moreover, it must contain two consecu-
tive a elements somewhere. This generally cannot be
expressed without our special root label “/.” (as tree patterns
do not allow a union operator).

root

[0040] Consider the tree pattern p, in FIG. 3A. An XML
document T satisfies p, if its root element satisfies all the
following conditions: (1) its label is a; (2) it must have a
child element with an arbitrary tag, which in turn has a child
element with a label b; and (3) it must have a descendant
element which has both a c-child element and an a-child
element. Thus, p, essentially specifies conjunctive condi-
tions on XML documents. It should be noted that documents
satisfying p, may have tags or subtrees not mentioned in p,.
For instance, the root element of T may have a d-child
element, and the b-elements of T may have c-descendant
elements.

[0041] A tree pattern p is said to be consistent if and only
if there exists an XML document that satisfies p. Generally,
only consistent tree patterns are considered herein. Further,
the tree patterns defined above can be naturally generalized
to accommodate simple conditions and predicates (e.g.,
issue=“GE” and price<1000). To simplify the discussion,
such extensions are not considered herein.

[0042] Tt is worth mentioning that a tree pattern can be
easily converted to an equivalent XPath expression in which
each sub-pattern is expressed as a condition or qualifier.
Thus, tree patterns herein are graph representations of a class
of XPath expressions. It is tempting to consider using a
larger fragment of Xpath to express subscription patterns.
However, it turns out that even a mild generalization of the
tree patterns used herein (e.g., with the addition of union/
disjunction operators) leads to a much higher complexity
(e.g., coNP-hard or beyond) for basic operations such as
containment computation.

[0043] A tree pattern q is said to be contained in another
tree pattern p, denoted by qEp, if and only if for any XML
tree T, if T satisfies q then T also satisfies p. If qCp, the p is
referred to as the container pattern and q as the contained
pattern. It is said that p and q are equivalent, denoted by p=q,
if pEq and qCEp. This definition can be generalized to sets of
tree patterns: a set of tree patterns S is contained in another
set of tree patterns S', denoted by SES', if for each peS, there
exists p'eS' such that pEp'. Containment for sub-patterns is
defined similarly.
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[0044] The size of a tree pattern p, denoted by |p|, is simply
the cardinality of its node set. For example, referring to FIG.
2, [p.|=7 and [p,|=8.

[0045] 2.2 Problem Statement

[0046] The tree pattern aggregation problem that we
investigate in this paper can now be stated as follows. Given
a set of tree patterns S and a space constraint k on the total
size of the aggregated subscriptions, compute a set of
aggregated patterns S' that satisfies all of the following three
conditions:

[0047] (C1) SES' (i.e., S'is at least as general as S),

[0048] (C2) X, slp|=k (ie., S'is “concise”), and

[0049] (C3)S'is as “precise” as possible, in the sense
that there does not exist another set of tree patterns

S" that satisfies the first two conditions and S"CS".

[0050] Clearly, the tree pattern aggregation problem may
not necessarily have a unique solution since it is possible to
have two sets S' and S" that satisfy the first two conditions

but S'ES" and S"ES'. Therefore, it is beneficial to devise a
measure to quantify the goodness of candidate solutions in
terms of both conciseness as well as preciseness.

[0051] With respect to conciseness, the present disclosure
considers minimal tree patterns that do not contain any
“redundant” nodes. More precisely, it is said that a tree
pattern p is minimized if for any tree pattern p' such that
p'=p, it is the case that |p|£|p'|. With respect to preciseness,
it can be shown that the containment relationship Con the
universe of tree patterns actually defines a lattice. In par-
ticular, the notions of upper bound and least upper bound are
of relevance to the aggregation problem and, therefore, they
are defined formally here.

[0052] An upper bound of two tree patterns p and q is a
tree pattern u such that pEu and qEu, i.e., for any XML tree
T, if T= or T=q then Tu. The least upper bound (LUB) of
p and q, denoted by p_u, is an upper bound u of p and q such
that, for any upper bound u' of p and g, uEu'. Once again, the
notion of LUBs is generalized to a set S of tree patterns. An
upper bound of S is a tree pattern U, denoted by SEU, such
that pEU for every peS. The LUB of S, denoted by S, is an
upper bound U of S such that for any upper bound U’ of S,
UEU".

[0053] Clearly, if p is an aggregate tree pattern for a set of
tree patterns S (i.e., SEp), then p is an upper bound of S.
Observe that, if p is the LUB of S, then p is the most precise
aggregate tree pattern for S. In fact, it can be shown that S
exists and is unique up to equivalence for any set S of tree
patterns; thus, it is meaningful to talk about US as the most
precise aggregate tree pattern.

[0054] Consider again the tree patterns in FIGS. 3A
through 3I. Observe that Py =p.; and since |p,|>|p|, pp is not
a minimized pattern. In fact, except for p,, shown in FIG.
3B, all the tree patterns in FIGS. 3A through 3I are
minimized patterns. Note that p Ep_ because the root node of
p.. does not have a tag-a child node; and p Ep, because there
exists no node in p, that is a parent node of both a tag-a-node
and a tag-c-node. Observe that p,Cp, and p.Epy; i.¢., Pd is an
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upper bound of p, and p.. However, ps=p,—p. since another
tree pattern, p,, exists which is an upper bound of p, and p,
such that p.Epy. Indeed, p.=p,_p. with |p.|<|p.|+|p.]- Note,
however, that the size of an LUB is not necessarily always
smaller than the size of its constituent patterns. For example,
Pu=PoPs but |py|>|p.|+[ps- Note that p, is an upper bound of
{Pa> o> Pe> P> P> P> Pi}-

[0055] This section is concluded by presenting some addi-
tional notation used herein. For a node v in a tree pattern p,
the set of child nodes of v in p is denoted by Child(v,p). A
partial ordering = is defined on node labels such that if x
and x' are tag names, then (1) x=*x'<// and (2) x=x' .iff x=x".
Given two nodes v and w, MaxLabel (v,w) is defined to be
the “least upper bound” of their labels label(v) and label(w)
as follows:

label(v) if label(v) = label(w),
Vi if (label(v) = //)
or (label(w) = /),

* otherwise.

MaxLabel(v, w) =

[0056] For example, MaxLabel (a,b)=* and MaxLabel
(*,/)=//. For notational convenience, anode v in a tree
pattern is referred to as an l-node if label(v)=l, and v is
referred to as a tag-node if label(v)e{/.,*,//}.

[0057] 3. Computing Precise Aggregates

[0058] In this section, a special case of our tree pattern
aggregation problem is considered. Namely, when the aggre-
gate set S' consists of a single tree pattern and there is no
space constraint. For this case, methods are described to
compute the most precise aggregate tree pattern (i.c., LUB)
for a set of tree patterns. Some of the methods given in this
section are also key components of a solution for the general
problem, which is presented in the next section.

[0059] Given two input tree patterns p and g, Method LUB
in FIG. 4A computes the most precise aggregate tree pattern
for {p,q} (i-e., the LUB of p and q). It traverses p and q
top-down and computes the tightest container sub-patterns
for each pair of sub-patterns p'=Subtree(v,p) and q'=Sub-
tree(w,q) encountered, where v and w are nodes in p and q,
respectively. The tightest container sub-patterns of p' and q'
are a set R of sub-patterns such that:

[0060] (1) R consists of container sub-patterns of p'
and ¢, ie., for any XML document T and any
element t in T, if (T,t)=p’ or (T,t)=q' then (T,t)=r for
each reR; and,

[0061] (2)R is tightest in the sense that for any other
set of container sub-patterns R' of p' and q' that
satisfies condition (1), any XML document T and any

element t in T, if (T,t)Fr for each reR then (T,t)=r for
all r'eR".

[0062] Intuitively, R is a collection of conditions imposed
by both p' and q' such that if T satisfies p' or ' at t, then T
also satisfies the conjunction of these conditions at t. It is
now shown how the LUB for p and q can be computed from
the tightest container sub-patterns. Let v, and w,__, be the
roots of patterns p and q, respectively. Note that a document
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T that satisfies p also satisfies, for each veChild(v,,,, p), the
restriction of p to the root node and only Subtree(v,p).
Consequently, a document T that satisfies p or g must also
satisfy the pattern x consisting of a root node (with label /.)
whose children are the tightest container sub-patterns for
each pair Subtree(v,p) and Subtree(w,q), where
veChild(v,.., p) and weChild(w,. ., q). This pattern X is thus
an LUB of p and q.

[0063] The main subroutine in the LUB computation
(Method LUB_SUB, shown in FIG. 4B) computes the
tightest container subpatterns of p' and q' as follows. If q'Cp’
(resp. p'EQ’), then p' (resp. q') is the tightest container
sub-pattern; otherwise, the tightest container sub-patterns
are a set {x,x',x"} of sub-patterns, which are defined in the
following manner. The root node of x is labeled with
MaxLabel(v,w) and the child subtrees of x are the tightest
container sub-patterns of each child subtree of p' and each
child subtree of q'. Intuitively, the root of x corresponds to
the roots of p' and q' (with a label equal to the least upper
bound of that of p* and q"). In other words, x preserves the
positions of the corresponding nodes in p' and q'. However,
this “position-preserving” generalization is generally not
sufficient since p' and q' may have common sub-patterns at
different positions relative to their roots. For example, p_ and
pe in FIGS. 3C and 3F, respectively, have a common
sub-pattern rooted at an a-node that has both b-child and a
c-child, but this pattern is located at different positions
relative to the roots of p, and p;. To capture these “off-
position” common sub-patterns, it is beneficial to compute x'
and x". The child subtrees of x' are the tightest container
sub-patterns of q' itself and each child subtree of p'; and the
label of the root node of x' is // to accommodate common
sub-patterns at different positions relative to the roots of p'
and q'. Similarly, the root node of x" has label //, and the
child subtrees of x" are the tightest container sub-patterns of
p' itself and each child subtree of q'.

root?

[0064] By computing the tightest container sub-patterns
recursively, the method computes the LUB of the input tree
patterns p and g. By induction on the structures of p and g,
the following result can be shown: Given two tree patterns
p and g, Method LUB (p,q) computes p..q.

[0065] Consider the following example. Given p_ and p; in
FIGS. 3C and 3F, respectively, Method LUB returns p,, (see
FIG. 3H), which is indeed p._p; To help explain the
computation of p,, the notation x,, is used to refer the n™
node (in some tree pattern) that is labeled “x”, where each
collection of nodes sharing the same label are ordered based
on their pre-order sequence. For example, in p,, the termi-
nology //; and //; is used to refer to the leftmost and
rightmost //-nodes, respectively.

[0066] Method LUB_SUB (invoked by Method LUB) first
extracts the “position reserving” tightest container sub-
patterns for Subtree (a,,p.) and Subtree (a, pg), which yields
the sub-pattern Subtree (a,, Ph) (in steps 9-11 of FIG. 4B).
Note that the root node of Subtree (a;, py) is labeled a
because both the root nodes of Subtree (a, p,) and Subtree
(a, pp are labeled a. The sub-patterns (a,, p.) and Subtree (b,
po however, have quite different structures and thus a
“position-preserving” attempt to extract their common sub-
patterns only yields Subtree (*;, p,) In particular, the com-
mon sub-pattern consisting of an a-node with both a b-child-
node and c-child-node is not captured by the above process
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because they occur at different positions relative to the root
nodes of Subtree (a,, p.) and Subtree (b, pg). To extract such
“off-position” common sub-patterns, Method LUB_SUB
compares with Subtree (a,, p.) with Subtree (b,p;) and
Subtree (c,p), as well as compares Subtree (a,pg) with
Subtree (a,,p.) (in steps 12-15 of FIG. 4B). Indeed, this
yields Subtree (//5, p,) which has a //-root since this common
sub-pattern occurs at different positions relative to the root
nodes of Subtree (a,, p.) and Subtree (a, py).

[0067] 1t should be mentioned that both Subtree (//;, py)
and Subtree (//,, py,) are also produced by the “off-position”
processing, as Method LUB_SUB recursively processes the
sub-pattern Subtree (a,,p.) with Subtree (b,P;) and Subtree
(c, py) respectively. Finally, the method removes the redun-
dant nodes in the result tree pattern by using a minimization
method (which will be explained shortly) to generate the
LUB p,.

[0068] 1t is straightforward to show that the LUB operator
“_”, considered as a binary operator, is commutative and
associative, i.e., pP;_pP,=p,—p; and p;(p._ps)=
(P1—P2)—ps. As a result, Method LUB can be naturally
extended to compute the LUB of any set of tree patterns.
Next, the details of the two auxiliary methods used in
Method LUB are explained.

[0069] Method LUB needs to check the containment of
tree patterns, which is implemented by Method CONTAINS
in FIG. 5A. Given two input tree patterns p and q, the
method determines if qCp. It maintains a two-dimensional
array Status, which is initialized with Statis[v,w]=null to
indicate that veNodes(p) and weNodes(q) have not been
compared; otherwise, Status[v, wle{true, false} such that
Status[v, w]=true if and only if Subtree (w,q)ESubtree(v,p).

Clearly, qEp if and only if Status[v
v _andw

root? Wroot]=true> Where
denote the root nodes of p and q, respectively.

root

[0070] The main subroutine in our containment method is
Method CONTAINS_SUB (see FIG. 5B). Abstractly, CON-
TAINS_SUB traverses p and q top-down and updates Status
[v, w] for each pair of nodes veNodes(p) and weNodes(q)
visited as follows. Let p' and q' denote Subtree(v,p) and
Subtree(w,q), respectively. If Status[v,w] has already been
computed (i.e., Status[v, w]=null), then its value is returned.
Otherwise, this method determines whether q'ep’, as follows.

If label(v)=//, then Status[v,w]=true iff label(w)=label(v)
and each child subtree of v contains some child subtree of w.
Otherwise, if label(v)=//, two additional conditions need to
be taken into account. This is because unlike a *-node or a
tag-name-node, //-node in a container tree pattern can also
be “mapped” to a (possibly empty) chain of nodes in a
contained tree pattern. For example, consider the tree pat-
terns py and pe in FIGS. 3D and 3F, respectively. Note that
P<Ep4, and the //-node in p, is not mapped to any node in p;
in the sense that p; would still be contained in p, if the
//-node in py is deleted. On the other hand, for the tree
patterns p, and p,, in FIGS. 3D and 3G, respectfully, pep,
and the //-node in p4 is mapped to both the *- and b-nodes
in p, in the sense that Subtree(*, p,)ESubtree(//, py) and
Subtree(b, p,)ESubtree(//, py). These two additional sce-
narios are handled by steps 10 and 12 in Method CON-
TAINS_SUB: step 10 accounts for the case where a //-node
(v itself) is mapped to an empty chain of nodes, and step 12
for the case where a //-node (v itself) is mapped to a
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nonempty chain. Note that in steps 8 and 12, the expression

P Vw' inChild(w, q) CONTAINS_SUB (x, W', Status) returns
false if Child(w,q)=¢.

[0071] By induction on the structures of p and g, the
following result can be shown: Given two tree patterns p and

g, Method CONTAINS (p,q) determines if qCp in O(|p||q|)
time.

[0072] The quadratic time complexity of our tree-pattern
containment method is due to, among other things, the fact
that each pair of sub-patterns in p and q is checked at most
once, because of the use of the Status array. To simplify the
discussion, subtle details have omitted from Method CON-
TAINS. These details involve tree patterns with chains of /-
and *-nodes. Such cases require some additional pre-pro-
cessing to convert the tree pattern to some canonical form,
but this does not increase our method’s time complexity.

[0073] To ensure that tree patterns are concise, identifica-
tion and elimination of “redundant” nodes are performed.
Given a tree pattern p, a minimized tree pattern p' equivalent
to p can be computed using a recursive method MINIMIZE.
Starting with the root of p, our minimization method per-
forms the following two steps to minimize the sub-pattern
Subtree(v,p) rooted at node v in p: (1) For any v', v"eChild

(v, p), if Subtree(v', p)ESubtree(v", p), then delete Sub-
tree(v', p) from Subtree(v, p); and, (2) For each v'eChild (v,
p) (which was not deleted in the first step), recursively
minimize Subtree(v', p). The complete details can be found
in C. Chan, et al., “Tree Pattern Aggregation for Scalable
XML Data Dissemination,” Bell Labs Tech. Memorandum
(2002), the disclosure of which is hereby incorporated by
reference.

[0074] 1t can be shown that Method MINIMIZE mini-
mizes any tree pattern p in O(Jp|*) time. It can also be shown
that for any minimized tree patterns p and p', p=p' iff p=p'
(i.e., they are syntactically equal).

[0075] Given the low computational complexities of
CONTAINS and MINIMIZE, one might expect that this
would also be the case for Method LUB. Unfortunately, in
the worst case, the size of the (minimized) LUB of two tree
patterns can be exponentially large. Implementation results,
however, demonstrate that the LUB method exhibits rea-
sonably low average case complexity in practice.

[0076] 4. Selectivity-Based Aggregation Methods

[0077] While the LUB method presented in the previous
section can be used to compute a single, most precise
aggregate tree pattern for a given set S of patterns, the size
of the LUB may be too large and, therefore, may violate the
specified space constraint k on the total size of the aggre-
gated subscriptions (Section 2.2). Thus, in order to fit
aggregates within the allotted space budget, the requirement
of a single precise aggregate is relaxed by permitting a
solution to be a set S'={p;, Po, - - - P} (instead of a single
pattern), such that each pattern qeS is contained in some
pattern p;eS'. Of course, it is beneficial that S' provide the
“tightest” containment for patterns in S for the given space
constraint (Section 2.2); that is, the number of XML docu-
ments that satisfy some tree pattern in S' but not S, is small.

[0078] A simple measure of the preciseness of S' is its
selectivity, which is essentially the fraction of filtered XML
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documents that satisfy some pattern in S'. Thus, an objective
is to compute a set S' of aggregate patterns whose selectivity
is very close to that of S. Clearly, the selectivity of tree
patterns is highly dependent on the distribution of the
underlying collection of XML documents (denoted by D). It
is, however, generally infeasible to maintain the detailed
distribution D of streaming XML documents for our aggre-
gation—the space requirements would be enormous!
Instead, an approach herein is based on building a concise
synopsis of D on-line (i.e., as documents are streaming by),
and using that synopsis to estimate tree-pattern selectivities.
At a high level, an illustrative aggregation method itera-
tively computes a set S' that is both selective and satisfies the
space constraint, starting with S'=S (i.e., the original set S of
patterns), and performing the following sequence of steps in
each iteration:

[0079] (1) Generate a candidate set of aggregate tree
patterns C consisting of patterns in S' and LUBs of
similar pattern pairs in S'.

[0080] (2) Prune each pattern p in C by deleting/
merging nodes in p in order to reduce its size.

[0081] (3) Choose a candidate pattern peC to replace
all patterns in S' that are contained in p. The candi-
date-selection strategy is based on marginal gains:
The selected candidate p is the one that results in the
minimum loss in selectivity per unit reduction in the
size of S' (due to the replacement of patterns in S' by

p)-

[0082] Note that the pruning step (step 2) above makes
candidate aggregate patterns less selective (in addition to
decreasing their size). Thus, by replacing patterns in S' by
patterns in C, this effectively tries to reduce the size of S' by
giving up some of its selectivity.

[0083] In the following subsections, an exemplary method
for computing S' is described in detail. First, an approach is
presented for estimating the selectivity of tree patterns over
the underlying document distribution, which is critical to
choosing a good replacement candidate in step 3 above.

[0084] 4.1 Selectivity Estimation for Tree Patterns

[0085] The document tree synopsis is now described. As
mentioned above, it is simply impossible to maintain the
accurate document distribution D (i.e., the full set of stream-
ing documents) in order to obtain accurate selectivity esti-
mates for our tree patterns. Instead, an exemplary approach
is to approximate D by a concise synopsis structure, which
is referred to herein as the document tree. A document tree
synopsis for D, denoted by DT, captures path statistics for
documents in D, and is built on-line as XML documents
stream by. The document tree essentially has the same
structure as an XML tree, except for two differences. First,
the root node of DT has the special label “/.”. Second, each
non-root node t in DT has a frequency associated with it,
denoted by freq(t). Intuitively, if 1,/1,/ . . . /1, is the sequence
of tag names on nodes along the path from the root to t
(excluding the label for the root), then freq(t) represents the
number of documents T in D that contain a path with tag
sequence 1,/1,/ . . . 1, originating at the root of T. The
frequency for the root node of DT is set to N, the number of
documents in D. As XML documents stream by, DT is
incrementally maintained as follows. For each arriving
document T, the skeleton tree Ty is first constructed for
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document T. In the skeleton tree Tg, each node has at most
one child with a given tag. Ty is built from T by simply
coalescing two children of a node in T if they share a
common tag. Clearly, by traversing nodes in T in a top-down
fashion, and coalescing child nodes with common tags, one
can construct T, from T in a single pass (using an event-
based XML parser). As an example, FIG. 6D depicts the
skeleton tree for the XML-document tree in FIG. 6A.

[0086] Next, T, is used to update the statistics maintained
in document tree synopsis DT as follows. For each path in
T, with tag sequence say 1,/1,/ . . . /1, let t be the last node
on the corresponding (unique) path in DT. We increment
freq(t). FIG. 6E shows the document tree (with node
frequencies) for the XML trees T,, T,, and T; in FIGS. 6A
to 6C. Note that it is possible to further compress DT by
using techniques similar to the methods employed by Aboul-
naga et al., “Estimating the Selectivity of XML Path Expres-
sions for Internet Scale Applications,” Proc. 27th Intl. Conf.
on Very Large Databases (VLDB 2001), the disclosure of
which is hereby incorporated by reference, for summarizing
path trees. The key idea is to merge nodes with the lowest
frequencies and store, with each merged node, the average
of the original frequencies for nodes in DT that were
merged. This is illustrated in FIG. 6F for the document tree
in FIG. 6E, and with the label “-” used to indicate merged
nodes. Due to space constraints, in the remainder of this
subsection, only solutions are presented to the selectivity
estimation problem using the uncompressed tree DT. How-
ever, the proposed methods can be easily extended to work
even when DT is compressed.

[0087] 1t should be noted that a selectivity estimation
problem for tree patterns differs from the work of Aboulnaga
in two important respects. First, in Aboulnaga, the authors
consider the problem of estimating selectivity for only
simple paths that consist of a //-node followed by tag nodes.
In contrast, here selectivities are estimated of general tree
patterns with branches, and *- or //-nodes arbitrarily distrib-
uted in the tree. Second, selectivity at the granularity of
documents is important herein, so a goal is to estimate the
number of XML documents that match a tree pattern;
instead, Aboulnaga addresses the selectivity problem at the
granularity of individual document elements that are dis-
covered by a path. It can be seen that these are two very
different estimation problems.

[0088] A sclectivity estimation procedure is now
described. Recall that the selectivity of a tree pattern p is the
fraction of documents T in D that satisfy p. By construction,
a DT synopsis gives accurate selectivity estimates for tree
patterns comprising a single chain of tag-nodes (i.e., with no
* or //). However, obtaining accurate selectivity estimates
for arbitrary tree patterns with branches, *, and // is, in
general, not possible with DT summaries. This is because,
while DT captures the number of documents containing a
single path, it does not store document identities. As a result,
for a pair of arbitrary paths in a tree pattern, it is generally
hard to determine the exact number of documents that
contain both paths or documents that contain one path, but
not the other.

[0089] An exemplary estimation procedure solves this
problem, by making the following simplifying assumption:
The distribution of each path in a tree pattern is independent
of other paths. Thus, selectivity is estimated of a tree pattern
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containing no // or * labels, simply as the product of the
selectivities of each root to leaf path in the pattern. For
patterns containing // or *, all possible instantiations are
considered for // and * with element tags, and then chosen
as a pattern selectivity the maximum selectivity value over
all instantiations. Selectivity estimation methodology is
illustrated in the following example.

[0090] Consider the problem of estimating the selectivities
of the tree patterns shown in FIGS. 6G to 61 using the
document tree shown in FIG. 6E. The total number of
documents, N, is 3. Clearly, the number of documents
satisfying pattern P; which consists of a single path, can be
estimated accurately by following the path in DT and
returning the frequency for the D-node (at the end of the
path) in DT. Thus, the selectivity of P, is 2/3 which is
accurate since only documents T, and T; satisfy P,. Esti-
mating the number of documents containing pattern P,,
however, is somewhat more difficult. This is because there
are two paths with tag sequences x/a/d/ and x/b/a/d in DT
that match p, (corresponding to instantiating // with x and
x/a). Summing the frequencies for the two d-nodes at the end
of these paths gives an answer of 4 which over-estimates the
number of documents satisfying p, (only documents T, and
T, satisfy p,). To avoid double-counting frequencies, one
can estimate the number of documents satisfying p, to be the
maximum (and not the sum) of frequencies over all paths in
DT that match p,. Thus, the selectivity of p, is estimated as
2/3.

[0091] Finally, the selectivity of p; is computed by con-
sidering all possible instantiations for // and *, and choosing
the one with the maximum selectivity. The two possible
instantiations for // that result in non-zero selectivities are X
and x/b, and * can be instantiated with either b, ¢ or d for
//=x, and c or d for //=x/b. Choosing //=x and *=c results in
the maximum selectivity since the product of the selectivi-
ties of paths x/a/c and x/a/d is maximum, and is equal to
(3/3)(2/3)=2/3.

[0092] Method SEL (depicted in FIG. 7), invoked with
input parameters v=v, ., (root of pattern p) and t=t,,, (root
of DT), computes the selectivity for an arbitrary tree pattern
p in O(|DT|-[p|) time. In the method, for nodes vep and teDT,
SelSubPat[v,t] stores the selectivity of the sub-pattern Sub-
tree(v,p) with respect to the subtree of DT rooted at node T.
This selectivity is estimated similar to the selectivity for
pattern P, except that now consider all instantiations of
Subtree(v,p) (obtained by instantiating // and * with element
tags) are considered, and the selectivity of each instantiation
is computed with respect to t as the root instead of the root
of DT. For instance, suppose that V is the a-node in p; (in
FIG. 6I), and t is the child a-node of the x-node in DT (in
FIG. 6E). Then, the selectivity of Subtree (v, p;) with
respect to t is essentially the product of the selectivity of
paths a/* and a/d with respect to node t, which is 1-(2/3).
Thus, SelSubPat[v, t]=2/3.

[0093] A goal is to compute SelSubPat[v, ,, t....]- For a
pair of nodes v and t, Method SEL computes SelSubPat[v,t]
from SelSubPat[] values for the children of v and t. Clearly,

if label(t)#label(v) (steps 3-4 of the method), then every
path in Subtree(v,p) begins with a label different from
label(t) and thus the selectivity of each of the paths is 0. If
label(t)=label(v) and v is a leaf (steps 5-6), then instantiate
label(v) (if label(v)=// or*), with label(t) giving a selectivity
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of freq(t)/N. On the other hand, if v is an internal node of p,
then in addition to instantiating label(v) with label(t), one
also needs to compute, for every child v, of v, the instan-
tiation for Subtree(v_,p) that has the maximum selectivity
with respect to some child t_ of t. Since SelSubPat[v_,t.] is
the selectivity of Subtree(v,, p) with respect to t_, the
product of max, chiaeor) SelSubPai[v,,t.] for the children
v, of v gives the selectivity of Subtree(v,p) with respect to t.
Finally, if label(v)=//, then // can be simply null, in which
case the selectivity of Subtree(v,p) with respect to t is
computed as described in step 11, or // is instantiated to a
sequence consisting of label(t) followed by label(t.), where
t. is the child of t such that the selectivity of Subtree(v,p)
with respect to t. is maximized (Step 13). Observe that, in
steps 8 and 13, if t has no children, then maxt&Chﬂd(t)DT){ .
.. } evaluates to 0.

[0094] 4.2 Tree Pattern Aggregation Method

[0095] A “greedy” heuristic method is now presented for
the tree pattern aggregation problem defined in Section 2.2
(which is, in general, an NP-hard clustering problem). As
described earlier, to aggregate an input set of tree patterns S
into a space-efficient and precise set, the method (Method
AGGREGATE in FIG. 8) iteratively prunes the tree patterns
in S by replacing a small subset of tree patterns with a more
concise upper-bound aggregate pattern, until S satisfies the
given space constraint. During each iteration, the method
first generates a small set of potential candidate aggregate
patterns C, and selects from these the (locally) “best”
candidate pattern, i.e., the candidate that maximizes the gain
in space while minimizing the expected loss in selectivity.

[0096] Candidate generation is now described. An exem-
plary process is described for generating the candidate set C
in steps 3-5 of Method AGGREGATE. To reduce the size of
individual candidate patterns of the form p or p_q, each
candidate is pruned by invoking Method PRUNE (details in
“Tree Pattern Aggregation for Scalable XML Data Dissemi-
nation”). Given an input pattern p and space constraint n,
Method PRUNE prunes p to a smaller tree pattern p' such

that pEp' and [p|=n. The method treats tag-nodes as more
selective than *- and //-nodes, and therefore tries to prune
away *- and //-nodes before the tag-nodes. Specifically, the
method first prunes the *- and //-nodes in p by (1) replacing
each adjacent pair of non-tag-nodes v,w with a single
//-node, if w is the only child of v, and (2) eliminating
subtrees that consist of only non-tag-nodes. If the tree
pattern is still not small enough after the pruning of the
nontag-nodes, start pruning the tag-nodes. There are two
ways to reduce the size of a tree pattern p by one node. The
first is to delete some leaf node in p, and the second is to
collapse two nodes v and w into a single //-node, where
label(v)=/- and Child(v,p)={w}. To help select a “good” leaf
node to delete (or, pair of nodes to collapse), make use of the
selectivity of the tag names. More specifically, use the
document tree synopsis DT to estimate the total number of
occurrences of a tag name in the document collection D, and
then choose the tags with higher total frequencies (which are
less selective) as candidates for pruning.

[0097] Candidate selection is now described. Once the set
of candidate aggregate patterns has been generated, some
criterion is beneficial for selecting the “best” candidate to
insert into S'. For this purpose, associate a benefit value with
each candidate aggregate pattern xeC, denoted by Ben-
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efit(x), based on its marginal gain; that is, define Benefit(x)

as the ratio of the savings in space to the loss in selectivity
of using x over {p|pEx,peS'}. More formally, if vt and

v, represent the root nodes of x, DT, and peS', then
Benefit(x) is equal to:

(2

pcx,pe S’

SELVs, 0> troot) = Ma%pcr pe 51 SEUV 00 Troor)

[0098] Note that the selectivity loss is computed by com-
paring the selectivity of the candidate aggregate pattern x
with that of the least selective pattern contained in it. This
gives a good approximation of the selectivity loss in cases
when the patterns p,qeS' used to generate x are similar and
overlap in the document tree DT. The candidate aggregate
pattern with the highest benefit value is chosen to replace the
patterns contained in it in S' (steps 6-7 of FIG. 8). Experi-
mental data relating to the present invention may be found
in C. Chan et al., “Tree Pattern Aggregation for Scalable
XML Data Dissemination,” The 28th Int’l Conf. on Very
Large Data Bases (2002), the disclosure of which is hereby
incorporated by reference.

[0099] Tt is to be understood that the embodiments and
variations shown and described herein are merely illustrative
of the principles of this invention and that various modifi-
cations may be implemented by those skilled in the art
without departing from the scope and spirit of the invention.
For example, the subscriptions could contain both tree
patterns and non-tree patterns. The various assumptions
made herein are for the purposes of simplicity and clarity of
illustration, and should not be construed as requirements of
the present invention.

We claim:
1. In a communication system, a method for information
dissemination, the method comprising the steps of:

providing a set of subscriptions, at least one of the set of
subscriptions comprising a tree pattern, wherein the
tree pattern comprises one or more interconnected
nodes having a hierarchy and adapted to specify con-
tent and structure of information; and

using the set of subscriptions to select information for

dissemination to one or more users.

2. The method of claim 1, wherein the at least one
subscription describes information the one or more users are
interested in receiving.

3. The method of claim 1, further comprising the step of
determining an aggregation from the set of subscriptions, the
aggregation comprising a set of aggregate patterns, wherein
the set of aggregate patterns is smaller than the set of
subscriptions, and wherein the step of using the set of
subscriptions to select information for dissemination further
comprises using the set of aggregate patterns to select the
information for dissemination to the one or more users.

4. The method of claim 1, wherein the information
comprises one or more documents defined using extensible
markup language (XML).
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5. The method of claim 3, wherein at least one of the
aggregate patterns and the tree pattern each is defined using
extensible markup language (XML).

6. The method of claim 3, wherein each aggregate pattern
and each subscription comprises a tree pattern having one or
more interconnected nodes having a hierarchy, and wherein
the set of aggregate patterns is smaller than the set of
subscriptions in that a number of aggregate patterns in the
set of aggregate patterns is smaller than a number of tree
patterns in the set of subscriptions and that a number of
nodes in the set of aggregate patterns is smaller than a
number of nodes in the set of subscriptions.

7. The method of claim 3, wherein the step of determining
an aggregation further comprises the step of determining the
aggregation from the set of subscriptions by using at least a
space constraint.

8. The method of claim 7, wherein the space constraint
comprises a predetermined number of bytes.

9. The method of claim 3, wherein the set of subscriptions
comprises a plurality of tree patterns, each of the tree
patterns comprising one or more interconnected nodes hav-
ing a hierarchy and adapted to specify content and structure
of information, and wherein the step of determining an
aggregation further comprises the step of determining a least
upper bound pattern for two of the plurality of tree patterns
in the set of subscriptions, the least upper bound pattern
chosen as an aggregate pattern.

10. The method of claim 9, wherein the two tree patterns
are a first tree pattern and a second tree pattern, and wherein
the step of determining a least upper bound pattern further
comprises the steps of:

if the first tree pattern is contained in the second tree
pattern, setting the least upper bound pattern to be the
first tree pattern;

if the second tree pattern is contained in the first tree
pattern, setting the least upper bound pattern to be the
second tree pattern;

traversing the first and second tree patterns and computing
a tightest container pattern by:

computing a position-preserving tightest container pat-
tern by finding common sub-patterns;

computing an off-position tightest container pattern by
finding common sub-patterns; and

constructing the tightest container pattern by taking a
union of the position-preserving tightest container
pattern and the off-position tightest container pattern,

wherein the tightest container pattern is used as the least

upper bound pattern.

11. The method of claim 9, wherein the step of determin-
ing a least upper bound pattern for two of the plurality of tree
patterns further comprises the steps of determining a tightest
container pattern for the two tree patterns and minimizing
the tightest container pattern to create a minimal pattern,
wherein the minimal pattern is used as the least upper bound
pattern.

12. The method of claim 3, wherein the set of subscrip-
tions comprises a plurality of tree patterns, wherein each tree
pattern in the set of subscriptions comprises one or more
interconnected nodes having a hierarchy and adapted to
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specify content and structure of information, and wherein
the step of determining an aggregation further comprises the
steps of:

designating a candidate set of tree patterns to be the
plurality of tree patterns;

performing the following steps:

identifying a set of candidate aggregate patterns from
the plurality of tree patterns and similar tree patterns
determined from the candidate set of tree patterns;

pruning each candidate aggregate pattern by deleting or
merging nodes;

selecting a chosen tree pattern from the candidate
aggregate patterns having a predetermined marginal
gain; and

replacing all tree patterns, in the candidate set of tree
patterns, that are contained in the chosen tree pattern
by the chosen tree pattern.

13. The method of claim 12, wherein the marginal gain is
determined by a benefit value of a tree pattern.

14. The method of claim 13, wherein the candidate set of
tree patterns occupies a space and wherein the benefit value
is determined from a ratio of savings in the space for a
corresponding tree pattern to a loss in selectivity for the
corresponding tree pattern.

15. The method of claim 14, wherein the selectivity is
determined by sampling matching of information to candi-
date patterns.
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16. In a communication system, an apparatus for provid-
ing information dissemination, the apparatus comprising:

a memory; and
at least one processor, coupled to the memory;
the apparatus operative:

to provide a set of subscriptions, at least one of the set of
subscriptions comprising a tree pattern, wherein the
tree pattern comprises one or more interconnected
nodes having a hierarchy and adapted to specify con-
tent and structure of information; and

to use the set of subscriptions to select information for
dissemination to one or more users.
17. An article of manufacture for providing information
dissemination, the article of manufacture comprising:

a machine readable medium containing one or more
programs which when executed implement the steps of:

providing a set of subscriptions, at least one of the set of
subscriptions comprising a tree pattern, wherein the
tree pattern comprises one or more interconnected
nodes having a hierarchy and adapted to specify con-
tent and structure of information; and

using the set of subscriptions to select information for
dissemination to one or more users.



