US 20040010752A1

a2 Patent Application Publication o) Pub. No.: US 2004/0010752 A1l

a9 United States

Chan et al.

43) Pub. Date: Jan. 15, 2004

(54) SYSTEM AND METHOD FOR FILTERING
XML DOCUMENTS WITH XPATH
EXPRESSIONS

(75) Inventors: Chee-Yong Chan, Berkeley Heights, NJ

(US); Pascal A. Felber, Lausanne
(CH); Minos N. Garofalakis, Chatham
Township, NJ (US); Rajeev Rastogi,
Chatham, NJ (US)

Correspondence Address:

HITT GAINES P.C.

P.O. BOX 832570
RICHARDSON, TX 75083 (US)

(73) Assignee: Lucent Technologies Inc., Murray Hill,

(21) Appl. No.: 10/191,140

210

\ = /fafalblc/*/a/b

30— p2 falb[cle]/* bicid
= *

> p3 = fa/bc/*/d)/bic

33 p4 = flc/bilc/dr**/d

340

@é
b

(22) Filed: Jul. 9, 2002

Publication Classification

(51) Int. CL7 oo GOGF 15/00
(52) US.Cl oo 715/513
(7) ABSTRACT

A system for, and method of, filtering an XML document
with XPath expressions and a selective data dissemination
system incorporating the system or the method. In one
embodiment, the filtering system includes: (1) a tree builder
that builds a document data tree for the XML document and
an XPath expression tree based on substrings in the XPath
expressions and (2) a tree prober, associated with the tree
builder, that employs the XPath expression tree to probe the
document data tree and obtain matches with the substrings.
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Algorithm SEARCH (D, ST, T )
Input: D is an input XML document. (ST, T') is an XTrie index.
Output: R is the set of XPEs that matches D.
1) Initialize R to be empty;
2) Initialize Node[i] =root node of T" for i =0 to Lmgz;
3) LetBbea|ST| X Liax integer-array with all values initialized to 0;
4) Initialize £ = 0; // £ is the current document level
5) Initialize NV to be the root node of T'; // N is the current trie node
6) repeat '
7 if (a start-tag ¢ is parsed in D) then
8) L=£0+1;
9 while ((there is no edge labeled ¥’ from N') and
(V is not the root node of T°)) do
10) N = B(N);
11) if (there is an edge labeled 'Y’ from N to N/ in T') then
12) Node[f] = N = N/;
13) while (N is not the root node) do
14) if (a(N') > 0) then
15) R = R U MATCH-SUBSTRING(ST, B, a(N'), £);
16) N' = B(N');
17)  elseif (an end-tag is parsed in D) then
18) Reset B[z, €] to 0 fori =1to |ST|;
19) Node[f] = root node of T';
20) {=£-1;
21) N = Nodel{);
22) until (D has been completely parsed);
23)return R;

Figure 4
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Algorithm MATCH-SUBSTRING (ST, B, r, {)

Input: ST is the substring-table of an XTrie index. B is a 2-dim.
integer-array. r refers to the fi rst row in S7" that
corresponds to.some substring that is matched at level £,

Output:  Set of matching XPEs.

1) Initialize R to be empty;

2) while (r # 0) do-

3) 7' = ST[r].ParentRow;

4) Initalize match = false;

5) if (*' == 0) then

6) if (¢ € ST[r].RelLevel) then

p) Blr, g =1;

8) if (ST[r]. NumChild == 0) then

9) match = true;

10)  else

11) if (3¢ € [1,£— 1] such that £ — ¢ € ST[r].RelLevel
and B[r’, #'] = ST'[r].Rank) then

12) B [1‘, E] =1;

13) if (ST'[r].NumChild == 0) then

14) match = PROPAGATE-UPDATE(ST, B, T, £);

15)  if (match) then

16) Insert the id. of the XPE corrp. to row r into R;

17)  r = ST[r].Next;

I18) return R;

Figure 5
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Algorithm PROPAGATE-UPDATE (ST, B, r, £)
Input: ST is the substring-table of an XTrie index.
B is a 2-dimensional integer-array. r refers to a row in
ST that corresponds to some substring s of p
for which there is a subtree-matching of s at level £.
Output; Returns true if there is a matching of p; false otherwise.
1) v’ = ST[r].ParentRow;
2) [lmin,fmaz] = ST[r].RelLevel;
3) if (Ema,w == OO) then
4) [Efmina elmaw] = [I,Z - gmin];
5) else
6) [glmin) Elma:c] = [E — bmin, € — Emin]§
7) Initialize match = false;
8) Initialize &/ = & maz;
9) while (natch == false) and (¢’ € [¢' in, & maz]) do
10)  if (B[r', ] == ST[r].Rank) then

11) Blr', ] = B[, ']+ 1;

12) if (B[+',£'] == ST[r'].NumChild + 1) then

13) if (ST[r'].ParentRow == 0) then

14) match = true;

15) else

16) match = PROPAGATE -UPDATE(ST, B, v/, £);

17) ¥ =4--1,;

18)if (maitch == false) and ({0 == o) then

19) fori=1tof—1do . '

20) if (B[r,:] > 0) then Blr,i] = ST[r].NumChild + 1,
21) return match;

Figure 6
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SYSTEM AND METHOD FOR FILTERING XML
DOCUMENTS WITH XPATH EXPRESSIONS

TECHNICAL FIELD OF THE INVENTION

[0001] The present invention is directed, in general, to
systems for processing markup languages and, more spe-
cifically, to a system and method for filtering Extensible
Markup Language (XML) documents with XPath expres-
sions.

BACKGROUND OF THE INVENTION

[0002] The exploding volume of information (e.g., stock
quotes, news reports, advertisements) made available on the
Internet has fueled the development of a new generation of
applications based on selective data dissemination, where
specific data is selectively relayed to a large number (e.g.,
millions) of distributed clients. This trend has led to the
emergence of novel middleware architectures that asynchro-
nously propagate data from a set of publishers (i.e., data
generators) to a large number of widely dispersed subscrib-
ers (i.e., data consumers) who have pre-registered their
interest in specific information items (A. Carzaniga, D.
Rosenblum and A. Wolf. “Design and Evaluation of a
Wide-Area Event Notification Service,” ACM Transactions
on Computer Systems, 19(3): 332-383, August 2001. In
general, such publish-subscribe architectures are imple-
mented using a set of networked servers that selectively
propagate relevant messages to the consumer population,
where message relevance is determined by subscriptions
representing the consumers’ interests in specific messages.

[0003] The majority of existing publish/subscribe systems
have typically relied on simple subscription mechanisms,
such as keyword or “bag of words” matching, or simple
comparison predicates on attribute values. For example,
prior art systems such as “Gryphon” (M. K. Aguilera, R. E.
Strom, D. C. Sturman, M. Astley and T. D. Chandra,
“Matching Events in a Content-based Subscription System”
In Proc. of ACM PODC, pages 53-61, Atlanta, Ga., May
1999), “Siena” (Carzanaga, et al., supra), and “Elvin” (B.
Segall, D. Arnold, J. Boot, M. Henderson and T. Phelps,
“Content Based Routing with Elvin4,” In AUG2K, Can-
berra, Australia, June 2000, all incorporated herein by ref-
erence), all use filters in the form of a set of attributes and
simple arithmetic or Boolean comparisons on the values of
these attributes.

[0004] The recent emergence of XML (“Extensible
Markup Language (XML) 1.0, 2 Edition,” http:/
www.w3.org/TR/REC-xml/, October 2000, incorporated
herein by reference) as a standard for information exchange
on the Internet has led to an increased interest in using more
expressive subscription/filtering mechanisms that exploit
both the structure and the content of published XML docu-
ments. In particular, the XPath language (“XML Path Lan-
guage (Xpath) 1.0.” http://www.w3.org/TR/xpath/, Novem-
ber 1999, incorporated herein by reference), which is a
World Wide Web Consortium (W3C) proposed standard for
addressing parts of an XML document, has been adopted as
a filter-specification language by a number of recent XML
data dissemination systems (e.g., “XFilter” (M. Altinel and
M. Franklin, “Efficient Filtering of XML Documents for
Selective Dissemination of Information,” In Proc. Of
VLDB, pages 53-64, September 2000) and Intel’s NetStruc-
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ture XML Accelerator (“Intel NetStructure XML Accelera-
tors,”  http://www.intel.com/netstructure/products/xml_ac-
celerators.htm, 2000)).

[0005] Given the increased complexity of structural,
XPath-based data filters, effectively identifying the subscrip-
tions that match an incoming XML document poses a
difficult and important research challenge. More specifically,
the key problem faced in XPath-based data-dissemination
systems can be abstracted as the following XPath Expres-
sion (XPE) Retrieval problem: “Given a large collection P of
XPEs and an input XML document D, find the subset of
XPEs in P that match D.”

[0006] Various work has been performed on the filtering of
data using “flat patterns” in the form of conjunctions of
simple predicates on data attributes, including research on
rule/trigger processing systems (E. N. Hanson and M.
Chaabouni and C. H. Kim and Y. W. Wang, “A Predicate
Matching Algorithm for Database Rule Systems,” In Proc.
Of ACM SIGMOD, pages 271-280, Atlantic City, N.J., May
1990; and E. N. Hanson, C. Carnes, L. Huang, M. Konyala,
L. Noronha, S. Parthasarathy, J. B. Park and A. Vernon,
“Scalable Trigger Processing,” In Proc. of IEEE ICDE,
pages 266-275, Sydney, Australia, March 1999, both incor-
porated herein by reference) and publish-subscribe systems
(Aguilera, et al., supra; F. Fabret. H. Jacobsen, F. Llirbat, K.
Ross and D. Shasha, “Filtering Algorithms and Implemen-
tations for Very Fast Publish/Subscribe Systems,” In Proc. of
ACM SIGMOD, pages 115-126, Santa Barbara, Calif., May
2001.; and B. Nguyen, S. Abiteboul, G. Cobena and M.
Preda, “Monitoring XML data on the Web,” In Proc. of
ACM SIGMOD, pages 437-448, Santa Barbara, Calif., May
2001, all incorporated herein by reference). However, for
reasons that will be set forth in greater detail below, these
prior art schemes are wasteful of computing resources. In
contrast, the XTrie scheme of the present invention focuses
on filtering XML documents based on tree patterns (based
on XPath expressions), which demands far more sophisti-
cated indexing techniques, since tree patterns consist of both
data contents as well as structure.

[0007] Accordingly, what is needed in the art is a system
and method for effectively addressing this problem.

SUMMARY OF THE INVENTION

[0008] To address the above-discussed deficiencies of the
prior art, the present invention provides a system for, and
method of, filtering an XML document with XPath expres-
sions and a selective data dissemination system incorporat-
ing the system or the method. In one embodiment, the
filtering system includes: (1) a tree builder that builds a
document data tree for the XML document and an XPath
expression tree based on substrings in the XPath expressions
and (2) a tree prober, associated with the tree builder, that
employs the XPath expression tree to probe the document
data tree and obtain matches with the substrings.

[0009] The present invention therefore introduces a novel
index structure, termed XTrie, that supports the efficient
filtering of XML documents based on XPath expressions.
The XTrie index structure offers several novel features that
make it especially attractive for large-scale publish/sub-
scribe systems. First, XTrie is designed to support effective
filtering based on complex XPath expressions (as opposed to
simple, single-path specifications). Second, the XTrie struc-
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ture and algorithms are designed to support both ordered and
unordered matching of XML data. Third, by indexing on
sequences of element names organized in a trie structure and
using a sophisticated matching algorithm, XTrie is able to
both reduce the number of unnecessary index probes as well
as avoid redundant matchings, thereby providing extremely
efficient filtering. The experimental results over a wide range
of XML document and XPath expression workloads dem-
onstrate that the XTrie index structure outperforms earlier
approaches by wide margins.

[0010] In one embodiment of the present invention, the
matches are ordered matches. The matches can alternatively
be unordered.

[0011] In one embodiment of the present invention, the
tree builder comprises an event-based parsing interface.
Those skilled in the pertinent art are familiar with such
interfaces and their advantageous use in parsing streaming
data.

[0012] In one embodiment of the present invention, the
substrings are minimal decompositions of the XPath expres-
sions. However, the substrings may be non-minimal decom-
positions of the XPath expressions.

[0013] In one embodiment of the present invention, the
tree prober parses the document data tree with the XPath
expression tree to detect matching substrings in the XML
document and iterates, for each of the matching substrings,
through all instances of the matching substrings in the
document data tree to determine whether the matching
substrings are non-redundant. The present invention intro-
duces a method of searching an XML document that carries
out steps analogous to those performed by the tree prober of
this embodiment.

[0014] In one embodiment of the present invention, the
tree builder builds a substring table for the XPath expression
tree. The structure and function of one embodiment of the
substring table will be set forth in detail in the Detailed
Description that follows.

[0015] In one embodiment of the present invention, the
tree prober probes the substring table only for matching
substrings that appear as a leaf substring in one of the XPath
expressions. However, the tree prober may be more “eager”
than this. Two embodiments, one “eager” and one “lazy,”
will be set forth in greater detail below.

[0016] The foregoing has outlined, rather broadly, pre-
ferred and alternative features of the present invention so
that those skilled in the art may better understand the
detailed description of the invention that follows. Additional
features of the invention will be described hereinafter that
form the subject of the claims of the invention. Those skilled
in the art should appreciate that they can readily use the
disclosed conception and specific embodiment as a basis for
designing or modifying other structures for carrying out the
same purposes of the present invention. Those skilled in the
art should also realize that such equivalent constructions do
not depart from the spirit and scope of the invention in its
broadest form.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] For a more complete understanding of the present
invention, reference is now made to the following descrip-
tions taken in conjunction with the accompanying drawings,
in which:
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[0018] FIGS. 1A and 1B together illustrate unordered and
ordered matching in exemplary XML document trees;

[0019] FIGS. 2A-2C together illustrate substring decom-
positions in exemplary XPath expression trees;

[0020] FIG. 3 illustrates an exemplary XPath expression
tree;
[0021] FIG. 4 illustrates an exemplary SEARCH software

algorithm to search an XPath expression tree;

[0022] FIG. 5 illustrates an exemplary MATCH-SUB-
STRING software algorithm to process a matched substring;

[0023] FIG. 6 illustrates an exemplary PROPAGATE-
UPDATE software algorithm to update B whenever a non-
redundant subtree-matching of a non-root substring is
detected;

[0024] FIG. 7 illustrates an exemplary selective data dis-
semination system constructed according to the principles of
the present invention; and

[0025] FIGS. 8A-8D together illustrate experimental per-
taining to one embodiment of a system constructed accord-
ing to the principles of the present invention.

DETAILED DESCRIPTION

[0026] The key technique for expediting XPE retrieval is
to construct an appropriate index structure on the given
collection of XPE subscriptions. Since XPEs can, in general,
represent structurally complex tree patterns, building index
structures for efficient XPE retrieval is a non-trivial problem.
Furthermore, simplistic approaches (e.g., building an index
based solely on the element names contained in the XPEs)
can result in very ineffective retrieval schemes that incur a
lot of unnecessary checking of (irrelevant) XPE subscrip-
tions.

[0027] As stated above, the present invention is directed,
among other things, to a novel index structure, termed
“XTrie,” that supports the efficient filtering of XML docu-
ments based on XPath expressions. The XTrie index struc-
ture offers several novel features that make it especially
attractive for large-scale publish/subscribe systems.

[0028] First, XTrie is designed to support effective filter-
ing based on complex XPath expressions (as opposed to
simple, single-path specifications). Second, the XTrie struc-
ture and algorithms are designed to support both ordered and
unordered matching of XML data. Note that ordered match-
ing is an important requirement for many applications (e.g.,
document processing) that has typically been overlooked in
existing data dissemination systems. Third, by indexing on
sequences of element names (i.e., substrings) organized in a
trie structure and using a sophisticated matching algorithm,
XTrie is able to both reduce the number of unnecessary
index probes as well as avoid redundant matchings, thereby
providing extremely efficient filtering.

[0029] Indexing on a set of substrings (rather than indi-
vidual element names) in the XPEs is an important aspect of
the approach that enables both the number and the cost of the
required index probes to be reduced or even minimized. The
underlying realization is that a sequence of element names
has a lower probability (compared to a single element name)
of matching in an input document, resulting in fewer index
probes. In addition, since fewer indexed XPEs are associated
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with a “longer” substring key, each index probe is likely to
be less time-consuming, as well.

[0030] To support on-line filtering of streaming XML data,
the illustrated embodiment of the XTrie indexing scheme of
the present invention is based on the conventional, event-
based SAX parsing interface (D. Megginson, “SAX: A
Simple API for XML,” http://www.megginson.com/SAX/,
incorporated herein by reference), to implement XML data
filtering as the XML document is parsed. Alternatively, the
DOM parsing interface (“Document Object Model (DOM)
Level 1 Specification (Second Edition), Version 1.0,” http://
www.w3.org/TR/REC-DOM-Level-1/, incorporated herein
by reference) could be used. DOM requires a main-memory
representation of the XML data tree to be built before
filtering can commence. The only other convention SAX-
based index structure for the XPE retrieval problem appears
to be “XFilter” (Altinel, et al., supra), which relies on
indexing the XPE element names using a hash table struc-
ture. By indexing on substrings rather than individual ele-
ment names, our XTrie index provides a much more effec-
tive indexing mechanism than XFilter. A further limitation
of XFilter is that its space requirement can grow to a very
large size as an input document is parsed, which can also
increase the filtering time significantly. Experimental results
over a wide range of XML document and XPath expression
workloads validate XTrie’s operation, demonstrating that
the XTrie index structure significantly outperforms XFilter
(by factors of up to 4).

[0031] XPath Expressions (XPEs) and XPE-trees. An
XML document comprises a hierarchically nested structure
of elements, starting with a root element; sub-elements of an
element can themselves be elements and can also contain
character data (i.e., text) and attributes. Elements can be
nested to any depth and the scope of an element in the XML
document is defined by a start-tag and an end-tag. The Xpath
language treats XML documents as a tree of nodes (corre-
sponding to elements) and offers an expressive way to
specify and select parts of this tree. XPath expressions
(XPEs)are structural patterns that can be matched to nodes
in the XML data tree. The evaluation of an XPE yields an
object whose type can be a node-set, a boolean, a number,
or a string. For the XPE retrieval problem, an XML docu-
ment matches an XPE when the evaluation result is a
non-empty node set.

[0032] The simplest form of XPEs specify a single-path
pattern, which can be either an absolute path from the root
of the document or a relative path from some known location
(ie., “context node”). A path pattern is a sequence of one or
more “location steps.” In its basic form, a location step
specifies a node name (ie., an element name), and the
hierarchical relationships between the nodes are specified
using parent-child(“/”) operators (i.e., at adjacent levels) and
ancestor-descendant(“//”) operators (i.e., separated by any
number of levels). For example, the XPE /a/b//c selects all
¢ element descendants of all b elements that are direct
children of the root element a in the document. XPath also
allows the use of a wildcard operator (“*”) to match any
element name at a location step.

[0033] Each location step can also include one or more
predicates to further refine the selected set of nodes. Predi-
cate expressions are enclosed by “[” and “]” symbols. The
predicates can be applied to the text or the attributes of the
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addressed elements, and may also include other path expres-
sions. Any relative paths in a predicate expression are
evaluated in the context of the element nodes addressed in
the location step at which they appear. For example, the XPE
/a[b[@x2100)/c]/*/d specifies a tree pattern starting at the
root element a with two child “branches” b/c and */d such
that the element b has an attribute x with a value equal to or
greater than 100.

[0034] The tree pattern specified by an XPE can be
represented by an ordered rooted tree, where each node is
labeled with an element name (prefixed by either “/” or «//”
followed by an optional sequence of one or more “*/”). The
ordering of the child nodes for each parent node is based on
their order of appearance in the XPE. Such a tree represen-
tation of an XPE is referred to as an “XPE-tree.”

[0035] Unordered and Ordered XPE Matchings. Before
describing the two modes of matching XPEs, some new
definitions and notation should be introduced. Given two
nodes v and v' in a rooted tree T , v“precedes™' in a
post-order traversal of T, denoted by v< ., V', if v is visited

before v' in a post-order traversal of T.

[0036] Each node d in an XML document tree is associ-
ated with a level number, denoted by level(d), where lev-
el(d)=1 if d is the root element; otherwise, level(d)=lev-
el(d)+1, where d' is the parent node of d.

[0037] Each node t in an XPE-tree T is associated with a
relative level (with respect to its parent node in T), which is
defined to be at least k, denoted by rellevel(t)=[k,o], if the
label of t is prefixed with “//” followed by (k-1) “*;
otherwise, if the label of t is prefixed with “/” followed by
(k-1) “*”, then the relative level of t is defined to be exactly
k, denoted by relLevel(t)=[k, k].

[0038] Consider an XPE-tree T with the set of nodes {t,,
tr, - - - »mp and an XML document tree D. A node t; in T
“matches” at a node d in D if the element name of t; is equal
to that of d. In the unordered matching model, where T is
treated as an unordered tree, T matches D if a set of m nodes
{d,,d,, ... ,d_} exists in D such that (1) for each node t; in
T, t; matches at d;, and (2) for each child node t; of a node
t; in T, d; is a descendant of d; such that level(d;)-
level(d;)erelLevel(t;). As an example, consider the XPE-tree
T of p=//a//b[*/c]/d 100 in FIG. 1A, where the label and
relative level of each node are indicated on its left and right,
respectively; and the XML document tree D 110 in FIG. 1B,
where the subscripts indicate the order in which the nodes
are parsed (ignore parenthetical annotations for now). Note
that T 100 matches D 110 with //a,//b,/*/c, and d matching
at a,, by, ¢, and d-, respectively.

[0039] In addition to the model of unordered matchings,
Xpath also allows the order of matching to be explicitly
specified. Consider again the XPE-tree in FIG. 1A for p. If
it is desired to indicate that the “branch” */C 102 must match
in the document before the “branch” d 104, this can be
expressed using the XPE p'=//a//b/*[following-sibling::d]/c.
Referring again to FIG. 1, if the positions of the two
subtrees rooted at e5 112 and d, 114 in D 110 are swapped,
then p' would not match D 110 while p would still match D
110. In the ordered matching model, where T 100 is treated
as an ordered tree, T 100 matches D 110 if (1) T 100 matches
D 110 in the unordered matching model, and (2) for each
pair of child nodes t; and t, of each internal node in T 100,
t=< o b in Tiff d<_ . dy in D 110.

j post ] post
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[0040] Note that hybrid matchings of XPEs, which
involve both unordered as well as ordered matchings, are
also possible. Due to space constraints, the present discus-
sion shall focus on only ordered matchings of XPEs that do
not contain any attributes in the rest of this paper. Details on
handling attributes as well as unordered and hybrid match-
ings are given in C. Y. Chan, P. Felber, M. Garofalakis, and
R. Rastogi, Efficient Filtering of XML Documents with
XPath Expressions, Technical report, Bell Labs., June 2001
(incorporated herein by reference).

[0041] XPE Decompositions and Matchings

[0042] This section describes the mechanisms employed
in the XTrie index for decomposing XPEs into sequences of
XML element names (i.e., substrings) and defines several
important concepts for matching based on substring trees
that play a key role in the XTrie indexing structure and
matching algorithms.

[0043] Substring Decompositions.

[0044] Given an XPE p, a sequence of element names
s=tt, ..., is defined to be a substring of p if s is equal to
the concatenation of the element names of the nodes along
a path <v,,v,, . . . v > in the XPE-tree of p, such that each
v, is the parent node of v,,,(1=i<n) and the label of each v,
(except perhaps for v,) is prefixed only by “/” . In other
words, each pair of consecutive element names in a sub-
string of p is separated by a parent-child (“/”) operator. We
use Path(s) to denote the path of nodes in the XPE-tree of p
that defines the substring s. As an example, consider the XPE
p=/a/b[c/d/fe]g//e/f)//*/*/e/f 200 whose XPE-tree is
depicted in FIG. 2A. The set of substrings of p 200 includes
abg, bed, ef and b; on the other hand abge, gef, and bef are
not substrings of p 200, since they involve an intermediate
element name (i.e., ¢) that is not prefixed by “/”.

[0045] A sequence of substrings S=<s,,S,, . . . ,8,> of an
XPE p is said to be a “substring decomposition” of p 200 if
each s,eS is a substring of p 200 and each node t; in p’s
XPE-tree is contained in Path(s;) for some s,eS. The ordering
of the substrings in S is fixed based on the order in which
they would be matched in an ordered matching of p 200; i.c.,
s; should be matched before s;, ;. A substring decomposition
S is a “minimal decomposition” of p if each substring s; of
S is of maximal length; that is, another longer substring in
p’s XPE-tree that contains s; does not exist. A minimal
decomposition of p 200 therefore comprises the smallest
possible number of substrings among all possible decom-
positions of p 200. FIGS. 2A and B show two possible
substring decompositions 200, 210, respectively, for the
example XPE p 200, where each dashed region encloses a
path of nodes defining a substring. Note that S, is the
(unique) minimal decomposition of p 200.

[0046] The XTrie index relies on substring decomposi-
tions for installing XPEs into the indexing structure. The
choice of a specific class of substring decompositions
impacts both the space and performance of the index.
Though all substring decompositions fall within the broad
scope of the present invention, minimal decompositions, in
particular, have two important performance advantages.

[0047] First, since longer substrings have a lower prob-
ability of being matched in the input XML document, the
maximal-length substrings chosen in a minimal decompo-
sition generally result in fewer index probes. Second, since
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fewer XPEs are associated with a longer substring, the cost
of each index probe is generally lower with minimal decom-
positions. On the other hand, using only a minimal decom-
position for an XPE can result in problems when checking
for an unordered matching. For example, consider again the
minimal decomposition S, in FIG. 2A, where s,=abcd , s,=¢
, S3=abg, s,=ef, and ss=ef. Since “ab” is part of s, and s, but
not part of s, for unordered matching, using only S, would
fail to detect a matching of p when s matches after “ab” has
been matched but before s; and s; are matched.

[0048] Intuitively, to avoid such problems, the minimal
decomposition of an XPE should be enriched so that it
“takes note” of the branching nodes in the XPE-tree. The
XTrie index accomplishes this through the use of simple
XPE decompositions. Formally, a substring decomposition
S is said to be a simple decomposition of an XPE p 200 if
S can be partitioned into two sequences S; and S,, where: (1)
S, is the minimal decomposition of p 200; and, (2) S,
consists of one substring s for each branching node v in p’s
XPE-tree, such that s is the maximal substring in p 200 with
v as its last node and s is not already listed in S;. As an
example, the decomposition S, depicted in FIG. 2B is the
simple decomposition of the example XPE p 200; note that
S, simply adds the substring ab (b is a branching node) to the
minimal decomposition S,. Also, note that, for a single-path
XPE, its simple decomposition is equal to its minimal
decomposition.

[0049] The substrings of the simple decomposition of p;
can be organized into a unique rooted tree, referred as the
“substring-tree” of p;, as follows. Let S;=<s; ;8;,, . . .
denote the simple decomposition of p;, where |p;| denotes the
number of substrings in the simple decomposition of p;.
Then, the “root” substring is s, ;, and the “parent” substring
of s;;, where j>1, is s, (or equivalently, s;; is the “child”
substring of's; ,_ if either (1) Path(s;, ) is a prefix of Path(s, ;),
or (2) the last node of Path(s; ,) is the parent node of the first
node of Path(s; ;) in the XPE-tree of p;. The ordering among
sibling sub-strings is based on their ordering in S;. As an
example, FIG. 2C shows the substring-tree for the simple
decomposition in FIG. 2B. A substring that has no child
substrings is called a leaf substring. A substring s; ; is said to
be a “descendant” of another substring s, ,, if either s; , is the
parent substring of s, ;, or the parent substring of s;; is a
descendant of s; ;.. Similarly, s; ,, is said to be an “ancestor”
of s;; if s;; is a descendant of s; ;. Finally, the “rank” of a
substring s; ; is defined to be equal to k if s; is the k™ child
of its parent substring; the rank of the root substring is 1.

5Sifpi>

[0050] The notion of relative level that was defined for
nodes in XPE-trees will now be extended to substrings.
Informally, the relative level of a substring s refers to the
relative difference in levels between the last elements of s
and its parent substring in a matching. More formally,
consider a substring s of an XPE p (with parent substring s"),
and let t=<t,t,, . . . ,t > be the longest suffix of Path(s) such
that t, ¢ Path(s"). Let relLevel(t,)=[1;,u;] for 1=i=n, and let k
denote
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[0051] Then the “relative level” of s is defined to be at
least k, denoted by relLevel(s)=[k,®], if max; =;=,{u;}=0;
otherwise, it is defined to be exactly k, denoted by rell.ev-
el(s)=[k,k].

[0052] Matching with Substrings.

[0053] Consider an XML document tree D, and an XPE p,
with XPE-tree T; and simple decomposition <s; ;,s;,, . . .
Sifp, /> Since each substring s; ; corresponds to some path of
nodes Path(s; ;) in T;, the definition of matching for nodes
can be extended to substrings as follows: s;; matches at a
node d in D (or a matching of s; ; occurs at d in D) if Path(s, ;)
matches D such that the last node of Path(s; ;) matches at d.
Amatching of s, ; at level L in D is said to occur if s; ; matches
at some node at level 1 in D.

[0054] As the nodes in D are parsed in a pre-order tra-
versal (by the SAX parser), the ordered matching of p; in D
also progresses incrementally following a pre-order tra-
versal of the substring-tree of p; such that each substring s, ;
is matched before s; ; ,k>j. Thus, to determine if p; matches
D, the “partial matchings” of p; in D need to be tracked.
However, since only whether or not p; matches D is of
interest, and not the actual number of match occurrences,
“partial matchings™ of p; that are “redundant” can be ignored
to improve the effectiveness of the filtering process.

[0055] The notions of partial and redundant matchings can
now be formally defined. Given and XPE p; and an XML
document tree D, M; is defined to be a set of matchings (with
respect to p; and D ) if M; contains pairs of the form (s; ;,d,),
where s, ; matches at d;, and for each distinct pairs (s; ;,d,),
(s15»d;)eM,,8; =8, 5 and d;=d;.. A partial matching of s;; at
node d; in D occurs if a set of matchings M; exists such that,
for each 1=k=j, (1) (s;,,d)eM;; and (2) for each child
substring s;y, of s;,,d;. is a descendant of d, such that
level(d,)-level(d erelLevel(s; ). It follows that a (com-
plete) matching of p; in D occurs if a partial matching of's; |,
exists at some node in D. A partial matching is represented
by its set of matchings M;.

[0056] To define redundant matching, the notion of sub-
tree-matching should first be introduced. A set of matchings
M; is said to be a subtree-matching of s;; if M; is a partial
matching of each descendant of s;;. Informally, a partial
matching of s;; at a node d is considered “redundant” if a
subtree-matching of s, ; at some “earlier” node d' (i.e., d'<,
d in D) exists. Thus, all subsequent partial matchings that
require the matching of's; ; at d can be safely ignored without
affecting the correctness of deciding whether or not p;
matches D. More precisely, a “partial matching” of s;; at d;
(represented by M;) where s;, is either s;; itself or an
ancestor of s; ;, such that (1) (s; ;,d;)eM;' and d;. post d; in D;
and (2) if s;; is not the root substring of p;, then (s,
d.)eM;NM;', where s;,. is the parent substring of s;,.
Otherwise, M; is said to be a “non-redundant matching™ of

Si,j .

[0057] Consider again the XPE p and XML document D
110 illustrated in FIG. 1, where the four substrings in the
simple decomposition of p are: s,=a, s,=b, s;=c, and s,=bd.
The parenthetical annotation “(s;)” besides a node d; in D
110 means that a non-redundant matching of s; at d; occurs
when d; is parsed in D 110. Thus p matches D 110. Both the
partial matchings of s; at ¢, and s, at b,, are redundant.
Observe that a non-redundant matching could later become
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redundant as more nodes in the document tree are parsed; in
particular, the non-redundant matching of s, at b; becomes
redundant after d, is parsed.

[0058] The Xtrie Indexing Scheme

[0059] In this section, an Xtrie indexing scheme for fil-
tering XML documents based on XPEs carried out according
to the principles of the present invention will be introduced.
Only ordered matchings will be discussed. The details for
unordered and hybrid matchings can be found in Chan, et al.,
supra.

[0060] The Index Structure.

[0061] LetP={p,,p,, - --,p.} denote the set of XPEs being
indexed, and S denote the set of distinct substrings derived
from all the simple decompositions of the XPEs in P. An
Xtrie index consists of two key components: (1) a Trie (D.
Knuth, “The Art of Computer Programming: Sorting and
Searching,” volume 3, chapter 6.3. Addison Wesley, second
edition, 1998, incorporated herein by reference) (denoted by
T) constructed on S to facilitate detection of substring
matchings in the input XML data; and, (2) a Substring-Table
(denoted by ST) that stores information about each substring
of each XPE in P. The information in ST is used to check for
partial matchings. Each of these two Xtrie components will
now be described in detail.

[0062] The Substring-Table.

[0063] The Substring-Table ST contains one row for each
substring of each indexed XPE; i.e., 2, g|p| rows exist in ST
with each row corresponding to some s, ;. The rows in ST are
physically clustered in terms of the XPEs such that the
substrings belonging to an XPE p are stored in consecutive
rows ordered based on the simple decomposition of p. The
order of the XPEs in ST is arbitrary. Since each row r in ST
corresponds to some substring, for convenience, the notation
r;; denotes the row in ST that corresponds to the substring

Sije

[0064] To facilitate locating all XPEs that contain some
substring, the rows in ST are also logically partitioned into
[S] disjoint blocks, such that each block contains all the rows
that correspond to the same substring. This substring-based
partitioning of the rows in ST is achieved by chaining the
rows within each block using a singly linked list, giving a
total of |S| singly linked lists in ST (with one list for each
distinct substring in S). The rows within each linked list are
partially ordered, such that if rows r;; and r;, belong to the
same linked list, then r; precedes r;; in the linked list if j<k
This is required to ensure correctness under the ordered
matching model (Chan, et al., supra).

[0065] Each row in ST (corresponding to some substring
s;;) is a 5-tuple (ParentRow, Rellevel, Rank, NumChild,
Next), where:

[0066] ParentRow refers to the row number of the
tuple in ST corresponding to the parent substring of
s; ;- (ParentRow=0 if s;; is a root substring.)

[0067] Rellevel is the relative level of s;; (ie.,
relLevel(s; ;)) .

[0068] Rank is the rank of s; ; (i.e., Rank=k if s; ; is the
k™ child substring of its parent substring).
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[0069] NumChild is the total number of child sub-
strings of s; ;.

[0070] Next, which is a “pointer” for a singly linked
list, is the row number of the next tuple in ST that
belongs to the same logical block as the current row.
If the current row is the last row in the linked list,
then Next=0.

[0071] The Trie.

[0072] The trie T is a rooted tree constructed from the set
of distinct substrings S, where each edge in T is labeled with
some element name. Each node N in T is associated with a
label, denoted by label(N), which is the string formed by
concatenating the edge labels along the path from the root
node of T to node N; the label of the root node is an empty
string. T is constructed such that for each seS, a unique node
N exists in T such that label(N)=s; and for each leaf node N
in T, label(N)eS. In addition to the pointers to nodes at the
next level of the trie, each node N in T has two special
pointers:

[0073] The Substring pointer (denoted by c(N))
points to some row in ST (i.e., a(N) is a row number)
as follows: if label(N)eS, then o N) points to the first
row of the linked list associated with substring
label(N) otherwise, a(N)=0.

[0074] The Max-suffix pointer (denoted by B(N))
points to some internal node in T and its purpose is
to ensure the correctness of the matching algorithm.
Specifically, f(N)=N' if label(N') is the longest
proper suffix of label(N) among all the internal nodes
in T; if N' does not exist, then B(N) points to the root
node of T.

[0075] FIG. 3 depicts the XTrie index structures for a set
of four XPEs P={p,,p,.psp.}310, 320, 330, 340, where
their respective simple decompositions are as follows:
S;=<aabc,ab>, S,=<ab,abce,bcd>, S;=<ab,abc,d,bc>, and
S,=<cb,cd,d>. The number within each trie node N repre-
sents the node’s identifier; and the values of c(N) and B(N)
are shown to the left and right of N, respectively.

[0076] The XTrie Matching Algorithm.

[0077] The XTrie indexing scheme is designed to support
on-line filtering of streaming XML data and is based on the
SAX event-based interface that reports parsing events. FIG.
4 shows the search procedure for the XTrie, which accepts
as input an XML document D and an XTrie index (ST, T),
processes the parsing events generated by D, and returns the
identifiers of all the matching XPEs in the index.

[0078] The basic idea of the search algorithm is as follows.
The trie T is used to detect the occurrence of matching
substrings as the input document is parsed. For each match-
ing substring s detected, we iterate through all the instances
of s in the indexed XPEs (by traversing the appropriate
linked list of rows in the substring-table ST associated with
s) to check if the matched substring s corresponds to any
non-redundant matching. Since the information stored in ST
is static, some additional dynamic run-time information
should advantageously be maintained to ensure that for
non-redundant matchings are sought.

[0079] This run-time information is maintained in the
form of a two-dimensional integer-array B of size |ST|x
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L,...» where |ST| denotes the number of rows in the sub-
string table ST, and L, is the maximum number of levels
in an XML document. B[r;;1]=n,n >0, if a non-redundant
matchmg of s, (represented by M) at level | exists such that
the n'® child substrmg of's; ; is the leftmost child substring of

; for which a subtree- matchmg has not yet been detected
(1 e., M is a subtree-matching of the (n—1)" child substrmg
of s;; if n>1). Each B[r;;l] is initialized to 0, and is
1ncremented to 1 after a non-redundant matching of s; ;
level lis detected. As more substring matchings are detected
the value of B ;,1] is incremented from n to n+1,n>1, When
the matching M also becomes a subtree-matching of the n'®
child substring of s, ;. The value of B[r; ;,1] is reset to 0 when
the end-tag correspondmg to the begin-tag at level 1 is
parsed. Note that since B is a large sparse array, its imple-
mentation can be optimized to minimize space (e.g., using
linked lists).

[0080] To understand how B is used to detect non- redun-
dant matchings, suppose that a matchmg of substring s; ;
level | has been detected, and s, ; is the n'" child substrmg of

s, This matching is a partial matchmg of s; ; if a matching
of s .. exists at level 1' such that 1- l'erelLevel(s ;) and
B[r; k,1 ]Zn. If, in addition, the value of B[r; ,,I'] is exactly n,
then this partial matching is non- -redundant; otherwise, it is
redundant and it can safely be ignored. We know that an
XPE p; matches the input document when B[r; 1]=m+1 for
some value of 1, where m is the number of child substrings
of the root substring s; ;.

[0081] The XTrie SEARCH algorithm (depicted in FIG.
4) begins by initializing the search node N to be the root
node of the trie T (line 5). For each start-tag t encountered,
if an edge out of N with the label t (to another trie node N'
in T) exists, the search continues on node N'. For each trie
node N' visited, a matching substring (corresponding to
label(N") is detected if a(N") =0; in this case, Algorithm
MATCH-SUBSTRING is invoked to process the matching
substring using the substring table ST. Furthermore, for each
trie node N' visited, we also need to check for other potential
matching substrings that are suffixes of label(N'); this is
achieved by using the max-suffix pointer (i.e., B(N")) in line
16. On the other hand, if no edge is out of a node N with the
current tag t, this means that the concatenation of label(N)
and t is not a matching substring. Therefore, we need to
check for other potential matching substrings, which are
formed by the concatenation of some suffix of label(N) and
t, by using the max-suffix pointer in line 10. For each end-tag
t encountered (corresponding to some start-tag at level 1), the
run-time information B is updated by resetting B[r,1] to O for
all rows r (line 18), and the search node is re-initialized to
its previous location before the tag t was encountered (line
19). This is achieved by using an array Node to keep track
of the location of the search node at each document level
(line 12).

[0082] Algorithm MATCH-SUBSTRING (FIG. 5) is
invoked when a substring s (matching at level 1) is detected.
The algorithm checks for non-redundant matchings of s,
updates the run-time information B, and returns the identi-
fiers of all the matching XPEs that have s as their last
substring. More specifically, the algorithm iterates through
each instance of s in ST (i.e., each row in the linked list
associated with s) to check for non-redundant matchings of
s. Two scenarios exist for the instance of the matching
substring (say, s; ;) corresponding to row r. For the special
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case where s; ; is a root substring (lines 5-9), if its positional
constraint is satisfied (line 6), then the matching is a partial
matching (and obviously non-redundant, since it is a root
substring) and B[r,1] is updated to 1. If, in addition, s, ; is a
leaf substring, then a matching of p; occurs (line 9). For the
general case where s, ; is a non-root substring (lines 10-14),
if a non-redundant matching of's; ; exists (line 11), then B[r,1]
is updated to 1. If, in addition, s;; is a leaf substring, then
Algorithm PROPAGATE-UPDATE is called to update the
run-time information array B and check for a matching of p;.
It should be pointed out that, since multiple matches of the
same XPE are usually not of interest, unnecessary process-
ing and checking in MATCH-SUBSTRING for XPEs that
have already been matched can advantageously be elimi-
nated. This can be achieved by using a bit-mask (consisting
of one bit per XPE); details of this additional filtering have
been omitted from FIG. 5, since those skilled in the perti-
nent art understand how bit-masking is performed.

[0083] Algorithm PROPAGATE-UPDATE (depicted in
FIG. 6) is used to update B whenever a non-redundant
subtree-matching of some non-root substring (S; ; matching
at level 1 corresponding to row r in ST) is detected. Algo-
rithm PROPAGATE-UPDATE iterates through each match-
ing of its parent substring (at level l'e[l ;.1 .."7T) and
updates its B entry if the matching forms a non-redundant
matching of s; ;. If this matching is also a subtree-matching
for the parent substring of s, ; (line 12), then two cases should
be considered. If the parent substring is a root substring (line
13), then a matching of p;has been found; otherwise, the
update propagation of the B entries should be recursed for
the ancestor substrings of's; ; as well (line 16). The algorithm
returns true if a matching of p; has been detected; otherwise,
if it is possible to have multiple matchings of the parent
substring of s;; (i.e., rellevel(s; ;)=[1,;,,%¢] for some 1),
then to avoid any subsequent redundant matchings of
descendants of s;;. the Algorithm PROPAGATE-UPDATE
updates the B entries of all the earlier matchings of's; ; (lines
18 to 20), and returns false.

[0084] The space requirement of the XTrie index is domi-
nated by the total number of substrings in P; that is, the space
complexity is

0[2 Ipil],

[0085] where |p;| denotes the number of the substrings in
the simple decomposition of p;. To analyze the time com-
plexity, let P denote the length of the longest root-to-leaf
path in the trie T, L denote the maximum length of a linked
list in ST, and H denote the maximum height of a substring-
tree. The complexity of Algorithm PROPAGATE-UPDATE
is OH L_,). Since Algorithm MATCH-SUBSTRING
makes at most L calls to Algorithm PROPAGATE-UP-
DATE, the complexity of Algorithm MATCH-SUBSTRING
is O(L H L,,,.). For each start-tag in the input document,
Algorithm SEARCH makes at most P calls to Algorithm
MATCH-SUBSTRING; thus, the complexity of processing
each start-tag is O(PLHL ,..).

[0086] This section will be concluded by briefly describ-
ing an optimized variant of XTrie, which will be referred to
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as “Lazy Xtrie.” In contrast to above variant of XTrie
(referred to from this point forward as “Eager XTrie”),
which probes the substring-table ST for every matching
substring detected in the input document, Lazy XTrie post-
pones the probing of ST, such that the substring-table is only
probed for a matching substring s if s appears as a leaf
substring in some XPE; otherwise, for a matching non-leaf
substring s, Lazy XTrie only updates information about the
level at which s is matched in the input document. Thus,
Lazy XTrie minimizes the number of unnecessary index
probes at the expense of a slightly higher cost for each probe
due to the additional processing required to check for
matchings of the ancestor substrings of the matched leaf
substring. The details of Lazy XTrie are given in (Chan, et
al., supra).

[0087] Related Work

[0088] As stated in the Background of the Invention,
various work has been performed on the filtering of data
using “flat patterns” in the form of conjunctions of simple
predicates on data attributes, including research on rule/
trigger processing systems (e.g., the two Hanson, et al.
schemes, supra) and publish-subscribe systems (Aguilera, et
al., supra; Fabret, et al., supra; and Nguyen, et al., supra). In
contrast, the XTrie scheme of the present invention focuses
on filtering XML documents based on tree patterns (based
on XPath expressions), which demands far more sophisti-
cated indexing techniques, since tree patterns consist of both
data contents as well as structure.

[0089] While XFilter (Altinel, et al., supra) is designed for
filtering XML documents with XPath expressions, the XTrie
index is based on decomposing tree patterns into collections
of substrings (i.e., sequences of element names) and index-
ing them using a trie. XFilter treats each tree pattern as a set
of finite state automata, with each automaton responsible for
the matching of some path in the tree pattern. The collection
of automata for all the tree patterns is indexed using a hash
table on the single element names (i.e., automata transi-
tions).

[0090] XTrie is more space-efficient than XFilter, since the
space cost of XTrie is dominated by the number of sub-
strings in each tree pattern, while the space cost of XFilter
is dominated by the number of element names in each tree
pattern. By indexing on substrings instead of single element
names, the substring-table entries in XTrie are also probed
less often than the hash table entries in XFilter. Furthermore,
while XTrie ignores partial matchings of tree patterns that
are redundant, XFilter keeps tracks of all instances of
partially matched tree patterns, which results in more pro-
cessing overhead.

[0091] Turning now to FIG. 7, illustrated is an exemplary
selective data dissemination system, generally designated
700, constructed according to the principles of the present
invention. The system 700 includes a document receiver
710. The document receiver 710 is adapted to receive XML
documents from a plurality of publishers (not shown). The
system 700 further includes a subscription receiver 720. The
subscription receiver 720 is adapted to receive words of
interest from a plurality of subscribers (not shown). The
words are received already encapsulated in XPath expres-
sions or are encapsulated by the subscription receiver 720.
The primary mission of the system 700 is to disseminate
XML documents to the plurality of subscribers based on the
words of interest thus encapsulated.
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[0092] The system 700 further includes a tree builder 730.
The tree builder 730 builds a document data tree for the
XML documents and further builds an XPath expression tree
(and, in the illustrated embodiment, a related substring table)
based on substrings in the XPath expressions.

[0093] The system 700 further includes a tree prober 740.
The tree prober 740 employs the XPath expression tree to
probe the document data tree and obtain matches with the
substrings.

[0094] As stated above, the matches determine which
subscribers are sent which XML documents. Accordingly,
the system 700 further includes a document disseminator
750. The document disseminator 750 selectively dissemi-
nates the XML documents to the plurality of subsribers
based on the matches.

[0095] Experimental Evaluation

[0096] To determine the effectiveness of XTrie, its perfor-
mance is compared to XFilter. Results indicate that XTrie is
between two and four times faster than XFilter for single-
path XPEs.

[0097] XML Documents.

[0098] Similar to Altinel, et al. (supra), the NITF (News
Industry Text Format) DTD (R. Cover “The SGML/XML
Web  Page,” http://www.oasis.open.org/cover/sgml-xm-
Lhtml, December 1999, incorporated herein by reference)
was used to generate the XML document data set. The NITF
DTD (version 2.5) contains 123 elements with 513
attributes. The data set of XML documents is generated
using IBM' s commercially available XML Generator tool
(A. Diaz and D. Lovell, “XML Generator,” http://www.al-
phaworks.ibm.com/tech/xmlgenerator, September 1999,
incorporated herein by reference). Three sets of 250 XML
documents with similar characteristics were generated.
These sets correspond to different sizes of document: small,
medium and large, with an average of 20, 100, and 1000
pairs of tags, respectively.

[0099] XPath Expressions.

[0100] An XPath expression generator was implemented
that takes a DTD as input and creates a set of valid XPath
expressions (with no duplicates) based on the following set
of six input parameters.

[0101] The parameter P controls the cardinality of the set
of indexed XPEs (ranging from 10,000 to 500,000).

[0102] The parameter L controls the “depth” of the XPEs
in terms of the maximum number of levels (ranging from 10
to 30). The parameter p,,(py) controls the probability (rang-
ing from 0 to 0.5) of having a wildcard “/*” (descendant “//”)
operator at each node.

[0103] The parameter p, controls how “bushy” the XPE-
trees of the XPEs are (ranging from 0 to 0.1); a value of 0
generates only single-path XPEs, while a higher value
increases the number of branches in the XPE-trees.

[0104] The parameter 8 (ranging from O to 1) controls the
skewness of the Zipf distribution (G. Zipf. Human Behav-
iour and Principle of Least Effort. Addison-Wesley, Cam-
bridge, Mass., 1949, incorporated herein by reference) used
for selecting element names, where a value of 0 corresponds
to a uniform distribution and a higher value corresponds to
a more skewed distribution.
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[0105] Algorithms.

[0106] The performance of four algorithms is compared:
(1) XFilter, (2) XFilter with “list balance” optimization
(Altinel, et al., supra), which is denoted by XFilter-LB, (3)
Eager XTrie and (4) Lazy Xtrie. Note that the prefiltering
optimization (Altinel, et al., supra) was not applied to
XFilter, because this optimization is orthogonal to the index
approach, and is applicable to XTrie as well. All the algo-
rithms were implemented in C++ and compiled using GNU
C++ version 2.95.3. Experiments were conducted on a Sun
Ultra-250 with 512 MB of main memory running Solaris
2.7. All the index structures were resident in main-memory
for all the experiments.

[0107] For each input XML document, the total filtering
time, which includes the CPU time to parse the input
document, probe and update the index, and report the
matched expressions, was measured. The performance met-
ric for each category of documents (small, medium, or large)
is the average filtering time over the set of 250 XML
documents for that category. The SAX parser of the Apache
Foundation (“Xerces C++ Parser,” http://xml.apache.org,
2001, incorporated herein by reference) was used for parsing
XML documents. The average times for parsing a small,
medium, and large document were 2.8 ms, 11.9 ms, 105.3
ms, respectively.

[0108] Experimental Results.

[0109] Experimental results are shown in FIGS. 7a-7d,
where the base case uses the following parameter values:
medium data set, P=10,000, L=20, p,,=0.1, p4=0.1, p,=0,
and 0=0.

[0110] FIG. 8A compares the scalability of the algorithms
as a function of P, the size of the set of indexed XPEs. The
results show that the filtering time increases almost linearly
with P, with Lazy XTrie being the fastest algorithm, which
outperforms XFilter-LB by a factor of between 2 and 4.
Eager XTrie performs slightly better than XFilter-L.B, and
XFilter performs the worst. Note that since the performance
of XFilter is always much worse than XFilter-LB, we omit
XFilter from subsequent graphs.

[0111] FIG. 8B compares the scalability of the algorithms
as a function of the size of the XML documents (in terms of
the number of tag-pairs). The results clearly show that the
filtering time increases linearly with the document size for
all the algorithms.

[0112] FIG. 8C shows that increasing the probability of
descendant operators in the XPEs (i.e., py) increases the
filtering time of all the algorithms. For the XTrie algorithms,
this is because having more descendant operators in a XPE
is likely to result in a larger number of shorter substrings in
its simple decomposition, which not only increases the
number of entries in the substring-table but also leads to
more matchings in the trie (due to shorter substrings). For
the XFilter-L.B algorithm, having more descendant operators
in the XPEs translates to more instances of partially matched
expressions thereby resulting in more processing overhead.

[0113] Finally, FIG. 8D compares the effect of the “depth”
of the XPEs on the performance of the filtering algorithms.
The graphs show that the performance of all the algorithms
improves slightly as the depth of the XPEs increases. This is
because tree patterns with longer “branches” are more
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selective resulting in fewer matches. More experimental
results are given in (Altinel, et al., supra).

[0114] Memory usage of both XTrie and XFilter are also
compared; the experimental results indicate that XTrie is
more space efficient. For instance, for the experiment in
FIG. 8A with 500,000 XPEs, XTrie required approximately
18 MB of memory, while XFilter required 26 MB.

[0115] Conclusions

[0116] From the above, it is apparent that XTrie supports
the efficient filtering of streaming XML documents based on
XPath expressions. The XTrie index of the present invention
offers several novel features that make it especially attrac-
tive for large-scale publish/subscribe systems. First, the
XTrie is designed to support effective filtering based on
complex XPath expressions (as opposed to simple, single-
path specifications). Second, the XTrie structure and algo-
rithms are designed to support both ordered and unordered
matching of XML data. Third, by indexing on sequences of
XML element names (i.e., substrings) organized in a trie
structure and using a sophisticated matching algorithm,
XTrie is able to both reduce the number of unnecessary
index probes as well as avoid redundant matchings, thereby
providing extremely efficient filtering. Experimental results
over a wide range of XML document and XPath expression
workloads have clearly demonstrated the benefits of the
approach of the present invention, showing that the XTrie
index consistently outperforms earlier approaches by wide
margins.

[0117] Although the present invention has been described
in detail, those skilled in the art should understand that they
can make various changes, substitutions and alterations
herein without departing from the spirit and scope of the
invention in its broadest form.

What is claimed is:
1. A system for filtering an XML document with XPath
expressions, comprising:

a tree builder that builds a document data tree for said
XML document and an XPath expression tree based on
substrings in said XPath expressions; and

a tree prober, associated with said tree builder, that
employs said XPath expression tree to probe said
document data tree and obtain matches with said sub-
strings.

2. The system as recited in claim 1 wherein said matches

are ordered matches.

3. The system as recited in claim 1 wherein said tree
builder comprises an event-based parsing interface.

4. The system as recited in claim 1 wherein said substrings
are minimal decompositions of said XPath expressions.

5. The system as recited in claim 1 wherein said tree
prober parses said document data tree with said XPath
expression tree to detect matching substrings in said XML
document and iterates, for each of said matching substrings,
through all instances of said matching substrings in said
document data tree to determine whether said matching
substrings are non-redundant.

6. The system as recited in claim 1 wherein said tree
builder builds a substring table for said XPath expression
tree.
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7. The system as recited in claim 1 wherein said tree
prober probes said substring table only for matching sub-
strings that appear as a leaf substring in one of said XPath
expressions.

8. A method of searching an XML document, comprising:

building an XPath expression tree based on substrings in
XPath expressions;

parsing said XML document with said XPath expression
tree to detect matching substrings in said XML docu-
ment; and

iterating, for each of said matching substrings, through all
instances of said matching substrings in said XML
document to determine whether said matching sub-
strings are non-redundant.
9. The method as recited in claim 8 wherein said instances
are ordered matches.

10. The method as recited in claim 8 wherein said parsing
is carried out with an event-based parsing interface.

11. The method as recited in claim 8 wherein said
substrings are minimal decompositions of said XPath
expressions.

12. The method as recited in claim 8 further comprising
building a substring table for said XPath expression tree.

13. The method as recited in claim 12 wherein said
probing comprises probing said substring table only for
matching substrings that appear as a leaf substring in one of
said XPath expressions.

14. A selective data dissemination system, comprising:

a document receiver for receiving XML documents from
a plurality of publishers;

a subscription receiver for receiving words of interest
from a plurality of subscribers, said words being encap-
sulable in XPath expressions;

a tree builder that builds a document data tree for said
XML document and an XPath expression tree based on
substrings in said XPath expressions;

a tree prober that employs said XPath expression tree to
probe said document data tree and obtain matches with
said substrings; and

a document disseminator that selectively disseminates
said XML documents to said plurality of subsribers
based on said matches.

15. The system as recited in claim 14 wherein said

matches are ordered matches.

16. The system as recited in claim 14 wherein said tree

builder comprises an event-based parsing interface.

17. The system as recited in claim 14 wherein said
substrings are minimal decompositions of said XPath
expressions.

18. The system as recited in claim 14 wherein said tree
prober parses said document data tree with said XPath
expression tree to detect matching substrings in said XML
document and iterates, for each of said matching substrings,
through all instances of said matching substrings in said
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document data tree to determine whether said matching 20. The system as recited in claim 14 wherein said tree
substrings are non-redundant. prober probes said substring table only for matching sub-
19. The system as recited in claim 14 wherein said tree strings that appear as a leaf substring in one of said XPath
builder builds a substring table for said XPath expression CXpressions.

tree.



