US 20040255184A1

a2 Patent Application Publication o) Pub. No.: US 2004/0255184 A1

a9 United States

Bejerano et al.

43) Pub. Date: Dec. 16, 2004

(54) SYSTEM AND METHOD FOR
DETERMINING THE PHYSICAL TOPOLOGY
OF A NETWORK HAVING MULTIPLE
SUBNETS
(75) Inventors: Yigal Bejerano, Springfield, NJ (US);
Yuri J. Breitbart, Silver Lake, OH
(US); Minos N. Garofalakis,
Morristown, NJ (US); Rajeev Rastogi,
New Providence, NJ (US)

Correspondence Address:
HITT GAINES P.C.
P.O. BOX 832570
RICHARDSON, TX 75083 (US)
(73) Assignee: Lucent Technologies Inc., Murray Hill,
NJ

(21) Appl. No.:

10/445,585

N e e e e e

;M

(22) Filed: May 27, 2003

Publication Classification
(51) Int. CL7 o HO2H 3/05
(52) US. Cli e nevenevecenesesseen 714/4
57 ABSTRACT

A system for, and method of, determining a physical topol-
ogy of a network having multiple subnets. In one embodi-
ment, the system includes: (1) a skeleton path initializer that
uses addressing information from elements in the network to
develop a collection of skeleton paths of direct physical
connections between labeled ones of the elements, the
skeleton paths traversing multiple of the subnets and (2) a
skeleton path refiner, coupled to the skeleton path initializer,
that refines the collection by inferring, from the direct
physical connections and path constraints derived therefrom,
other physical connections in the skeleton paths involving
unlabeled ones of the elements.

3
A

I ©5 cm oomeey ey

|
7 N\ g 1@_'12

)

71, INSD TN
V4
>4

- L S s G e S e e sam R

/f
l @ - swilch

O - hub

The set of initial skeleton paths

7 2
©
ﬂ ﬂ I
= = 1 TN e e e —
I
.1_:_ 1m.w2 ______. 1 ._1_ L.z 1.2 1.2] 12=1
1 a4
£) 7
! @ - switch O - hub
YA
| - — -
Vg --=-C The set of initial skelefon paths

FIG. 1

T1JO T 99YS $00T ‘9T 9 uonedrqng uonedddy juajeq

IV ¥81SS70/700T SN

Patent Application Publication Dec. 16,2004 Sheet 2 of 12 US 2004/0255184 A1

FIG. 2

procedure TOPOLOGY DISCOVERY (N, AFTs)
Q = INITSKELETONPATHS (N, AFT)
do

done = true
for each gt € O do

1.
2
3
4
g Pst = UUkEQs,t Uk
6
7
8

S = COMPUTE CONSTRAINTS (@ s,t, Q)

Q st = REFINEPATH (Pst, S)

. new
if (Q 5.t + 0 S,t) then
9. replace Q¢ ¢ by @ ¢ in Q
10. done = false
1. endif

12. endfor
13. while (not done)
14, FINDCONNECTIONS (Q)

Patent Application Publication Dec. 16,2004 Sheet 3 of 12 US 2004/0255184 A1

FIG. 3

procedure [NIT SKELETONPATHS (N, AFTs)

. @ =40

2. foreach N € N do

3. for each {S, t} & N do

4 X={vjve V- {st}ATu(s)zu(t),
such that S€ Fyy(s) At € Fyu(t)}

5. if (XN N=g) then

6. Qs t =<{s(t)}, {w(s)w(t)vex} {tis)}>
7. Q = QU{QS,t}.

8. endif

9. endfor

10. endfor

11. return (Q))

FIG. 4

Patent Application Publication Dec. 16,2004 Sheet 4 of 12 US 2004/0255184 A1

FM‘:{T,S} F02={q,f}
Fpy={sx} Fpp={tz}
Fer={su} Fea={tv}
Fg1={xv} Fap=1{1}
Fq3=(u}
Fg={t) Fit ={s)
Fr1={z} Fz1={x}
Fui={v} Fyy={u}
Fr1 ={q) Fq]:[r}

(a) The considered network. (a) The complefe AFTs.

tuy: (Dol -G tuy: @HEHD-(OHD-(D)
: D ABET>D 1y QOO
tg: AR D@ g D— o000 —@

(d) The refined skeleton-paths
Qu’v and Qs’f~

(c) The initial skeleton-paths.

FIG. 5

Patent Application Publication Dec. 16,2004 Sheet 5 of 12 US 2004/0255184 A1

FIG. 6

procedure COMPUTE CONSTRAINTS (¢ s,t, Q)
Qs{t = {€x,219x,2€ Cand Px,z N Ps,t #)}

. QSN{= {Q_Qs{,t ,
. S={<{w(s)}, w(t)}> |yv+ st on the s—t path}
. for each szEQl do //Note that QS’ tEQSt

2
3
4
5. Compute the prOJectlon QXZ— Uy, Uk}
6. S=SU{<Uy, 4>}

7. forj =2 to K do

8

9

S =SU{<Uj-1, Uj>)

. endfor
10. // Compute the port-bin collection B

1. B={{ Py vl QuvE < NI} U

{{ all ports(v.k)}|vE V—Pst}
12. while there are B{,B2,€ Bs.t.(BiN B2 # @) do
1. B=B-{B;,B2YU{B1UB2}}

14.// Discover implicit path constraints on @y ¢
15. for each szQu,vCQStandBCBSt [(Ig #[Qf,’zt,)
and (PgyNB#@)and (Pyq,NB # ¢)]

6. S = SU{<I“UIM,¢>,<I nigk o>,
<1805, 13k 19

17. 1f([zn[¢¢) then

18. 1f[FIRST(QXZ,]XZ)< LAST (Qx, 2 B) or

LAST (Quw, I$:%,)>FIRST (@, B)] then

19, S = SU{<I” 158>y

| 27UV

|
CONTINUED ON SHT. 6/12
]
v

Patent Application Publication Dec. 16,2004 Sheet 6 of 12 US 2004/0255184 A1

FIG. 6

|

|

CONTINUED FROM SHT. 5/12

|

v

20. else if | FIRST (Qu,v,lz’,g) < LAST (Q v B) or
LAST (Qx,2.] $5) > FIRST (Qx,2,B)] then

2. S =SUL< I 13>

22. endif

23. else//i.e.,I;;gﬂIQ% %, assume],%}t, =) Ig:,t)

24. i [FIRST (Qy 2[5}) < 1AST (Qy 7, B) or
FIRST (v I $i) < 1AST (@, ,B)] then

25 S=SU{<UE-ISt) I5E>)

26. elseif [IAST(Qx 7. [9L) > FIRST (5 ,B) or
LAST (Quu, I §25) >FIRST (Quv.B)] then

27. S=SUL< IS USt-155)>)

28. endif

29. endif

30. endfor

31, return S

Patent Application Publication Dec. 16,2004 Sheet 7 of 12 US 2004/0255184 A1

Us >

Uz >

oGO B70-010-(D)

contiguity constraint R

L=<

(0TG-

(b)

Patent Application Publication Dec. 16,2004 Sheet 8 of 12 US 2004/0255184 A1

FIG. 8

procedure REFINEPATH (P S)

1. L=<P>

2. R={sh,s25 Uus?y<sl s >es)

c=p UUBITKEPY- (P ¢}

while there exist B # Rj € Cst.RiN Rj £ () do
C=C— {Ri,Rj} U{RjURj}

endwhile

if [C| > 2 then return (I)

else if (C ={C1,C2}) then

9. L =ORENTPATH (<CL,C2>,5)

10. else // K comprises a single connected group
11, Rj=the largest set in R

12, Rj=set in R that is INC with &;.
13. L=<Ri-Rj,RiNRj,Kj - Rj>; P = RjUR;
14. while there exist R € R st.[(R and P are INC)or
(R and some Uj € L are INC)] do

© NSO

15. for each Uj € [that is INC with £ do

16. if [(j< |L| and Uj+jﬂR #0) or
(j=|Lland Uj-f N R =@)] then

17. replace Uj with < Uj— B, Uy N K >.

18. else replace Uj with < Uj N R, Uj — K >.

19. endif

20. endfor

21. if R and Py are INC then

22. P =PLUR

23. if (UyC Rythen L =< B —PJ >0l

|
CONTINUED ON SHEET 9/12
\

Patent Application Publication Dec. 16,2004 Sheet 9 of 12 US 2004/0255184 A1
FIG. 8
60NT|NUED FROM SHEET 8/?
N
24, else [= Lo< R-Py>
25. endif
26. endwhile
27. L = ORIENTPATH(L,S)
28. endif
29. if |L| = 1 thenreturn (< P >)
30. @ =€ // the empty path
31. for j =1 to |L]| do
32. if(|Ujl=1) then@ =Qo< Uj>
33. else { .9 i 5
34. Sj={<Si,Si>ESsuch thatSjUSngj}
35. Q= 0o REFINEPATH (j,Sj)
36. endif
37. endfor
38. return ({))

Patent Application Publication Dec. 16,2004 Sheet 10 of 12 US 2004/0255184 A1

FIG. 9

procedure ORIENTPATH (L, S)
for each < .5'11., SIZ> € S do

—
.

if (FIRST(L, S}) < LAST (L, S %) then return (L)
else if (FIRST (L, S 12.) < 1AST (I, Sl!) then

return (REVERSE (L))
endif

endfor

return (<UUjELUj>)

N A N

Patent Application Publication Dec. 16,2004 Sheet 11 of 12

© O
(o) The trug network topology

OLCTETEY)»
@D

Poa
(

c) The skeleton—fufhs after

®

&
®
S
© 6 G
® ©
%i!
1
&
e &

&
®)
©
S

=)

the first iteration.

DODDDDD@DD
- QD-DD-D@—D
DDOODDDDDD

(D—@D-@——0D-G—@D

(e) The skeleton-paths after
the third iteration.

FIG.

=)

al,02,b1,b2,¢1,¢2,d1,d2

b1,b2,c1,c2,62,e

|

b1,b2,¢1,c2,d1,d2,e3,¢l

S

al,a2,b1,b2
(b) The inifial skeletonpaths.

@@EDEDEDEDEDEDID

|

al,02,b1,62

(c) The skeleton-paths after
the second iteration.

@

)

&

®
=

©

RS
S
®

aD

®
®
®
® ©®
&4
SRS

()

The resulting connections
from the skelefon-paths.

10

US 2004/0255184 A1

Patent Application Publication Dec. 16,2004 Sheet 12 of 12 US 2004/0255184 A1

FIG.

FIG.

11
SKELETON PATH SKELETON PATH
INITIALIZER REFINER
110 1120
1100
12 @ /—1 200

1210

DEVELOP INITIAL
SKELETON PATHS

CONSTRAINTS
1230

DETERMINE PATH

|

PATHS
1230

REFINE SKELETON

|

1240

DISCOVER ELEMENT
CONNECTIONS

US 2004/0255184 Al

SYSTEM AND METHOD FOR DETERMINING
THE PHYSICAL TOPOLOGY OF A NETWORK
HAVING MULTITPLE SUBNETS

TECHNICAL FIELD OF THE INVENTION

[0001] The present invention is directed, in general, to
computer networks and, more specifically, to a system and
method for determining the physical topology of a network,
such as an Ethernet computer network, having multiple
subnets.

BACKGROUND OF THE INVENTION

[0002] “Physical network topology” refers to the charac-
terization of the physical connectivity relationships that exist
among elements (e.g., devices and links) in a communica-
tion network. Discovering the physical layout and intercon-
nections of network elements is a prerequisite to many
critical network management tasks, including reactive and
proactive resource management, server siting, event corre-
lation, and root-cause analysis.

[0003] For example, consider a fault monitoring and
analysis application running on a central Internet Protocol
(IP) network management platform. Typically, a single fault
in the network will cause a flood of alarm signals emanating
from different interrelated network elements. Knowledge of
network element interconnections is essential to filter out
secondary alarm signals and correlate primary alarms to
pinpoint the original source of failure in the network (see,
Katzela, et al., “Schemes for Fault Identification in Com-
munication Networks,” IEEE/ACM Trans. on Networking,
vol. 3,n0. 6, December 1995 and Yemini, et al., “High Speed
& Robust Event Correlation,” IEEE Communications, 1996,
incorporated herein by reference). Furthermore, a full physi-
cal map of the network enables a proactive analysis of the
impact of link and device failures.

[0004] Despite the critical role of physical topology infor-
mation in enhancing the manageability of modern IP net-
works, obtaining such information is a very difficult task.
The majority of commercial network-management tools
feature an IP mapping functionality for automatically dis-
covering routers and subnets and generating a “network
layer” (i.e., ISO layer-3) topology showing router-to-router
interconnections and router interface-to-subnet relation-
ships. Building a layer-3 topology is relatively easy, because
routers must be explicitly aware of their neighbors to
perform their basic function. Therefore, standard routing
information is adequate to capture and represent layer-3
connectivity.

[0005] Unfortunately, layer-3 topology covers only a
small fraction of the interrelationships in an IP network,
since it fails to capture the complex interconnections of
“physical layer” (i.e., ISO layer-2) network elements
(switches, bridges and hubs) that comprise each Ethernet
Local Area Network (LAN). Hardware providers such as
Cisco and Intel have designed their own proprietary proto-
cols for discovering physical interconnections, but these
tools are of no use in a heterogeneous, multi-vendor net-
work.

[0006] More recently, the IETF has acknowledged the
importance of this problem by proposing a “physical topol-
ogy” SNMP Management Information Base (MIB) (see,

Dec. 16, 2004

Bierman, et al., “Physical Topology MIB,” Internet RFC-
2922 (www.ietf.org/rfc/), September 2000, incorporated
herein by reference), but the proposal merely reserves a
portion of the MIB space without defining any protocol or
algorithm for obtaining the topology information. Clearly, as
more switches, bridges, and hubs are deployed to provide
more bandwidth through subnet microsegmentation, the
portions of the network infrastructure that are “invisible” to
current network-management tools will continue to grow.
Under such conditions, it is obvious that the network man-
ager’s ability to troubleshoot end-to-end connectivity or
assess the potential impact of link or device failures in
switched networks will be severely impaired.

[0007] Developing effective algorithmic solutions for
automatically discovering the up-to-date physical topology
of a large, heterogeneous network poses several difficult
challenges. More specifically, there are three fundamental
sources of complexity for physical topology discovery.

[0008] (1) Inherent Transparency of Layer-2 Hardware.
Layer-2 network elements (switches, bridges, and hubs) are
completely transparent to endpoints and layer-3 hardware
(routers) in the network. Switches themselves only commu-
nicate with their neighbors in the limited exchanges
involved in the spanning tree protocol (see, Keshav, “An
Engineering Approach to Computer Networking”, Addison-
Wesley Prof. Computing Series, 1997, incorporated herein
by reference), and the only state maintained is in their
Address Forwarding Tables (AFTs), which are used to direct
incoming packets to the appropriate output port.

[0009] Fortunately, most switches/bridges make this infor-
mation available through a standard SNMP MIB (see, Case,
et al., “A Simple Network Management Protocol (SNMP),”
Internet RFC-1157 (www.ietf.org/rfc/), May 1990, and,
Stallings, “SNMP, SNMPv2, SNMPv3, and RMON 1 and
27, Addison-Wesley Longman, Inc., 1999, (3rd Edition),
incorporated herein by reference.)

[0010] (2) Multi-Subnet Organization. Modern switched
networks usually comprise multiple subnets with elements
in the same subnet communicating directly (i.e., without
involving routers) whereas communication between cle-
ments in different subnets must traverse through the routers
for the respective subnets. Furthermore, elements of differ-
ent subnets are often directly connected to each other. This
introduces serious problems for physical topology discov-
ery, since it means that an element can be completely
invisible to its direct physical neighbor(s).

[0011] (3) Transparency of “Dumb” or “Uncooperative”
Elements. Besides SNMP-enabled bridges and switches that
are able to provide access to their AFTs, a switched network
can also deploy “dumb” elements such as hubs to intercon-
nect switches with other switches or hosts. (Though properly
designed networks would not use hubs to interconnect
switches, it often occurs in practice.) Hubs do not participate
in switching protocols and, thus, are essentially invisible to
switches and bridges in the network. Similarly, the network
may contain switches from which no address-forwarding
information can be obtained either because they do not
accommodate SNMP or because SNMP access to the switch
is disabled. Clearly, inferring the physical interconnections
of “dumb” and “uncooperative” devices based on the limited
AFT information obtained from other elements poses a
non-trivial algorithmic challenge.

US 2004/0255184 Al

[0012] SNMP-based algorithms for automatically discov-
ering network layer (i.e., layer-3) topology are featured in
many common network management tools, such as Hewlett
Packard’s OpenView (www.openview.hp.com) and IBM’s
Tivoli (www.tivoli.com).

[0013] Recognizing the importance of layer-2 topology, a
number of vendors have recently developed proprietary
tools and protocols for discovering physical network con-
nectivity. Examples of such systems include Cisco’s Dis-
covery Protocol (www.cisco.com) and Bay Networks’
Optivity Enterprise (www.baynetworks.com). Such tools,
however, require vendor-specific extensions to SNMP MIBs
and are useless in a heterogeneous network comprising
elements from multiple vendors in which only standard
SNMP information is available.

[0014] Breitbart, et al., “Topology Discovery in Hetero-
geneous IP Networks,” in Proc. of IEEE INFOCOM 2000,
March 2000 (incorporated herein by reference) proposed an
algorithm that relies solely on standard AFT information
collected in SNMP MIBs to discover the physical topology
of heterogeneous networks comprising switches and bridges
organized in multiple subnets. However, that algorithm
assumed that AFT information is available from every node
in the underlying network and thus cannot cope with hubs or
uncooperative switches.

[0015] TLowekamp, et al., “Topology Discovery for Large
Ethernet Networks,” in Proc. of ACM SIGCOMM, August
2001 suggested techniques for inferring network-element
connectivity using incomplete AFT information and also
discussed how to handle dumb/uncooperative elements.
However, their algorithm is suitable only in the much
simpler case of a single subnet and fails when multiple
subnets are present. For instance, the Lowekamp, et al.,
algorithm cannot infer the topology of a network having
multiple subnets, although the AFTs uniquely define the
topology. Thus, the prior art contains no physical topology
discovery technique that addresses all three objectives set
forth above.

[0016] Accordingly, what is needed in the art is a practical,
algorithmic solution for discovering the physical topology of
large, heterogeneous IP networks comprising multiple sub-
nets as well as (possibly) dumb or uncooperative elements.
What is further needed in the art is a way to determine
physical topology that relies substantially solely on standard
information routinely collected in the SNMP MIBs of ele-
ments and that preferably requires no modifications to any
operating system software running on elements or hosts.

SUMMARY OF THE INVENTION

[0017] To address the above-discussed deficiencies of the
prior art, the present invention provides a system for, and
method of, determining a physical topology of a network
having multiple subnets. In one embodiment, the system
includes: (1) a skeleton path initializer that uses addressing
information from elements in the network to develop a
collection of skeleton paths of direct physical connections
between labeled ones of the elements, the skeleton paths
traversing multiple of the subnets and (2) a skeleton path
refiner, coupled to the skeleton path initializer, that refines
the collection by inferring, from the direct physical connec-
tions and path constraints derived therefrom, other physical
connections in the skeleton paths involving unlabeled ones
of the elements.

Dec. 16, 2004

[0018] The system is particularly useful for determining
the physical topology of a LAN that employs transparent
bridges and supports multiple subnets. In the context of such
LAN, the present invention finds the physical network
topology defined by the active ports, determined by the
spanning tree algorithm defined in IEEE 802.1D standard
1998 edition, subject to revision. As a result, the considered
network topology has a tree structure.

[0019] The topology-discovery algorithm that underlies
the present invention introduces the broad concept of infer-
ring connectivity information in the presence of hubs and/or
switches that cannot or will not provide information regard-
ing their connectivity. In one embodiment, the algorithm
initially employs address forwarding information from
address forwarding tables (AFT) supplied by SNMP-en-
abled elements to produce a partial, coarse view of the
underlying network topology as a collection of skeleton
paths.

[0020] The skeleton-path mechanism is a generalization of
traditional paths that captures whatever partial knowledge
can be accumulated on the actual network topology. The
algorithm then enters an iterative, skeleton-path refinement
process during which explicit and/or implicit constraints
inferred from the overall skeleton-path collection are
exploited to refine the topology information in individual
skeleton paths.

[0021] Once all skeleton paths have been resolved into
complete arrangements of network elements, the algorithm
disclosed herein stitches the skeleton paths together to infer
the underlying network topology including the connections
of “invisible” hubs and uncooperative switches. It is antici-
pated that initialized skeleton paths will be refined, which
will give rise to the opportunity to initialize further skeleton
paths, and so on. It is well known that even complete AFT
information from all network nodes is often insufficient to
uniquely identify the underlying physical network topology.

[0022] The foregoing has outlined, rather broadly, pre-
ferred and alternative features of the present invention so
that those skilled in the art may better understand the
detailed description of the invention that follows. Additional
features of the invention will be described hereinafter that
form the subject of the claims of the invention. Those skilled
in the art should appreciate that they can readily use the
disclosed conception and specific embodiment as a basis for
designing or modifying other structures for carrying out the
same purposes of the present invention. Those skilled in the
art should also realize that such equivalent constructions do
not depart from the spirit and scope of the invention in its
broadest form.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] For a more complete understanding of the present
invention, reference is now made to the following descrip-
tions taken in conjunction with the accompanying drawings,
in which:

[0024] FIG. 1 illustrates an exemplary network graph and
its decomposition in skeleton paths on which an embodi-
ment of a system constructed according to the principles of
the present invention can operate to discover a physical
topology;

[0025] FIG. 2 illustrates a pseudocode listing of a
TOPOLOGYDISCOVERY routine constructed according to
the principles of the present invention;

US 2004/0255184 Al

[0026] FIG. 3 illustrates a pseudocode listing of an
INITSKELETONPATHS routine constructed according to
the principles of the present invention;

[0027] FIGS. 4A and 4B together illustrate exemplary
network graphs in which implicit path constraints are com-
puted;

[0028]

[0029] FIG. 5B illustrates complete address forwarding
tables for the exemplary network graph of FIG. 5A;

[0030] FIG. 5C illustrates initial skeleton paths in the
exemplary network graph of FIG. 5A;

[0031] FIG. 5D illustrates refined skeleton paths in the
exemplary network graph of FIG. 5A;

[0032] FIG. 6 illustrates a pseudocode listing of a COM-
PUTECONSTRAINTS routine constructed according to the
principles of the present invention;

[0033] FIGS. 7A and 7B together illustrate exemplary
network graphs in which INC-free auxiliary paths are built;

[0034] FIG. 8 illustrates a pseudocode listing of a
REFINEPATH routine constructed according to the prin-
ciples of the present invention;

[0035] FIG. 9 illustrates a pseudocode listing of an ORI-
ENTPATH routine constructed according to the principles of
the present invention;

[0036] FIG. 10A illustrates an exemplary true network
topology;

[0037] FIG. 10B illustrates initial skeleton paths in the
exemplary network graph of FIG. 10A;

[0038] FIG. 10C illustrates skeleton paths in the exem-
plary network graph of FIG. 10A after a first iteration;

[0039] FIG. 10D illustrates skeleton paths in the exem-
plary network graph of FIG. 10A after a second iteration;

[0040] FIG. 10E illustrates skeleton paths in the exem-
plary network graph of FIG. 10A after a third iteration;

[0041] FIG. 10F illustrates resulting physical connections
in the exemplary network graph of FIG. 10A;

[0042] FIG. 11 illustrates a block diagram of a system for
determining a physical topology of a network having mul-
tiple subnets constructed according to the principles of the
present invention; and

[0043] FIG. 12 illustrates a block diagram of a method of
determining a physical topology of a network having mul-
tiple subnets carried out according to the principles of the
present invention.

FIG. 5A illustrates an exemplary network graph;

DETAILED DESCRIPTION
[0044] Definitions and a System Model

[0045] In this section, some preliminary information and
the system model that adopted for the physical topology
discovery problem are presented. The domain over which
topology discovery is to be performed is referred to herein
as a “switched domain,” which essentially comprises a
maximal set S of switches such that there is a skeleton path
between every pair of switches involving only switches in S.
(Switches are essentially bridges with many ports, so the

Dec. 16, 2004

terms “switch” and “bridge” can be used interchangeably;
“switch” will hereinafter primarily be used.)

[0046] More specifically, the target switched domain is
modeled as an undirected tree G=(V,E), where each node in
V represents a network element and each edge in E repre-
sents a physical connection between two element ports. The
set V comprises both labeled and unlabeled nodes. Labeled
nodes basically represent switches, routers, and hosts that
have a unique identifying MAC address and can provide
AFT information through SNMP queries to the appropriate
parts of their MIB; unlabeled nodes, on the other hand,
represent both “dumb” hub devices or switching elements
with no SNMP support. (Note that end-hosts and routers in
the network are represented as leaf node in G, and are
practically indistinguishable for the purposes of layer-2
topology discovery.)

[0047] To simplify the discussion, labeled and unlabeled
nodes are hereinafter respectively referred to as “switches”
and “hubs.” Note that the graph G essentially captures the
(tree) topology of unique active forwarding skeleton paths
for elements within a switched domain as determined by the
spanning tree protocol (see, Keshav, supra). (Note that
end-hosts and routers in the network are represented as leaf
nodes in G, and are practically indistinguishable for the
purposes of layer-2 topology discovery.)

[0048] The topology discovery algorithm disclosed herein
is based on using the MAC addresses learned through
backward learning on ports that are part of the switched-
domain spanning tree (and stored at the port AFTs of labeled
network nodes). The notation (v,k) identifies the k™ port of
node v € V, and F, denotes the set AFT entries at port (v,k)
(i.e., the set of MAC addresses that have been seen as source
addresses on frames received at port (v,k)). (To simplify
notation, the parentheses and comma will often be omitted
from the port-id notation when referring to a specific port of
v, e.g., vl, v2, and so on.)

[0049] Since G is a tree, a unique path exists in G between
every pair of nodes s,t € V. The symbol P, is used to identify
the set of port-ids along the skeleton path from s to t (also
referred to as the “s-t skeleton path”). The notation v, is used
to denote the port of node v at which (the address of) node
u is found (i.e., the port of v leading to u in G).

[0050] Table I summarizes the key notation used herein,
along with a brief description of its semantics. Additional
notation will be introduced when necessary.

TABLE 1

Key Notation Used Herein

Symbol Semantics

G=(V,E Switched-domain network graph (tree)

v, k) kth port of node v E V (v1,v2...)

Fox AFT entries at (i.e., nodes reachable from) (v, k)
v(u) Part of node v leading to node u in G

N, Subnets in G containing v in their spanning subtree
P, Set of switch ports along the path from s to t in G
[O2% Skeleton path from s to tin G

L., Set of ports at the intersection of P , and P,
Q.. Projection of path Q, , onto path Q;,

[0051] Every labeled node in the switched domain G is
associated with one or more subnets. A subnet is a maximal

US 2004/0255184 Al

set of network elements N = V such that any two elements
in N can communicate directly with each other without
involving a router, while communication across different
subnets must go through a router.

[0052] Thus, a packet from node s to node t in the same
subnet N traverses exactly along the set of ports P_, in G.
Typically, every network element within a switched domain
is identified with a single IP address and a subnet mask that
defines the IP address space corresponding to the element’s
subnet. For example, IP address 135.104.46.1 along with
subnet mask 255.255.255.0 identifies a subnet of network
elements with IP addresses of the form 135.104.46.x, where
X is any integer between 1 and 254.

[0053] Let N be the collection of subnets of the graph G.
Every subnet N € N defines a connecting subtree in G, that
is, a tree subgraph of G that is essentially spanned by the
nodes in subnet N, and contains all nodes and edges of G that
lie on paths between any pair of nodes in N. Let N, € N
denote the collection of subnets containing node v € V in
their connecting subtrees. Clearly, the AFTs at the ports of
node contain node-reachability information only for the
subnets in N,.

[0054] The AFT F,, of v is said to be “complete™ if, for
all N e N, I, contains the MAC addresses of all nodes in
N that are reachable by port (v,k). The physical topology
discovery algorithms disclosed herein rely on the assump-
tion that the AFT information obtained from labeled nodes
in the network is complete. This completeness requirement
can be enforced using, for instance, “spoofed” ICMP-echo
packets to force switch communication (as described in
Breitbart, et al., “Topology Discovery in Heterogeneous IP
Networks,” in Proc. of IEEE INFOCOM 2000, March 2000,
incorporated herein by reference).

[0055] Overview of the Disclosed Topology Discovery
Algorithm

[0056] A goal of the algorithm disclosed herein is to
discover the physical topology of the underlying multi-
subnet network represented by the switched domain graph
G=(V,E) as accurately as possible using only the AFT
information provided by labeled nodes in G. Thus, the
topology-discovery algorithm uses the AFT information
provided to: (1) discover the direct physical connections
between labeled element (i.e., switch) ports, and (2) infer the
existence of unlabeled nodes (i.e., hubs) in G as well as the
set of switch ports that are connected to each hub. A key tool
employed in the topology discovery algorithm is the concept
of skeleton paths.

[0057] A “skeleton path” from node s to node t in G is
defined as a sequence Q, ;=<U,, U,, .. ., Uy> of non-empty
port-id sets Uy, . . . , Ug. forming a partition of P,
(U,NU;=¢, U;U;=P_)) such that: (1) each U; contains the
port-ids of a contiguous segment of the s-t path; and, (2) for
each i<j, all the port-ids in U; precede those in U; on the s-t
path.

[0058] Intuitively, an s-t skeleton path describes some
partial knowledge (i.e., port ordering information) about the
actual s-t path in the network graph G. This partial knowl-
edge basically describes subsets of ports U; that are known
to be contiguous in the path from s to t in G, as well as the
ordering of these subsets as G is traversed from s to t. Thus,
the “coarsest” s-t skeleton path comprises a single large

Dec. 16, 2004

subset U, between nodes s and t with essentially no port-
ordering information, whereas in the “finest” s-t skeleton
path, each U; is a singleton (a single port-id) and the
complete ordering of the ports on the s-t path is specified.
Note that determining the set of switch port-ids to be
included in an s-t skeleton path using AFT information is
fairly straightforward when s and t belong to the same
subnet.

[0059] An important observation is that a node v is on the
path from s to t in G if and only if there are two distinct ports
v(s) and v(t) of v such that v “sees” node s(t) at port v(s)
(resp., v(D)) (ie., s € F, and t € F,_). Also note that,
since the skeleton-path definition assumes that the path is
oriented from s to t, port v(s) always precedes port v(t) on
the s-t path. Thus, v(s) is always denoted before v(t) in the
skeleton path Q,, (even when these ports are in the same U;
subset). This port-ordering rule for each node is obtained
from the AFT information at v.

[0060] Referring initially to FIG. 1, illustrated is an exem-
plary network graph and its decomposition in skeleton paths
on which an embodiment of a system constructed according
to the principles of the present invention can operate to
discover a physical topology. The numbers near the links
represent the port-ids. Nodes u, v, w, X, y are in one subnet,
nodes m,n in another subnet, and every one of the nodes a,
b, ¢, d, e, f defines a separate subnet (with only one node).
One possible skeleton path from node u to node x is:
Q,=<{ul}, {al, a2, b1, b2}, {w1}, {w2}, {c1}, {c2},
{x1}>.

[0061] Clearly, this skeleton path only provides partial
information on the topology of the true u-x path in G. More
specifically, Q, . specifies that the ports x1 and c2 are
directly connected or they are connected to the same hub.
Similarly, Q, . also indicates that port wl is connected
(either directly or through a hub) to one of a2 or b2. (Note
that, since port al (bl) precedes a2 (resp., b2) on the u-x path
and w1l succeeds nodes a and b in Q w1 can only be
connected to a2 or b2.)

[0062] Turning now to FIG. 2, illustrated is a pseudocode
listing of a TOPOLOGYDISCOVERY routine constructed
according to the principles of the present invention. At a
high level, the TOPOLOGYDISCOVERY algorithm repre-
sents the underlying network as a collection of skeleton
paths, Q, between pairs of nodes belonging to the same
subnet, and proceeds by iteratively refining Q to provide
more accurate topology information for G. The initial input
to the disclosed algorithm is the collection of subnets N in
the network G as well as the AFT information from all
labeled nodes (switches) in G.

[0063] As a first step, the disclosed algorithm computes an
initial collection of skeleton paths Q that, essentially, cap-
tures the given AFT information by identifying the set of
port-ids between selected pairs of nodes that “cover” all
paths in G (procedure InitSkeletonPaths). The disclosed
algorithm then enters an iterative skeleton-path refinement
process that tries to determine a complete port order for each
skeleton path in Q. The key idea here is to use the aggregate
information in Q to refine the internal U, subsets of each
skeleton-path Q,, € Q into smaller subsets, until either a
complete order is obtained or no further refinement is
possible.

[0064] This path-refinement task for skeleton path Q,, is
performed with the help of two procedures. First, procedure

u,x?

US 2004/0255184 Al

COMPUTECONSTRAINTS exploits the information in Q
(more specifically, the intersections of Q,, with other skel-
eton paths in Q) to obtain a collection S of additional
constraints (termed path constraints) on the port order in
Q, ;- Second, procedure REFINEPATH uses the discovered
set of path constraints S to further refine Q,,. When no
further skeleton-path refinements are possible, the disclosed
algorithm invokes a FINDCONNECTIONS procedure that
uses the refined paths to generate the switch and hub
connections discovered in G.

[0065] One of the main challenges lies in determining the
most complete set of path constraints for each skeleton path
Q, 1, so the amount of port-ordering knowledge incorporated
in Q,, is employed to maximum advantage during future
iterative-refinement steps. As will be described hereinafter,
such path constraints can result from rather complicated
intersection patterns of several skeleton paths in Q. Thus, it
is difficult to obtain directly the “full” set of path constraints
that would allow an initial Q,, skeleton path to be refined
into a complete port order in a single step.

[0066] However, even partial-order information obtained
through a subset of the constraints imposed on Q,, can be
used further to refine other skeleton paths in Q during future
iterations. Thus, the disclosed topology-discovery algorithm
may require several iterative-refinement steps, during which
skeleton paths in Q are further refined from iteration to
iteration, until the algorithm eventually converges to the
maximal possible port-ordering information for each path in
G for the given set of inputs. The key algorithmic compo-
nents of the disclosed topology-discovery algorithm will
now be described in greater detail.

[0067] Initial Skeleton-Path Collection

[0068] The first task the disclosed algorithm faces is to
“translate” the input AFT and subnet information into an
initial collection of skeleton paths. An important observation
here (and already discussed above) is that, for nodes s and
t belonging to the same subnet, the AFT information can be
used in a straightforward manner to determine the set of
switch ports P, ; on the s-t path in G: if, for a node v=s,t, two
distinct ports v(s)=v(t) exist such thats e F, ,y andte F),
then v(s), v(t) € P, ;; otherwise, v cannot be on the s-t path
in G. Of course, the source and destination ports on nodes s
and t can also be determined from their AFT information.

[0069] Thus, one solution to the initial skeleton-path con-
struction problem is to build a skeleton path Q. for each
pair s,t of distinct nodes belonging to the same subnet, for
each of the underlying subnets. Although within the broad
scope of the present invention, this approach may result in
significant overlap between or among the resulting paths in
Q. Consequently, such an approach may require that the port
order for the same path segment be recomputed several
times, resulting in increased computation-time overheads.

[0070] The disclosed embodiment of the algorithm instead
relies on constructing a concise collection of skeleton paths
for each subnet N such that paths between nodes of N in Q:
(a) are not contained in other paths between N’s nodes, and
(b) cannot be broken into smaller paths between N’s nodes.
Intuitively, the resulting skeleton paths for subnet N “mini-
mally” cover all nodes of N using the smallest possible
segments between such nodes.

[0071] Turning now to FIG. 3, illustrated is a pseudocode
listing of an INITSKELETONPATHS routine constructed

Dec. 16, 2004

according to the principles of the present invention. The
disclosed INITSKELETONPATHS procedure builds this
concise collection by considering, for each subnet N, all
possible s-t paths with s, t € N and adding an initial Q,
tskeleton path to Q only if the collection of intermediate
nodes on the s-t path (denoted by X in FIG. 3) does not
contain another N node. As an example, FIG. 1 depicts the
six initial skeleton paths in Q for the network in the example
given above.

[0072] Computing Skeleton-Path Constraints

[0073] Now, the problem of discovering a collection of
constraints that will allow the disclosed algorithm to refine
the port order for a given skeleton path Q. € Q will be
addressed. Abstractly, these constraints follow (either
explicitly or implicitly) from the intersections of Q,, with
other skeleton paths in the Q collection. Some useful defi-
nitions and notational conventions are in order and will now
be presented.

[0074] A skeleton path Q, , € Q is said to “intersect” Q,
it P, NP, =¢. The disclosed skeleton-path collection Q can
be partitioned into two subsets Q=Q, ,'UQ, ™, where Q,
(Q, ™) contains all the paths in Q that interseet (resp., do not
intersect) path Q. (Note that, trivially, Q,, € Q,,")

[0075] For any skeleton path Q , € Q, ', I, ,** denotes the
collection of port-ids in the intersection of the s-t and x-z
skeleton paths, i.c., I ,>'=P,, N P__. To simplify the expo-
sition, all paths Q. , € st are assumed have the same
Orientation as Qs,t. That is, any port in their intersection IX,ZS)t faCeS
either s and x, or t and z (the starting and ending points of
the paths are on the same “side” of the network graph). Of
course, either Q__, or Q, . must have the same orientation as
Q. ;» and this can be easily resolved from the AFTs of ports
in I_**. Constraints on the port order in Q, , can result from
the projection of another path Q__, € Qs)tl, onto Q, , which is
formally defined below.

[0076] The “projection” of Q,, € Q, " onto Q, ,, denoted
by Q% is the skeleton path that results by taking the
intersection of every subset U, € Q. , with the set P, and
omitting empty sets; that is, Q_,*'=<U; NP, ..., Ug N
P_|U; € Q. , and U; N P, =¢>. Clearly, any path projection
onto Q,, is essentially a valid skeleton representation for a
segment of the true s-t path in G and, as such, can enforce
additional constraints on the port order in Q.

X,Z

[0077] Such constraints can be broadly classified into two
types: (1) contiguity constraints forcing a given subset S =
P_, of port-ids to define a contiguous segment of the s-t path
(e.g., any S=U; N P_ =¢); and (2) order constraints forcing
all port-ids in a subset S' = P_, to precede those of another
subset S* = Py, (e.g., $'=U; N P, and $?>=U;,; N P).

[0078] The following definition of path constraints cap-
tures both contiguity and order constraints. A path constraint
S;=<S,, S;*> for skeleton path Q_, is an ordered pair of two
disjoint subsets of port-ids S;', S, P, such that: (1) S,
S, and S;' U S;* define contiguous segments of ports on the
s-t path, and (2) the ports in S;* precede those in S; in the
path from s to t in G. A simple contiguity constraint S can
be represented as <S,¢>.

[0079] Computing Skeleton Path Constraints.

[0080] The disclosed algorithm for computing a collection
of path constraints S on the skeleton path Q. using other

US 2004/0255184 Al

paths in Q (ie., procedure COMPUTECONSTPAINTS in
FIG. 6) can now be described. Explicit path constraints, i.c.,
constraints that can be inferred directly from the AFT
information and the projections of other skeleton paths in
Q' onto Q, will first be discussed. Implicit path constraints,
which are more subtle, will then be discussed.

[0081] Explicit Path Constraints.

[0082] Consider any switch v on the Q,, skeleton path.
Using the AFT information from v, the path constraint
<{v(s)}, {v()}> can be readily defined. The two ports of v
on the path from s to t must be contiguous and the port facing
s must precede that facing t. These constraints are added to
S for all nodes v=s,t on the Q_, path.

[0083] Further consider any (intersecting) skeleton path
Qe Q. < and its projection Q> onto Q, ;. As mentioned
above, such a projection deﬁnes a valid skeleton represen-
tation for a segment of the true s-t path in G and, thus,
defines additional contiguity and order constraints on Q, ;.
More specifically, for all projections Q ={U, U, .,

Uk}, S is augmented by adding the path constraints <Uj,
U, > foralli=1, ..., K(where U, ,=¢ is assumed to cover
the case K=1).

[0084]

[0085] Abstractly, implicit path constraints on Q,, are
obtained through the intersection of two or more paths with
Q. as well as other parts of the network graph G. More
specifically, consider the subgraph of G that is obtained by
removing all ports in P_, from the disclosed network. Since
G is a tree, this subgraph is essentially a collection of
subtrees T, ; of G such that each T e T_, is attached to a single
connection point (i.e., switch or hub) on the Q,, skeleton
path. Implicit path constra1nts result from the intersection of
paths in Qs)t1 with a given subtree T € T, , taking advantage
of the above “single-connection-point™ observation.

Implicit Path Constraints.

[0086] The disclosed algorithm needs to employ some
knowledge about the set of port-ids within different subtrees
in T, ; without knowing their exact topology. Accordingly,
the disclosed algorithm collects this knowledge using a
port-aggregation technique that partitions the ports not
included in P, into a collection B of maximal, disjoint
“bins”, such that the ports in each bin B € B are guaranteed
to be included in a single subtree of T € T, of G.

[0087] Note that this is only a sufficient condition, so that
port- -ids belonging to the same subtree T € T, can in fact end
up in different bins of B in the disclosed algorithm Never-
theless, this condition still ensures that paths in Qs)t inter-
secting with the same bin B € B share a single connection
point on Q_, and, therefore, can enforce implicit path con-
straints on Q,,. The disclosed technique for aggregating
ports into bins relies on the following property, which
follows directly from the fact that the disclosed network
graph G is a tree.

[0088] Any pair of paths Q, ,, Q, not intersecting Q,,
(ie., Qu, Q. € Q. N with P_, N P, =¢ belong to the
same subtree T € T, ;. Thus, all ports on any two intersecting
paths in QS M can be safely placed in the same bin in B.

[0089] The disclosed algorithm works by initially defin-
ing: (1) for every node v ¢ P_, a bin B, containing all of v’s
ports, i.e., B,={(v, K)|(v, k) is a port of v}; and (2) for every
pathQ, € Qs)tNI, abin B, =P, ,. The algorithm then forms

Dec. 16, 2004

the final collection of bins B by iteratively merging any two
bins whose intersection is non-empty until all bins are
disjoint.

[0090] Turning now to FIGS. 4A and 4B, illustrated are
exemplary network graphs in which implicit path constraints
are computed. Given that the port bins B computed above
are guaranteed to connect to a single point of the Q,,
skeleton path they can be used in a manner equivalent to
subtrees in T, for computing implicit path constraints on
Q,..- Consider two (intersecting) paths Q. ,, Q. € Q, that
also intersect with a single bin B € B, and Tet | and L,
denote their respective intersections with P ;. Since B has a
single connection point to Q_, the segments of P_, defined
by L, >"and I, ,*" have a common end-point (sw1tch or hub)
on the Q.. path

[0091] IfI_,>"and I, >" are disjoint, they are on opposite
sides of the common connection point (FIG. 4A). Thus,
their union I_,>* U I, >, defines a contiguity constraint on

[0092] If, on the other hand, I__*" and I *" intersect, they
are on the same side of their common end- p01nt (FIG. 4B)
and one of them contains the other. Suppose that I > >

> Then, I_,>'~1, ,>" also defines a contiguity constraint
on QS)t In general, givenQ, ,, Q, € Qs)tI intersecting with
a single port bin B € B, all the implicit contiguity constraints
added to the disclosed path constraint set S are: I > U
L5 L NS L1, > (where, of course, empty

sets are ignored).

[0093] The computed port bins and the single connection
point property can also be exploited to infer order con-
straints on the QS . skeleton path. Consider two paths Q
Q € QS " intersecting with bin B € B, and assume that I,
and I, are disjoint (FIG. 4A) (the case of 1ntersect1ng
1%, I, > can be handled similarly).

XZ’UV

[0094] The key to determining the order of I " and I, >
on the s-t path lies in discovering if one of the two path
segments precedes or succeeds the connection point of the B
bin. To describe the two scenarios succinctly, the functions
FIRST(Q,S) and LAST(Q,S) are defined to receive as input
a skeleton path Q and a set of ports S, and return the index
j of the first and last (respectively) subset U; € Q that
intersects S. It is apparent that, if FIRST (QX =
t)<LAsT(Q, , B), then (since the s -t and x-z paths have tIie
same orientation) the segment I_,>* precedes the connecting
point of bin B and the path constraint can be concluded to
be <L, I,.,>>. Otherwise, if LAST(Q,, L.~
)>FIRST(Q, » B), then the segment I__*' succeeds the
connecting point of B, giving the path constraint <L,
L. ,>*>. (Note that at most one of the above conditions can
hold since, by definition, B N I,_,>'=¢). If both conditions
are false, the corresponding FIRST/LLAST conditions for
Q,, are checked to see if they can determine an ordering for
the two path segments.

[0095] Turning now to FIGS. 5A through 5D, illustrated
respectively are (5A) an exemplary network graph, (5B)
complete address forwarding tables for the exemplary net-
work graph of FIG. 5A, (5C) initial skeleton paths in the
exemplary network graph of FIGS. 5A and (5D) refined
skeleton paths in the exemplary network graph of FIG. 5A.

[0096] In this example, hosts (i.e., leaf nodes) comprise
four different subnets: {u,v}, {s,t}, {x,z} and {r,q}, and each
switch (i.e., internal node) comprises a single-element sub-

XZ’

US 2004/0255184 Al

net. The complete element AFTs are given in FIG. 5B and
the initial collection of skeleton paths, Q, is shown in FIG.
5C.

[0097] Consider the path constraints Q imposes on the
Q, . path. From the AFT information, the constraints <{d},
{dVs> and <{c,}, {c,}> are directly concluded Also, P,
intersects both P_, and P_, with I_*" and I, —{cl, c2
Further, since both P, and P, mtersect with the bin B,
{ry, a;, a,, by, b, ql} (resultmg from P, e Q. , the
implicit contiguity constraint <{d3, cl, c2} o> results. The
only u-v path arrangement satisfying the above constraints is

Quo=<{u,}, {ds}, {d.}, {c1}, {ca}s {vi}>

[0098] Now, consider path Q. Through the intersection
of P, and P, , the (explicit) contiguity constraint <{a,, a,,
by, b2} o> results Also, through the intersection of P, ; and
P, , with both P_, and the bin B,={d,, d,, d,}, the (1mphc1t)
contiguity constraint <{b,, b,, ¢, ¢,}, ¢> can be inferred.
These two constraints are not sufficient to define the port
order on P, since both s-a-b-c-t and s-c-b-a-t satisfy them.

[0099] However, with the knowledge of the complete u-v
path (above) an additional implicit order constraint can be
inferred. Specifically, since I, > and I_,>* are disjoint and
LAST(Q, ., I,.*9= 5>FIRST(Qu « Bg)=2, the connection
point of B, must precede the ¢ node on the s-t path. This
implies the constraint <I_,>", I, ,*>=<{b;, b,}, {cy, &,}>
which, in turn, uniquely identifies the underlying s-t path as
s-a-b-c-t.

[0100] Turning now to FIG. 6, illustrated is a pseudocode
listing of a COMPUTECONSTRAINTS routine constructed
according to the principles of the present invention. As is
also clear from the discussion in the example above, it may
be impossible to use the disclosed path constraints to infer
the complete path topology for a given skeleton path in Q
unless some other path(s) in Q have been appropriately
refined (e.g., comsider Q,, and Q,, in the disclosed
example).

[0101] A challenge at this point stems from the disclosed
partial knowledge of the ports that lie in the “single-
connection-point™ bins used to infer implicit constraints.
Thus, the disclosed solution (FIG. 2) needs to employ
iterative-refinement passes over all skeleton-paths in Q until
no further path refinements are possible.

[0102] The Skeleton-Path Refinement Algorithm

[0103] Once the disclosed topology-discovery algorithm
has computed the set of path constraints S imposed on the
Q_, skeleton path, it invokes the REFINEPATH procedure
(step 7 in FIG. 2) to “refine” the ordering of the port-ids in
the P, set using the newly-discovered constraints. The
disclosed REFINEPATH algorithm is a recursive procedure
that receives as input the collection of port-ids P along the
network path being considered, as well as a collection of
path constraints S on the arrangement of those ports. Its
output is a skeleton path Q=<{U,, U,, . .., Ug}> over the
ports in P that satisfies all the constraints in S. Furthermore,
if the constraint collection S uniquely defines the port order
for P, every subset U; in the output path Q comprises a single
port in P (ie., Q defines the complete port order for the
considered network path).

[0104] Abstractly, the disclosed REFINEPATH algorithm
consists of three key steps: (1) mapping the path-constraint

Dec. 16, 2004

collection S to a collection of contiguity constraints R; (2)
using R and S to construct an auxiliary skeleton path L; and
(3) recursing the refinement process on each subset of the
auxiliary skeleton path L to obtain the output skeleton path
Q. Intuitively, the set of contiguity constraints R enables
segments of port-ids on the target path that are “connected”
through the given set of constraints to be identified. These
are basically the only (sub)paths for which a complete port
order (using the given constraints) can be recovered.

[0105] The subsets in the auxiliary skeleton path L are
then constructed using the derived contiguity constraints R;
the goal here is to ensure that the disclosed refinement
algorithm can safely recurse within each individual subset of
L while only considering the constraints “local” to this
subset. Further, the path constraints in S are used to deter-
mine the order of subsets in L. Finally, each subset of L is
recursed and the skeleton (sub)paths returned are concat-
enated to obtain the final skeleton path Q.

[0106] In the remainder of this section, the construction of
the contiguity constraint set R and the auxiliary skeleton
path L will first be described. Then, the disclosed overall
REFINEPATH algorithm will be discussed in detail.

[0107] The Contiguity Constraint Set R and Connected
Port Groups.

[0108] The contiguity constraint set R essentially contains
all the contiguity constraints that can be directly inferred
from the input set of path constraints S. (To simplify the
exposition, R is treated as a set of port-id sets, i.e., each R
€ R is a set of ports.)

[0109] To ensure that R covers all ports in P, singleton
constraints are added for each port in P. Excluded from R are
the “trivial” contiguity constraints P and (p. Thus, R is
defined:

[0110] R={S]', S, S,' U SAV<S,", S2>eSU{{k}|Vk €
P}-{P, ¢}

[0111] Two sets R, R'e R are said to be “connected” in R
if there exists a sequence of sets R;=R, R,, . . . , R,.=R'in
R such that R;_; intersects R; for every j=2, . . . , k. A
sub-collection C = R is called a “connected group” in R if
every pair R, R'e C is connected in C and any R € C is not
connected with any set in R-C.

[0112] C=Ug.c R, i.e., the union set of the collection C is
also defined. It is straightforward to see that the union sets
of all connected groups of R are disjoint and form a partition
of P. If the path constraints S uniquely determine the
arrangement of ports in P, the derived contiguity constraints
R satisfy one of the following two conditions: (a) R com-
prises a single connected group; or, (b) R contains two
connected groups C;, C, < R and S contains the path
constraint <C,,C,> or <C,, C;>, where C; is the union set for
group C;.

[0113] Intuitively, the above states that, for S to determine
a unique arrangement of P, the contiguity and order con-
straints in S should span the entire set of ports in P.
Otherwise, segments of the path would certainly exist where
the port arrangement cannot be determined based on the
constraints. Note that case above could only arise when C,
U C,=P, since the (trivial) contiguity constraint P has been
excluded from R.

US 2004/0255184 Al

[0114] The Auxiliary Skeleton Path L.

[0115] Consider a connected group C in R, and let C = P
denote its union set. The goal is to construct a valid port
arrangement for the ports in C using the given set of path
constraints. Intuitively, the disclosed algorithm accom-
plishes this by building a (coarse) auxiliary skeleton path
L=<U,, ..., Up> and then recursing on each subset U; of
L, concatenating the results of the recursive calls.

[0116] However, to be able to recurse independently on
each U; subset using only its “local” set of path constraints,
this auxiliary skeleton path L needs to be constructed
carefully. The construction is based on the concept of
intersecting, non-containing (INC) port sets that will now be
defined.

[0117] Two portsets R;, R; = P are said to be intersecting,
non-containing (“INC”) if and only if they intersect and

neither one of them contains the other, i.e., R; N R;=¢, R; ¢R;

and R; ¢R;. It is easy to see that having a contiguity
constraint R in C that is INC with one of the subsets U; in
the skeleton path L essentially means that the U; subset
cannot be independently recursed.

[0118] The problem, of course, is that R would also
intersect neighbors of U; in L and the ports in these sets
intersected by R cannot be arranged independently since that
would not guarantee that R is satisfied in the final (concat-
enated) arrangement. On the other hand, recursing on U; is
straightforward if R is fully contained in or fully contains U;.

[0119] In the former case, R is passed as an argument to
the recursive call and in the latter R has no effect on the
arrangement of U, since U, is already required to be con-
tiguous (by the skeleton path definition). Thus, an auxiliary
path L that is INC-free for C should be built as defined
below.

[0120] The skeleton path L=<U,, . .., Uy > is said to be
“INC-free” for C if and only if for every contiguity con-
straint R € C either (a) R is contained in a single U; e L (i.e.,
R ¢ U;. for some j); or (b) R is equal to the union of a
(sub)sequence of subsets in L (i.e., R=U;_** U; for some
12k, =2k, Z|L).

[0121] Turning now to FIGS. 7A and 7B, illustrated are
exemplary network graphs in which INC-free auxiliary
paths are built. One method for building a skeleton path
L=<U,, . .., UL|> that is INC-free for C is as follows.
Initially, the largest port set R; € C and any set R; € R that is
INC with R; are found. Note that two such sets must exist
since Cis a single connected group and the trivial contiguity
constraint C is ignored.

[0122] From these two sets, an initial skeleton path with
three subsets R;-R;, R; M R; and R;-R; is constructed. At this
point, the orientation of the L path is arbitrary; it is resolved
using the given path constraints S after the whole INC-free
path has been built.

[0123] Let L=<U,, ..., Uy> denote the current state of
the skeleton path and let P; be the set of all ports in L. While
there exists a set R € C that is INC with P; or one of the
subsets U; € L (e.g., FIG. 7A) the disclosed algorithm
performs the following operations. First, every U; € L that is
INC with R is replaced by the two subsets U;-R and U; N
R. The order of these two subsets in L is determined as
follows.

Dec. 16, 2004

[0124] If j<|L| and R intersects Uj,,, or j=|L| and R does
not intersect U;_;, then U—R precedes U; N R in L (e.g., the
split of U, into U,' and Uy;' in FIG. 7B). Otherwise, the two
subsets are inserted in the opposite order in L. Second,
suppose that R and PL are INC; this implies that R contains

nodes that are not included in the current skeleton path L.

[0125] After the above splitting of U;’s based on R, it is
apparent that R must completely contain either the first or
the last subset of L. If U; < R, then the set R-P; is inserted
as the first set of L, i.e., L=<R-P; >0 L (where “o” denotes
path concatenation); otherwise, L is set equal to L o<R-P; >
(e.g., attaching Uy' to L in FIG. 7B). Finally, the set P; =P,
U R is updated and a new contiguity constraint R is selected.
Given a single connected group of contiguity constraints C
< R, the above-described procedure constructs a skeleton
path for C that is INC-free for C.

[0126] Remember that the INC-free path L. was built
without paying attention to its orientation. Thus, at this
point, either L or REVERSE(L) is the correct skeleton path
for C (where REVERSE is a function that reverses the subset
order in a given skeleton path). As will become clear in the
description of the disclosed refinement algorithm, the ori-
entation for L is resolved using the input set of path
constraints S.

[0127] Turning now to FIG. 8, illustrated is a pseudocode
listing of a REFINEPATH routine constructed according to
the principles of the present invention. In its first phase
(steps 2-6), REFINEPATH builds the collection of inferred
contiguity constraints R on P and the resulting connected
port groups, and decides if S can define a unique port
arrangement for P.

[0128] If more than two connected groups are discovered,
the disclosed algorithm cannot hope to build a skeleton path
with ordered subsets of P. Accordingly, it returns the trivial
skeleton path L=<P>. If exactly two connected groups (with
union sets C; and C,) are found in R, procedure ORIENT-
PATH (described in detail below) is invoked to determine
the correct ordering of C; and C, in the skeleton path using
S.

[0129] Then, in steps 30-37, the disclosed algorithm
recurses on the two union sets C, and C, to determine their
internal port arrangements and appropriately concatenates
the resulting subpaths. Finally, if R comprises a single
connected port group, REFINEPATH builds the auxiliary
INC-free skeleton path L as described earlier in this section
(steps 11-26) and uses the ORIENTPATH procedure to
determine the correct orientation for L. Then, again in steps
30-37, REFINEPATH recurses on each (non-singleton) sub-
set U, in the L path using only the constraints local to that
subset (i.e., constraints <S,;', S;>> € S such that S;' U S;* =
U;) and concatenates the results of the recursive calls to
build the final output path Q.

[0130] Turning now to FIG. 9, illustrated is a pseudocode
listing of an ORIENTPATH routine constructed according to
the principles of the present invention. The ORIENTPATH
procedure uses the original set of path constraints S to
identify the correct direction for an input skeleton path L.
ORIENTPATH relies on the two functions FIRST (L, S) and
LAST (L, S) introduced above for identifying the index of
the first/last occurrence of an element of S in the L path.

[0131] More specifically, consider a path constraint <S;?,
S;*>€ S such that FIRST (L, S;")<LAST (L, S;?). Then, since

US 2004/0255184 Al

the constraints in S characterize a true network path, the
ports in S;* should precede those in S;* and, thus, L is the
correct skeleton path. Similarly, if a path constraint <S;%,
S;*>€ S exists such that FIRST (L, S;*)<LAST (L, S;%), the
correct path is REVERSE(L). Otherwise, if no constraint in
S can determine the direction of the L path, ORIENTPATH
returns a trivial single-set skeleton path.

[0132] From the above, it is apparent that the REFINE-
PATH algorithm returns a feasible skeleton path for the port
collection P. Further, if S uniquely defines the port arrange-
ment in P, REFINEPATH will return the (unique) correct
path topology.

[0133] Inferring the Network Topology

[0134] The final step of the disclosed topology-discovery
algorithm is to use the data in the resolved skeleton paths to
infer the connectivity information for switches and hubs in
the underlying network (procedure FINDCONNECTIONS
in FIG. 2). Given a set of resolved skeleton paths (i.e., path
for which a complete port arrangement has been deter-
mined), the procedure for inferring element connectivities is
fairly straightforward. Ports that are adjacent on some path
are directly connected. If a port has more than one neighbor
in the resolved paths, a hub is placed to interconnect that port
with all its neighboring ports (as well as all other ports
connected to ports already on the hub).

[0135] The disclosed topology-discovery algorithm (illus-
trated in FIG. 2) runs in time that is polynomial in the
number of network nodes and is complete for the given AFT
and subnet information. That is, if the input SNMP and
subnet data is sufficient to uniquely identify the physical
topology of the underlying network, then the disclosed
algorithm recovers that (unique) topology. This appears to
be a significant contribution to the art.

[0136] A Sample Execution

[0137] Turning now to FIGS. 10A through 10F, illus-
trated are: (10A) an exemplary true network topology, (10B)
initial skeleton paths in the exemplary network graph of
FIG. 10A, (10C) skeleton paths in the exemplary network
graph of FIG. 10A after a first iteration, (10D) skeleton
paths in the exemplary network graph of FIG. 10A after a
second iteration, (L0E) skeleton paths in the exemplary
network graph of FIG. 10A after a third iteration and (10F)
resulting physical connections in the exemplary network
graph of FIG. 10A.

[0138] In this section, some key steps of the disclosed
topology-discovery algorithm are presented in inferring the
topology of the example network illustrated in FIG. 1A,
where it is assumed that the hosts comprise four different
subnets {s,t}, {x,y}, {u,v} and {r,q}, and each switch a, b,
¢, d, e belongs to a different subnet. The goal is to demon-
strate how the disclosed algorithm accumulates partial topol-
ogy information during skeleton-path refinement iterations
until the complete network topology is recovered.

[0139] Let Q' denote the skeleton-path collection at the
end of the i-th iteration (Q° is the initial set). To simplify the
discussion, it is assumed that refinements during the i-th
iteration only use skeleton paths in Q' The initial skeleton
path collection Q° Q={Q, %, Q,,% Q,.°% Q, q °} is shown in
FIG. 10B. Suppose that the paths are refined in the order P,

Dec. 16, 2004

P, .. P, P For Qs)t0 collection of path constraints Ss)t1 is

computed:

<{si} {al, a2, b1, b2, cl, c2, dl, d2} >,
<{al, a2, bl, b2, cl, c2,dl, d2}, itl} >,
<{bl, b2, cl, c2,dl, d2)}, ¢ >
Slo=q8y= <{bl, b2, cl, 2}, o>
<{al, a2, bi, b2}, ¢ >
<{al}, {a2} >, S; = <{bi}, {b2} >,
<{cl}, {c2} >, Sq = <{di}, {d2} >

[0140] where S;-S; follow from the intersections of Q,,
with paths in Q° (1nc1ud1ng Q. itself), and S-S, come from
the AFT information at intermediate nodes.

[0141] To refine P, to S, is used to compute the
INC-free auxiliary path L, —<{sl} {al, a2, b1, b2, cl, c2,
d1, d2}, {t1}> which has the correct orientation (by con-
straints S., S,). The subset U,={al, a2, b1, b2, cl, ¢2, d1,
d2}e L is then recursed, and the constraints “local” to U,
(i-e., S5-S;) are used to compute the subpath L'=<{al, a2},
{b1, b2}, {c1, 2}, {d1, d1}>.

[0142] Unfortunately, at this point, ORIENTPATH cannot
use the input constraints to determine the correct direction
for L', so it returns the set U,, which means that the skeleton
path returned by REFINEPATH is exactly the same as Q, °.

[0143] Next, for Q
puted:

°, the path constraints Sey ! are com-

X,y

<{xi},{b1,b2, cl, c2,dl, d2, e2, el} >,

<{bl, b2, cl,c2,dl, d2, el, el}, {yl} >,

<{bl, b2, cl,c2,dl, d2.}, ¢ >

le,y =48y = <{bl, b2,cl,c2,el}, ¢ >
<{bl, b2}, ¢ >

<{bI}, {b2} >, 857 = <{el}, {2} >,

<{dI}, {d2} >, Sg = < {e2}, {el} >

[0144] To refine P_ , REFINEPATH computes the INC-
free auxiliary path L, =<{x1}, {b1, b2, c1, ¢2, d1, d2, €2,
el} {y1}>, and recurses to refine its second subset

U,=<{bl, b2, c1, 2, d1, d2, €2, el}> e L. Using con-
straints S;, S,, SS, and SQ, it computes the subpath L'={d1,
d2}, {b1, b2, c1, 2}, {d1, d2}>. Then, by constraint S,,
ORIENTPATH concludes the reverse direction for L,
returning the final subpath <{e2}, {e1}, {b1, b2, cl, 2},
{d1, a2}>.

[0145] Additional recursive calls resolve the port order for
subset {d1, d2} but not for subset {bl b2, cl, ¢2}; thus, the
final x-y skeleton path returned is Q —<{62} {el}, {bl
b2, c1 c2}, {dl d2}>. The other two s tefined skeleton paths
Q.. and Q.4 1 are computed similarly, and the path collec-
tlon Q'is shown in FIG. 10C.

[0146] Note that, after the first refinement iteration, none
of the paths in Q' specifies a complete arrangement. How-
ever, as will now be shown, the refined path Qx)y1 € Ql}
allows Q, to be refined in the second iteration of the
disclosed algorithm.

US 2004/0255184 Al

[0147] Consider the set of path constraints S, ;> computed
for Q,, during the second iteration. This set is identical to
S#! with the exception of constraint S, (resulting from the
projection of Q__ _ onto Q,); more specifically, constraint S,
for this second iteration over Q,, is S;=>{b1, b2, cl, 2},
{d1, d2}. Thus, after REFINEPATH recomputes the subpath
L'=<{al, a2}, {b1, b2}, {c1, c2}, {d1, d2}>, ORIENTPATH
can now use constraint S5 to determine the correct direction
for L. The resulting s-t skeleton path returned is Q, =

<{s1},{a1},{a2},{b1},{b2}{c1}.{c2}.{d1},{d2},
{t1}>(FIG. 10D)

[0148] In its third iteration, the topology-discovery algo-
rithm actually recovers the complete port arrangement for all
skeleton paths as shown in FIG. 10E. Finally, the FIND-
CONNECTIONS procedure uses the resolved paths to dis-
cover the element connectivities illustrated in FIG. 10F. It
is apparent that the connections discovered specify exactly
the true network topology shown in FIG. 10A.

[0149] Turning now to FIG. 11, illustrated is a block
diagram of a system for determining a physical topology of
a network having multiple subnets constructed according to
the principles of the present invention.

[0150] The system, generally designated 1100, is illus-
trated as including a skeleton path initializer 1110. The
skeleton path initializer 1110 uses addressing information
(such as AFT information) from elements (such as routers
and hubs) in the network to develop a collection of skeleton
paths of direct physical connections between labeled ones of
the elements. Because the system 1100 is designed to
accommodate networks having multiple subnets, the skel-
eton paths traverse multiple ones of the subnets. In the
illustrated embodiment, the skeleton path initializer 1110
performs the functions contained in the INITSKELETON-
PATH procedure, which has been described in detail above.

[0151] The system 1100 is further illustrated as including
a skeleton path refiner 1120. The skeleton path refiner 1120
is associated with the skeleton path initializer 1110 and
refines the collection by inferring, from the direct physical
connections and path constraints derived therefrom, other
physical connections in the skeleton paths involving unla-
beled ones of the elements. In the illustrated embodiment,
the skeleton path initializer 1110 performs the functions
contained in the REFINEPATH procedure, which has been
described in detail above. It should be understood that the
skeleton path initializer 1110 and the skeleton path refiner
1120 may operate iteratively to initialize and refine skeleton
paths in the network (initialized skeleton paths are refined,
giving rise to the opportunity to initialize further skeleton
paths).

[0152] The skeleton path refiner 1120 may perform addi-
tional functions as well. The skeleton path refiner 1120 may
iteratively refine the collection until at least one of the
skeleton paths consists of singletons. The skeleton path
refiner 1120 may further iteratively refine the collection until
all of the skeleton paths that can be fully resolved consist of
singletons. The constraints that are considered during refine-
ment may consist solely of explicit constraints, or may also
include implicit constraints. In the latter case, the constraints
may be determined according to the COMPUTECON-
STRAINTS procedure, which has been described in detail
above. Finally, the skeleton path refiner 1120 may use the
resolved paths may use the resolved paths to discover the

Dec. 16, 2004

element connectivities as per the FINDCONNECTIONS
procedure, which has been described in detail above.

[0153] Turning now to FIG. 12, illustrated is a block
diagram of a method of determining a physical topology of
a network having multiple subnets carried out according to
the principles of the present invention. The method, gener-
ally designated 1200, is invoked when the ISO layer-2
topology of an unknown network is desired to be deter-
mined. The method 1200 includes a step 1210 in which
addressing information from elements in the network is used
to develop a collection of skeleton paths of direct physical
connections between labeled ones of the elements. As above,
the skeleton paths traverse multiple of the subnets.

[0154] Next, in a step 1220, explicit and implicit path
constraints are determined for the collection of skeleton
paths. Then, in a step 1230, the collection of skeleton paths
is refined by inferring, from the direct physical connections
and path constraints derived therefrom, other physical con-
nections in the skeleton paths involving unlabeled ones of
the elements. Finally, in a step 1240, the resolved paths are
used to discover the element connectivities. The result is an
accurate, layer-2 representation of the network that finds
substantial utility in diagnosing problems that may occur
from time to time in the network.

[0155] From the above, it is apparent that the present
invention provides the first complete algorithmic solution
for discovering the physical topology of a large, heteroge-
neous network (typically an Ethernet network) comprising
multiple subnets and perhaps dumb or uncooperative net-
work elements. The disclosed algorithm that represents one
embodiment of the present invention relies on standard
SNMP MIB information that is widely supported in modern
IP networks and is the first SNMP-based topology-discovery
tool to offer strong completeness guarantees for recovering
the true network topology from the given MIB data.

[0156] Although the present invention has been described
in detail, those skilled in the art should understand that they
can make various changes, substitutions and alterations
herein without departing from the spirit and scope of the
invention in its broadest form.

What is claimed is:

1. A system for determining a physical topology of a
network having multiple subnets, comprising:

a skeleton path initializer that uses addressing information
from elements in said network to develop a collection
of skeleton paths of direct physical connections
between labeled ones of said elements, said skeleton
paths traversing multiple of said subnets; and

a skeleton path refiner, coupled to said skeleton path
initializer, that refines said collection by inferring, from
said direct physical connections and path constraints
derived therefrom, other physical connections in said
skeleton paths involving unlabeled ones of said ele-
ments.

2. The system as recited in claim 1 wherein said skeleton
path refiner iteratively refines said collection until at least
one of said skeleton paths consists of singletons.

3. The system as recited in claim 1 wherein said con-
straints are selected from the group consisting of:

US 2004/0255184 Al

explicit constraints, and

implicit constraints.

4. The system as recited in claim 1 wherein said skeleton
path refiner refines said collection by creating a map
between said path constraints and contiguity constraints,
constructing an auxiliary skeleton path from said map,
recursing on each subset of said auxiliary skeleton path to
obtain output skeleton subpaths and concatenating the out-
put skeleton subpaths to obtain a final skeleton path.

5. The system as recited in claim 1 wherein said skeleton
path refiner further determines an orientation of at least
some of said skeleton paths.

6. The system as recited in claim 1 further comprising a
connection finder, associated with said skeleton path refiner,
that infers connectivity as among adjacent ports on said
skeleton paths.

7. The system as recited in claim 1 wherein said network
is an Ethernet network and said addressing information is
contained in address forwarding tables associated with said
labeled ones of said elements.

8. A method of determining a physical topology of a
network having multiple subnets, comprising:

using addressing information from elements in said net-
work to develop a collection of skeleton paths of direct
physical connections between labeled ones of said
elements, said skeleton paths traversing multiple of
said subnets; and

refining said collection by inferring, from said direct
physical connections and path constraints derived
therefrom, other physical connections in said skeleton
paths involving unlabeled ones of said elements.

9. The method as recited in claim 8 wherein said skeleton
path refiner iteratively refines said collection until at least
one of said skeleton paths consists of singletons.

10. The method as recited in claim 8 wherein said
constraints are selected from the group consisting of:

explicit constraints, and

implicit constraints.

11. The method as recited in claim 8 wherein said skeleton
path refiner refines said collection by creating a map
between said path constraints and contiguity constraints,
constructing an auxiliary skeleton path from said map,
recursing on each subset of said auxiliary skeleton path to
obtain output skeleton subpaths and concatenating the out-
put skeleton subpaths to obtain a final skeleton path.

12. The method as recited in claim 8 wherein said skeleton
path refiner further determines an orientation of at least
some of said skeleton paths.

Dec. 16, 2004

13. The method as recited in claim 8 further comprising
a connection finder, associated with said skeleton path
refiner, that infers connectivity as among adjacent ports on
said skeleton paths.

14. The method as recited in claim 8 wherein said network
is an Ethernet network and said addressing information is
contained in address forwarding tables associated with said
labeled ones of said elements.

15. A system for determining a physical topology of an
Ethernet network having multiple subnets, comprising:

a skeleton path initializer that uses address forwarding
information from elements in said network to develop
a collection of skeleton paths of direct physical con-
nections between labeled ones of said elements, said
skeleton paths traversing multiple of said subnets; and

a skeleton path refiner, coupled to said skeleton path
initializer, that refines said collection by inferring, from
said direct physical connections and explicit and
implicit path constraints derived therefrom, other
physical connections in said skeleton paths involving
unlabeled ones of said elements.

16. The system as recited in claim 15 wherein said
skeleton path refiner iteratively refines said collection until
at least one of said skeleton paths consists of singletons.

17. The system as recited in claim 15 wherein said
skeleton path refiner refines said collection by creating a
map between said path constraints and contiguity con-
straints, constructing an auxiliary skeleton path from said
map, recursing on each subset of said auxiliary skeleton path
to obtain output skeleton subpaths and concatenating the
output skeleton subpaths to obtain a final skeleton path.

18. The system as recited in claim 15 wherein said
skeleton path refiner further determines an orientation of at
least some of said skeleton paths.

19. The system as recited in claim 15 further comprising
a connection finder, associated with said skeleton path
refiner, that infers connectivity as among adjacent ports on
said skeleton paths.

20. The system as recited in claim 15 wherein said
skeleton path initializer and said skeleton path refiner are
embodied in sequences of software instructions executable
in a general purpose computer.

21. The system as recited in claim 15 wherein said
skeleton path initializer is embodied in an InitSkeletonPaths
routine, said skeleton path refiner is embodied in a Refine-
Path routine and said system further comprises Compute-
Constraint and FindConnections routines.

