US 20060075489A1

a2y Patent Application Publication o) Pub. No.: US 2006/0075489 A1

a9y United States

Ganguly et al.

43) Pub. Date: Apr. 6, 2006

(54) STREAMING ALGORITHMS FOR ROBUST,
REAL-TIME DETECTION OF DDOS
ATTACKS

(75) Inventors: Sumit Ganguly, Bhopal (IN); Minos
Garofalakis, Morristown, NJ (US);
Rajeev Rastogi, New Providence, NJ
(US); Krishan Sabnani, Westfield, NJ
(US)

Correspondence Address:
SYNNESTVEDT & LECHNER, LLP
2600 ARAMARK TOWER

1101 MARKET STREET
PHILADELPHIA, PA 191072950

(73) Assignee: Lucent Technologies, Inc., Murray Hill,
NJ

(21) Appl. No: 10/954,901

(22) Filed: Sep. 30, 2004
Publication Classification
(51) Int. CL
GO6F 12/14 (2006.01)

(52) US. Cle oo 726/22

(57) ABSTRACT

A distinct-count estimate is obtained in a guaranteed small
footprint using a two level hash, distinct count sketch. A first
hash fills the first-level hash buckets with an exponentially
decreasing number of data-elements. These are then uni-
formly hashed to an array of second-level-hash tables, and
have an associated total-element counter and bit-location
counters. These counters are used to identify singletons and
so provide a distinct-sample and a distinct-count. An esti-
mate of the total distinct-count is obtained by dividing by the
distinct-count by the probability of mapping a data-element
to that bucket. An estimate of the total distinct-source
frequencies of destination address can be found in a similar
fashion. By further associating the distinct-count sketch with
a list of singletons, a total singleton count and a heap
containing the destination addresses ordered by their dis-
tinct-source frequencies, a tracking distinct-count sketch
may be formed that has considerably improved query time.

T T T T T T T T

19 o

/gi(u v) S |

|

r HASH :

fup.vp.d) TABLES 0 13 |
-.. l

: |

:

COUNT,, [COUNT, [..... [COUNT I

o 0 1 20K ;|

\ i |

i

___ |

F(u, v} COUNT occ |

|

|

SINGLETONS (b) topDestHeap(b) :

| NUMBER OF SINGLETONS |~ |
L. . D———— _

Patent Application Publication Apr. 6,2006 Sheet 1 of 5 US 2006/0075489 A1

FIG. 1

19~
hiu,v) b‘

r HASH
TABLES

|
! 6(1ogm)
|
|

Patent Application Publication Apr. 6,2006 Sheet 2 of 5 US 2006/0075489 A1

FIG. 2
[T T T T T T T T
i " 18 B
| s
: | g]. u.v
| | 8l liggm) L ——etetet COUNT | COUNT, | ... [COUNT 75
: N
: | r HASH 19
| (hlu.v) bi—t TABLES 0

COUNT1 COUNTZOOH

___ _
32 3)
er (y, v} COUNT occ -
)
SINGLETONS (b) topDes teap{b)
| NUMBER OF SINGLETONS |~ ¢
. - =]

Patent Application Publication Apr. 6,2006 Sheet 3 of 5 US 2006/0075489 A1

FIG. 3

0BTAIN DATA ELeMent Y0

!

FIRST-LEVEL HASH: h:[me]-> {0....8(log m}, 42
WITH Pr{hi(x) =b]-1/2b+1 FOR ANY xe [mZ]

!

SECOND-LEVEL HASH: gi: [(m%])-> (1,...S) WITH A UNIFORM }~ %"
PROBABILITY FOR AN ARRAY OF r HASH TABLES, EACH TABLE
HAVING 5 SECOND-LEVEL HASH BUCKETS

!

UPDATE TOTAL ELEMENT COUNTERS FOR ALL SECOND-LEVEL HASH |46
BUCKETS WHERE THE DATA-ELEMENT MAPS: r COUNTERS

|

UPDATE BIT-COUNTERS: Olrlog m) COUNTERS |48

FIG. 4 p

ACCUMULATE SINGLETON SAMPLE OF SIZE @s):
START AT TOP FIRST-LEVEL HASH BUCKET (ﬂlog m) :
FOR EACH BUCKET: IDENTIFY ALL SINGLETONS BY COMPARING BIT-COUNTERS
WITH TOTAL ELEMENT COUNTERS FOR ALL s BUCKETS OF ALL r SECOND-LEVEL HASH TABLES.
ADD TO SINGLETON SAMPLE,
KEEP GOING TO NEXT BUCKET UNTIL A LARGE ENOUGH NUMBER OF SINGLETONS HAS
BEEN ACCUMULATED AT BUCKET WITH INDEX b

!

CALCULATE f, FOR ALL v IN SAMPLE }~2°

|

SORT f, |~
SELECT TOP k fy | ~3b

|

RETURN TOP k 2bf, =

Patent Application Publication Apr. 6,2006 Sheet 4 of 5

FIG. 5

0BTAIN DATA-ELEMENT Y0

|

FIRST-LEVEL HASH: h:[m}-> {0,...6(log m},
WITH Prih{x) =b]=1/20+1 FOR ANY xe [m?)

US 2006/0075489 A1l

|

SECOND-LEVEL HASH: gi: [n%)-> {1....S) WITH A UNLFORM
PROBABILITY FOR AN ARRAY OF r HASH TABLE. EACH
HAVING s SECOND LEVEL HASH BUCKETS

|44

|

UPDATE TOTAL ELEMENT COUNTERS FOR ALL SECOND-LEVEL HASH
BUCKETS WHERE THE DATA-ELEMENT MAPS: r COUNTERS

/45

1

UPDATE BIT COUNTERS: O(rlog m) COUNTERS

|48

|

EVALUATE CHANGE OF SINGLETON STATUS: r TOTAL-
ELEMENT COUNTERS COMPARED WITH Ofrlog m)
BIT COUNTERS

58

IF SINGLETON STATUS
CHANGES. CONTINUE

UPDATE SINGLETONS(b) TABLE: ONE ENTRY

_-60

'

UPDATE NUMBER OF SINGLETONS COUNTER: ONE ENTRY

|62

|

UPDATE fv HEAP IN CURRENT BUCKET, AND ALL
fv HEAPS IN BUCKETS BELOW

|_~b4

Patent Application Publication Apr. 6,2006 Sheet 5 of 5 US 2006/0075489 A1

FIG. 6 "
r
IOENTIFY HOW MANY FIRST-LEVEL HASH BUCKETS WILL BE NEEDED TO ACCUMULATE
SAWPLE OF SIZE Bls) :
START AT TOP FIRST-LEVEL HASH BUCKET (8(log m :

FOR EACH BUCKET: ADD NUMBER FROM NUMBER-OF-SINGLETONS COUNTER
UNTIL TOTAL IS @(s) AT FIRST-LEVEL HASH INDEX b: MAXIMUM OF 6(log m)

'

SELECT TOP k f, FROM vEAP |88

|

RETURN TOP k 2bf, FROM HEAP |O

US 2006/0075489 Al

STREAMING ALGORITHMS FOR ROBUST,
REAL-TIME DETECTION OF DDOS ATTACKS

FIELD OF THE INVENTION

[0001] The present invention relates to methods and sys-
tems for detecting distributed denial of service (DDoS)
attacks, and particularly to methods and systems for detect-
ing DDoS attacks on communications networks.

BACKGROUND OF THE INVENTION

[0002] Detecting a distributed denial-of-service (DDoS)
attack on a network, particularly a packet flooding DDoS
attack such as a well known TCP-SYN flood attack, is a
problem that requires monitoring a very high volume of
streaming data having both insertion and deletion events,
using a guaranteed small foot print, i.e. a guaranteed small
amount of computer memory and processing power.

[0003] Any system connected to the Internet and provid-
ing Transmission Control Protocol (TCP) based network
services (such as a Web server, file transfer protocol (FTP)
server, or mail server) is potentially vulnerable to a TCP-
SYN flood attack, because of the manner in which a TCP
connection is established. When a client device attempts to
establish a TCP connection with a server, an initial, pre-
determined sequence of messages are exchanged. The client
first sends a synch (SYN) message containing its internet
protocol (IP) address to the server. The server acknowledges
this with a synch acknowledged (SYN-ACK) message and
the client responds with an acknowledge (ACK) message to
complete the connection.

[0004] The potential for abuse arises at the point where the
server system has sent a SYN-ACK message back to the
client but has not yet received the ACK message, i.e., a
half-open connection has been established. The server is
vulnerable because the data structure for storing information
about each half-open, pending connection has a finite size,
and the server has a limited area in which to store these data
structures. By creating a large number of half-open connec-
tions, the memory allocated for storing this information can
be completely filled, at which point the system can no longer
process new connections. In some operating systems, when
these data structures overflow the memory allocated to them,
system data is overwritten and the server crashes.

[0005] Creating half-open connections is easily accom-
plished by IP spoofing, i.e., by making attempts to establish
IP connections that look as if they are from a legitimate
source, but actually have randomly-chosen, fake IP
addresses. As there are no client machines sending these
attempts to connect, the connections cannot be completed,
resulting in half-open connections that persist until the
server removes them. The attacking machine (or machines)
attempts to fill, and preferably overflow, the server memory
allocated to monitoring pending connections by sending
enough spoofed connection attempts. Although there is
usually a timeout associated with a half-open connection so
that it will eventually expire, the attacking machines may
prevail by simply sending IP-spoofed connection requests
faster than the victim system expires them.

[0006] The impact of successful DDoS attacks can be
severe and widespread. The possible damage includes Ser-
vice-Level-Agreement (SLA) violations, frustrated custom-

Apr. 6, 2006

ers, and cumulative loss of business that can in some cases
amount to many millions of dollars.

[0007] To prevent such attacks, they have to be detected in
real-time so that appropriate action can be taken to mitigate
the consequences of the attack, such as diverting all traffic to
those sites under attack through specially designed filters
such as the SureArmour™ filters supplied by Riverhead
Technology of Cupertino, Calif.

[0008] The problem of effective and timely detection of
such attacks on large internet service providers’ (ISP) net-
works requires algorithms that can operate in real-time in a
data-streaming fashion to obtain accurate estimates of des-
tination machines having a large number of distinct half-
open connections.

[0009] Previous attempts to investigate DDoS attacks
have either been done off-line after the attack, or have used
hash-based filtering to identify large flows of data to par-
ticular sites. An example of a method of detecting large data
flow is described by, for instance, Estan et al. in an article
entitled “New Directions in Traffic Measurement and
Accounting” in the proceedings of the Association for
Computing Machinery (ACM) Special Interest Group on
Management of Data (SIGMOD) 2002 conference on appli-
cations, technologies, architectures, and protocols for com-
puter communications, ISSN:0146-4833, pp 323-336,
August 2002, ACM Press, New York, N.Y., the contents of
which are hereby incorporated by reference.

[0010] Large flows are, however, not necessarily a reliable
indicator of DDoS activity as specific types of DDoS, such
as the TCP-SYN flooding attack detailed above, do not
necessary result in large traffic flows. In a TCP-SYN flood-
ing attack, each malicious, half-open connection requires
only a short message, which may be a single packet, to
establish. As the SYN-ACK message remains unanswered,
with no further traffic flows for that half-open connection, an
effective attack can be mounted with data-flows that do not
exceed the normal traffic to the site. Furthermore, merely
monitoring large flows does not differentiate between DDoS
activity and legitimate flash crowds that result in an unex-
pected surge of legitimate requests following some impor-
tant event.

[0011] The methods proposed by Akella et al. in their
article entitled “Detecting DDoS Attacks on ISP Networks”
published in the Proceeding of the ACM SIGMOD/PODS
Workshop on Management and Processing of Data Streams
(MPDS) held in San Diego, Calif., June 2003, published by
ACM Press, New York, N.Y., the contents of which are
hereby incorporated by reference, have similar limitations as
they rely on maintaining profiles of activity only for
selected, popular destinations whose traffic exceeds a certain
threshold.

SUMMARY OF THE INVENTION

[0012] The present invention relates to systems and meth-
ods for estimating, and continuously tracking, distinct-
counts in a data-streaming fashion on large volumes of data
that include both insertion and deletion events. The present
invention further relates to using those estimates to obtain
and update distinct-source frequencies for destination
addresses that can be used to detect DDoS attacks in
real-time.

US 2006/0075489 Al

[0013] In a preferred embodiment of the invention, the
distinct-count estimate is accomplished in a guaranteed
small footprint by using a distinct-count sketch having two
levels of hashing. The exemplary data-elements are triples,
having a source address, a destination address and an
insertion/deletion indicator, though the system may be
applied to other, related data types. The distinct-count sketch
includes a first-level hash table, which is filled by a first-
level hash function operating on a combination of the source
and destination address. The first-level hash function is
chosen so that each of the first-level hash table buckets
accumulates an exponentially decreasing number of hashed
data-elements. All the data-elements in each of the first-level
hash buckets are then hashed to an array of second-level-
hash tables using a set of independent second-level hash
functions which uniformly map data in a first-level hash
bucket over a range of second-level hash buckets.

[0014] Each second-level hash bucket also has an associ-
ated count signature. The count signature includes a total-
element counter and a bit-location counter for every bit of
the binary representation of the combined source-destination
identifier used by the hash functions. The bit-location
counters count the number of occurrences of a 1 at that
bit-location in the data-elements hashed into that bin. The
count signature can be used to identify the singleton buckets,
i.e., the second-level hash buckets having only data-cle-
ments with a common source-destination identifier. The
singleton buckets are identified by the fact that, in a single-
ton, all the bit-location counters are either equal to zero or
equal to the associated total-element count.

[0015] A distinct-sample can be found for each first-level
bucket by identifying all the associated second-level single-
ton buckets. The distinct-count of the sample is the number
of'elements in this distinct-sample. This distinct-count of the
sample can then be used to estimate the total distinct-count
by, for instance, dividing by the probability of the first-level
hash function mapping a data-element to that bucket.

[0016] To obtain a distinct-sample of a desired approxi-
mate size, the distinct-sample in the first-level hash bucket
having the highest index is obtained. If this is not large
enough, the distinct-sample from the bucket having the next
highest index is added, until a bucket of index b is reached
where the accumulated distinct-sample is reached. The total
distinct count can then be estimated by obtaining the dis-
tinct-count of the accumulated distinct-sample and dividing
this by the probability that data-elements map to that bucket
or a higher indexed bucket, i.e. by %4°.

[0017] In a similar fashion, the distinct-samples in the
first-level buckets can also be used to obtain a list of
distinct-source frequencies of the destination addresses in an
accumulated distinct-sample, and that distinct-source fre-
quency of the sample converted to an estimate of the total
distinct-source frequency by dividing the sample result by
the same factor.

[0018] By monitoring the list of destination addresses, and
looking for destinations whose frequencies suddenly start to
grow, a DDoS attack may be detected.

[0019] In a further embodiment of the invention, the
distinct count sketch is associated with an a hash table of all
the singletons in each first-level bucket, a total count of
singletons and a heap containing the destination addresses

Apr. 6, 2006

ordered by their distinct-source frequencies in the cumula-
tive set of singletons in the current bucket and all the buckets
having a higher index. The elements are combined to form
a data structure called a tracking distinct-count sketch. The
purpose of the additional structures is to avoid the need to
build a distinct-sample from scratch each time there is a
query requiring the k destinations having the highest dis-
tinct-source frequencies. Instead, the distinct-sample is
maintained incrementally as each data-element is processed.
In the preferred embodiment, the destinations having the
distinct-source frequencies are also maintained and sorted
incrementally, further reducing query times.

[0020] Although updating a tracking distinct-count sketch
takes a longer time than updating a distinct-count sketch (the
worst case maintenance increases from O(r log m) to O(r
log m), where m is the maximum address size and r is the
number of second-level hash tables associated with each
first-level hash bucket), the query time to report the k
destinations having the largest distinct-source frequencies is
considerably reduced (from O(rs log” m) to Ok log m)
where s is the number of hash buckets in each second-level
hash table). This reduced query time allows a tracking
distinct-count sketch to be used to detect DDoS attacks on
large communications networks in real-time.

[0021] These and other features of the invention will be
more fully understood by references to the following draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 is a schematic representation of an exem-
plary embodiment of a distinct-count sketch being updated
with a data-element in a streaming fashion.

[0023] FIG. 2 is a schematic representation of an exem-
plary embodiment of a tracking distinct count sketch.

[0024] FIG. 3 is a flow chart showing an exemplary
distinct-count sketch being updated.

[0025] FIG. 4 is a flow chart showing an exemplary
distinct-count sketch being queried to obtain the k destina-
tion addresses having the largest distinct-count frequency.

[0026] FIG. 5 is a flow chart showing an exemplary
tracking distinct-count sketch being updated.

[0027] FIG. 6 is a flow chart showing an exemplary
tracking distinct-count sketch being queried to obtain the k
destination address having the largest distinct-count fre-
quency.

DETAILED DESCRIPTION

[0028] The present invention concerns methods and sys-
tems for estimating distinct-counts, i.e., counting the number
of distinct domain values in a data set, and particularly for
estimating distinct counts in a data-streaming fashion, i.e.,
by looking at each data-element only once, in a fixed order
of arrival, in data streams having both insertion and deletion
events.

[0029] A distinct-count provides the number of members
of a set of data. Distinct-count queries, sometimes referred
to as questions that can be expressed in set or frequency-
independent semantics, are of importance in many fields
including data-network management, business intelligence,

US 2006/0075489 Al

data warehousing and data mining. The classic distinct-
count query in retailing is “how many customers are buying
a particular product?” To obtain this number, the total sales
of the product have to be analyzed to eliminate duplication,
i.e., to ensure that any customer who bought the product
more than once is only counted as one distinct customer.

[0030] To answer distinct-count queries in a reasonable
time from large volumes of data, it is usual to obtain
distinct-count estimates using distinct-count sampling. In
many of these high volume applications, responding to a
distinct-count query is made more difficult because data is
typically only accessible in a data-streaming fashion, i.e.,
each data-element can only be looked at once, in a fixed
order of arrival. And then there is an even more difficult class
of problems in which the data streams have both insertion
and deletion events, and the analysis has to be done in
real-time using a limited amount of computer memory and
processing power.

[0031] Distinct-count estimates are of interest in many
computing applications where large volumes of data have to
be dealt with, including data warehousing, data monitoring
and network data management. In these environments, dis-
tinct-count estimates are used in order to quickly, accurately
and efficiently estimate quantities defined by set semantics.
An exemplary problem that can be addressed using the
distinct-count estimation techniques of the present invention
is a distributed denial-of-service (DDoS) attack on a net-
work, particularly a packet flooding DDoS attack, such as a
well known TCP-SYN message flood attack.

[0032] What is needed to reliably detect DDoS attacks in
time to avoid them is the ability to obtain a frequently
updated list of the destination servers having the highest
number of half-open connections attributable to distinct-
source addresses, i.e., a list of destination servers that have
the highest distinct-source, half-open connection frequen-
cies. This requires continuously tracking a distinct-count of
half-open connections. The distinct-count has to be accu-
rately estimated in real-time on a large volume of data
accessed in data-streaming fashion, across all destination
addresses. The estimated distinct-count also has to take into
account deletion events, i.e., those half-open connections
which are later completed by a genuine connection.

[0033] A brute-force approach to solve this problem of
explicitly maintaining the state of each possible destination
in a large network is prohibitive in a large data network.
Instead, by tracking approximate distinct-source frequen-
cies, and only tracking a small number of destinations
having the highest distinct-source frequencies, the present
invention provides a practical way of reliably detecting
DDoS in real communications networks in real-time.

[0034] Such an algorithm also makes it possible to distin-
guish between a DDoS attack and a surge in legitimate
traffic, in which the volume of data increases, but the number
of half-open connections does not rise disproportionately
because the connection requests are genuine and are soon
completed.

[0035] To detect DDoS in real systems, it is highly desir-
able that the distinct-source frequencies are obtained in a
guaranteed small time, relative to the time such an attack
takes to incapacitate a server, using a guaranteed small foot
print, i.e., a guaranteed small amount of computer memory
and processing time relative to the resources available.

Apr. 6, 2006

[0036] FIG. 1 is a schematic view of an exemplary
embodiment of a distinct-count sketch 10 being updated
with a data-element 12 in a streaming fashion. The distinct
count sketch comprises a first-level hash table 14, an array
16 of r second-level hash tables 18, a plurality of count
signatures 21, a first-level hash function h(u,v) and r second
level functions g;(u,v). The first-level hash table 14 has
O(log m) first-level hash buckets 15, filled with exponen-
tially decreasing probability by first-level hash function
h(u,v) mapping occurrences of data-element 12 from input
data stream 24. Each of the of r second-level hash tables 18
has s second-level hash buckets 19. Each count signature 21
is associated with a second-level hash bucket 15, and
comprises a total-element counter 20, and a plurality of
bit-counters 21, sufficient to count each bit of the binary
representation of the combined u,v values on which all the
hash functions operate.

[0037] In a preferred embodiment, data-element 12 is a
triple of the form (u,v,A), where u and v may represent
source and destination addresses of an IP packet flowing
from source to destination, and A represents an increment or
decrement event. For instance, in monitoring potential SYN-
flooding attacks, the attempt to originate a TCP connection
between client u and server v may be represented as data-
element (u, v,+1) and the corresponding ACK packet from
client u to server v that completes the establishment of the
legitimacy of the TCP connection may be represented as
data-element (u, v,—1).

[0038] The data-elements 12 in a packet switched network
may by obtained from a flow update stream 24 by, for
instance, using the Netflow™ v9 network monitoring tech-
nology supplied by Cisco Systems, Inc. of San Jose, Calif.
Each data-element 12 obtained in this manner is mapped to
a bucket in the the first-level hash table 14 using the
first-level hash function h, which operates on the source and
destination addresses u and v. This may be done by, for
instance, using the concatenated address pair as the value to
hash. Assuming that each IP address takes a value in the
integer domain [m]={0, . . . m~1}, an address pair (u,v) takes
values in the integer domain [m?]. First-level hash function
h(u,v) is function chosen randomly from the set of functions
having the property of mapping the address pair domain
[m?] onto the O(log m) hash buckets having the logarithmic
range b={0 . . . ©(log m)} with exponentially decreasing
probability, i.e.

[0039] hm*]->{0, ... ©(log m)},
[0040] with Pr[h(x)=b]=%"*" for any xe[m?].

[0041] The probability of an address pair being mapped to
the first-level hash bucket having index 0 is, therefore, ¥, the
probability of an address pair being mapped to the first-level
hash bucket having index 1 is % and so on.

[0042] After hashing a sufficiently large sample of data-
elements 12, each first-level hash bucket 14 contains an
exponentially decreasing number of date-elements 12, rep-
resenting a sample of address-destination pairs contained in
the data stream 24, with the sample size in each hash bucket
being exponentially inverse to the bucket index b.

[0043] For each first-level hash table 14 bucket, there is an
array of second-level hash tables 18. All the data-elements
hashed to a hash bucket having index b in the first-level hash

US 2006/0075489 Al

table 16 are then hashed to the r second-level hash buckets
18 by the r randomizing second level hash functions g;(u,v).

[0044] 1Inapreferred embodiment of the present invention,
the same set of second level functions g;(u,v) are used for all
the bins of the first level hash table 14. The r second-level
functions g;(u,v) each map the data-elements 12 having
domain[m*] uniformly, but randomly, onto the [s] bins of
each of the second-level hash tables, i.e.,

[0045] g [m*]->{1, ... s} with a uniform random prob-
ability that any x that is a member of the source-destination
pair domain [m?] is mapped to any particular second-level
hash bin 18.

[0046] In a preferred embodiment, the r second-level
functions g;(u,v) are assumed to be mutually independent,
i.e., they are defined using independently-chosen random
seeds. The number r and the size s of the second-level hash
tables are fixed based on factors discussed later. Each bucket
of each second-level hash table 18 contains and maintains a
count signature 21 of the data-clements 12 that are mapped
to that bucket.

[0047] The count signature 21 has two elements: the
total-element counter 20 that tracks the net total number of
data-elements 12 that are mapped to that bucket, and 2 log
m bit-location counters 22, each of which tracks the net total
number of data-elements 12 that are mapped to that bucket
that have a value 1 at that bit-location in the binary repre-
sentation of the IP address pair u and v.

[0048] In a preferred embodiment, the IP address pair u
and v are concatenated to a binary number in the domain
[m?], so that each bit-location counter 22 of size ®(log n)
tracks the net total number of source-destination pairs (u,v)
e[m>] with BIT;(u,v)=1 that map into the bucket, where
BIT,(u,v) denotes the value of the i™ bit in the binary
representation of the (u, v) source-destination pair.

[0049] The count signature 21 is used to identify second-
level hash table 18 buckets in which only data-elements 12
having a single distinct source-destination address (u,v)
have accumulated For each second-level hash bucket 19,
this is done by comparing each of the bit-location counters
22 with the corresponding total-element count 20. Only
those second-level hash buckets 19 in which all the bit-
location counters 22 are either equal to zero or to the
total-element counter 20, contain only data-clements 12
having a single distinct source-destination address (u,v), i.e.,
there have been no data collisions in that second-level hash
bucket 19. The second-level hash buckets 19 containing only
data-elements 12 having a distinct source-destination
address (u,v) are termed “singletons”.

[0050] The distinct-count sketch 10 can be used to accu-
rately estimate the number of distinct count events in a data
stream 24 because each successive bucket of the first-level
hash table 14 has an exponentially smaller number of
data-elements 12, and therefore there is a corresponding
smaller chance that a data-element 12 will collide in the
second-level hash tables 18 associated with the higher
indexed first-level hash table buckets.

[0051] A target distinct-sample size ©(s) can be obtained
by selecting to have s second-level hash buckets 19 in each
the second-level hash tables 18. Even if the number of data
elements hashed to a first-level bucket 15 is of the order of

Apr. 6, 2006

s, the second-level randomization of the data-elements 12
across r second-level hash tables, each having s second-level
buckets 19, means that each distinct data-element 12 appears
as a singleton in some second-level bucket 19 with a high
probability, and therefore is highly likely to be counted.

[0052] FIG. 3 is a flow chart showing an exemplary
distinct-count sketch being updated. In step 40, a data-
element 12 is obtained. As detailed above, step 42 is a
first-level hash of the data-element using a hash function that
maps data-elements 12 to indexed buckets 15 of a first-level
hash table 14 so that the probability of a particular data-
element 12 reaching a particular first-level hash bucket 15 is
inversely and exponentially related to the index value of that
bucket 19. Step 44 is a second-level hash in which an array
r of hash functions g; map the data-element 12 to an array of
r second-level hash tables 18, each having s buckets. Hash
functions g, map with uniform probability and are mutually
independent. In step 46 the total-element counters associated
with the second-level hash buckets to which the data-
element 12 is hashed, are either incremented or decre-
mented, depending on whether the data-element represents
an increment or decrement event. In step 48 the bit-element
counters associated with the second-level hash buckets to
which the data-element 12 is hashed, are either incremented
or decremented, depending on whether the data-element
represents an increment or decrement event, and whether the
binary representation of the value the hash functions are
operating on is a 1 or a 0.

[0053] FIG. 4 is a flow chart showing an exemplary
distinct-count sketch being queried to obtain the k destina-
tion address having the largest distinct-count frequencies. In
step 50, the first-level hash table 14 is examined to obtain a
cumulative distinct-sample of a required size.

[0054] The required sample size s is O((U log((n+log
m)/3)/(f €?), where U is the total number of distinct source-
destination address pairs in the data stream, E is the desired
relative error and 9 is the desired probabilistic confidence in
the frequency estimate.

[0055] The cumulative distinct-sample of ©(s) is obtained
by first examining the top bucket, having index ®(log m)
and the smallest number of data-elements hashed to it. All
the singletons in this bucket need to be found by examining
the count signatures of all s second-level buckets 19 of all
the r second-level hash tables 18, i.e., by comparing the
bit-counters 22 of all the r.s count signatures 21 with their
total-element count 20, as detailed above. If the number of
singletons is not sufficient, this is then repeated for each
first-level hash table 14 bucket until the required number of
singletons has be accumulated. Once the required an accu-
mulated distinct-sample of the desired size has been
obtained, i.e. the cumulative number of singletons found in
all first-level buckets 15 down to the current bucket b is
0O(s), the distinct-source frequency f, for all destinations v of
the singleton sample need to be calculated in step 52 along
the lines detailed below. In step 54, the distinct-source
frequencies f, are sorted by size, so that in step 56, the k
destinations having the largest distinct-source frequencies f,
can be selected. In step 57 the k destinations having the
largest estimated distinct-source frequencies 2°f, are then
returned. The estimated distinct-source frequencies are
found by dividing the distinct-source frequency of the

US 2006/0075489 Al

cumulative sample by the probability of a data-element
having been hash to a first-level bucket 15 having an index
of b or higher, i.e. by %°.

[0056] The distinct-count sketch is impervious to dele-
tions in the sense that at the end of an update, the sketch that
has seen both an increment event followed by a decrement
event is identical to one that never saw an item that was later
deleted.

[0057] The distinct-source frequency f, provides a robust
metric of potential DDoS attacks, particularly of the TCP-
ACK flooding attacks. By efficiently tracking the k destina-
tions having the largest distinct-source frequencies, a basis
is available for readily detecting, in real time, signs of
potential DDoS activity in a network. For instance, a sudden
increase in f, for a particular destination over a base-line
value of f, may be an indication of a DDoS attack in
progress.

[0058] Although the distinct count sketch 10 has been
shown above in obtaining a list of distinct-source frequen-
cies f, one of ordinary skill in the art will appreciate that
such a method can be applied to multiple streams of data.
For instance a distinct count sketch 10 may be used to obtain
distinct-samples for each of a number of streams of data. The
distinct-samples may then be used to evaluate set expres-
sions relevant to the data, and the results then scaled to
obtain estimated of the evaluation of those set expressions
for the entire data streams.

[0059] The distinct count sketch 10 can be maintained and
updated in a relatively small space and time, the space
requirements being O(r s log® m log n) and the maintainace
time per streaming flow update being O(r log m). However,
querying such a structure to obtain an estimate of the top k
distinct source frequency destinations v takes O(r s log” m)
time. This is the result of having to go through the steps
shown in FIG. 4, i.e., for each query, to accumulate a large
enough sample. This requires starting at the top first level
hash bucket and going down and accumulating all the
singletons in each bucket, which requires examining the
count signature 21 of all s second-level buckets 19 of all r
second-level hash table 18, and takes O(r s log m) time at
each level. As there are O(log m) level, the total query time
is O(r s log? m). Once the level is reached at which the
required number of singletons has been accumulated, the
frequencies f, of all the destinations v have to be calculated,
and then the frequencies sorted. Both these operations do not
add significantly to the total query time.

[0060] This query time can be considerably reduced by
creating a larger data structure, the tracking distinct count
sketch, which can incrementally maintain the underlying
distinct-sample and corresponding destination occurrence
frequencies over the stream of flow updates. By not having
to re-compute everything from the discrete-count sketch on
every top k estimation request, the update efficiency of the
distinct count sketch can be maintained, while the top k
query time can be made considerably more efficient.

[0061] FIG. 2 is a schematic view of an exemplary
embodiment of a tracking distinct count sketch 30, com-
prising a distinct count sketch 30, a singletons(b) hash table
32, a total-number-of-singletons counter 36, and a top des-
tinations heap 38.

[0062] The singletons(b) hash table 32 contains singletons
data entries 34, recording a current set of singletons in all r

Apr. 6, 2006

second-level hash tables 18 related to hash bucket b of
first-level hash table 14, i.e., singletons(b) hash table 32
contains a discrete-sample of data-elements 12.

[0063] The top destinations heap 38 contains all the des-
tinations v appearing in singletons in the cumulative dis-
tinct-sample from the current first-level bucket and all the
first-level buckets having a higher index.

[0064] These additional data structures, the singletons(b)
table 32, the total-number-of-singletons counter 36 and the
top destinations heap 38 are updated on each streaming data
update, so that top k destinations v having the largest
distinct-source frequency f, can be found with a query time
O(k log m).

[0065] Each entry in the singletons(b) table 32 comprises
a singleton address pair (u,v) in bucket b and a count
recording the number of second-level hash tables where
(u,v) appears as a singleton. The singletons(b) table 32
comprises a distinct-sample of data-elements 12 hashed into
a first-level hash table 14 bucket having index b. Because the
maximum number of singletons in a first-level bucket is r.s,
a simple way of implementing singletons(b) is as a hash-
table structure with ®(rs) entries. This allows the distinct-
sample to be accessed, incremented or decremented in a
constant number of instructions or steps.

[0066] The number in the total-number-of-singletons
counter 36 is the size of the distinct-count sample of
data-elements 12 hashed into a first-level hash table 14
bucket having index b, i.e., the distinct-count of the sample.

[0067] The maximum number of entries in the top desti-
nations heap 38 is r.s.0(log m), so the space overhead of a
tracking distinct-count sketch is only a small constant factor
over the space required for the basic distinct-count sketch.

[0068] FIG. 5 is a flow chart showing an exemplary
tracking distinct-count sketch being updated. The algorithm
for maintaining a tracking distinct count sketch over streams
of flow updates begins similarly to that for a distinct count
sketch. A data-element 12 obtained in step 40, is hashed to
a first-level hash table 14 bucket in step 42, and then to
second-level hash tables 18 in step 42. The appropriate count
signatures 21 are updated appropriately in steps 46 and 48.
In addition, in step 58, an evaluation is made of the singleton
status of each of the r count signatures 21 affected by the
update. Step 59 determines if there has been any change of
singleton status. If no singleton has changed status, the next
data-element 12 is processed. If there has been a change of
singleton status, this change of singleton status is then used
in step 60, in which the singleltons(b) table 32 is updated,
including singletons data entry 34 which records the fre-
quency of singleton occurrences. Any change of singleton
status is also used in step 62 to update the corresponding
number of singletons counter 32. In step 64, the heaps 38 for
the current bucket, and all the first-level buckets 15 having
a lower index, are then adjusted to reflect any change in
distinct-source frequencies f,, caused by changes in single-
ton status.

[0069] In the case of an insertion data-element 12, a
second-level hash table 14 bucket can either transition from
singleton to non-singleton, if there is a data collision, or can
transition from empty to singleton. Other possible transi-
tions have no effect on the distinct-sample collected in
bucket b. In each case, the count for the affected singleton

US 2006/0075489 Al

address in singletons(b) table 32 is appropriately updated. In
the case that the singleton is either deleted or newly inserted
in singletons(b) table 32, the number of singletons counter
32 is updated, and the heaps 38 for all buckets in which the
index is lower than b are updated to reflect the new fre-
quency for the destination in the affected pair.

[0070] The procedure for a deletion event is completely
symmetric to the insertion case, except that the second-level
hash table 18 bucket transitions of interest are non-singleton
to singleton and singleton to empty.

[0071] All the extra operations for maintaining the added
distinct-sample tracking information have O(1) time com-
plexity, with the exception of updating the heaps associated
with the current first-level hash bucket 15 and all first-level
hash buckets 15 having a lower index. Since there are no
more than m distinct destinations and log m first-level index
levels, the heap adjustments can be done in O(log” m) time.
As the maintenance time per streaming flow update for the
distinct count sketch is O(r log m), the maintenance time per
streaming flow update for the tracking distinct count sketch
is only O(r log® m).

[0072] FIG. 6 is a flow chart showing an exemplary
tracking distinct-count sketch being queried to obtain the k
destination addresses having the largest distinct-count fre-
quency. Incrementally maintaining the distinct-sample infor-
mation in each first-level bucket simplifies obtaining the k
destinations having the largest distinct-source frequency. In
step 66, the per bucket number of singletons counter 36 is
used to rapidly find how many first-level hash bucket 15 are
need to accumulate a large enough distinct-sample to obtain
an estimation to the desired accuracy. The heap 38 in the
appropriate bucket can then be used in step 68 to obtain the
top k destinations. In step 69, the k destinations having the
largest estimated distinct-source frequencies 2°f, can then be
returned. Since each heap 38 operation for recovering the
destination with the maximum occurrence frequency has a
time cost of at most O(log m), recovering the top k desti-
nations requires, at most, O(k log m) time.

[0073] As mentioned previously, the distinct-source fre-
quency f, provides a robust metric of potential DDoS
attacks, particularly of the TCP-ACK flooding attacks. By
efficiently tracking the k destinations having the largest
distinct-source frequencies f,, a basis is available for readily
detecting, in real time, signs of potential DDoS activity in a
network. For instance, a sudden increase in f, for a particular
destination over a base-line value of f, may be an indication
of'a DDoS attack in progress. An advantage of the tracking
distinct count sketch is that the query time is sufficiently
small that the k destinations having the largest distinct-
source frequencies f, can be frequently updated. This allows
DDoS attacks to be monitored in real-time even on large
communications networks.

[0074] The above-described steps can be implemented
using standard well-known programming techmques. The
novelty of the above-described embodiment primarily lies
not in the specific programming techniques but in the use of
the steps described to achieve the described results. Software
programming code which embodies the present invention is
typically stored in permanent memory of some type, such as
permanent storage of a workstation located at Bell Labs of
Lucent Technologies in Murry Hill, N.J. In a client/server
environment, such software programming code may be

Apr. 6, 2006

stored in memory associated with a server. The software
programming code may be embodied on any of a variety of
known media for use with a data processing system, such as
a diskette, or hard drive, or CD-ROM. The code may be
distributed on such media, or may be distributed to users
from the memory or storage of one computer system over a
network of some type to other computer systems for use by
users of such other systems. The techniques and methods for
embodying software program code on physical media and/or
distributing software code via networks are well known and
will not be further discussed herein.

[0075] 1t will be understood that each element of the
illustrations, and combinations of elements in the illustra-
tions, can be implemented by general and/or special purpose
hardware-based systems that perform the specified functions
or steps, or by combinations of general and/or special-
purpose hardware and computer instructions.

[0076] These program instructions may be provided to a
processor to produce a machine, such that the instructions
that execute on the processor create means for implementing
the functions specified in the illustrations. The computer
program instructions may be executed by a processor to
cause a series of operational steps to be performed by the
processor to produce a computer-implemented process such
that the instructions that execute on the processor provide
steps for implementing the functions specified in the illus-
trations. Accordingly, the figures support combinations of
means for performing the specified functions, combinations
of steps for performing the specified functions, and program
instruction means for performing the specified functions.

[0077] Although the invention has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the
claimed invention.

What is claimed is:

1. A method of maintaining a data-structure capable of
providing an approximate distinct-count of data-elements,
said method comprising the steps of:

obtaining a plurality of data-elements;

generating an indexed set of samples of said data-ele-
ments, each of said samples having a sample rate that
is an exponentially decreasing function of the index of
said sample; and

associating a set of count signatures with a first one of said
samples, each of said count signatures comprising a
total-element count and a bit-location count.

2. The method of claim 1, wherein the step of generating
an indexed set of samples comprises hashing said data-
elements to a first-level set of hash buckets so that each of
said first-level hash buckets contains a number of data-
elements that decreases exponentially with the index.

3. The method of claim 2, further comprising the step of
obtaining a distinct-count of said first sample using said
count signatures, said distinct-count comprising a number
indicative of data-elements contained in said sample each of
which has a distinct domain value.

4. The method of claim 3, wherein the step of obtaining
a distinct-count comprises hashing said data-elements con-

US 2006/0075489 Al

tained in a first of said first-level hash buckets to a set of
second-level hash buckets; and wherein the step of associ-
ating a set of count signatures with a first sample comprises
associating one of said count signatures with each of said
second-level hash buckets.

5. The method of claim 4, wherein the step of obtaining
a distinct-count further comprises identifying said second-
level hash buckets containing only data-elements having a
same domain value.

6. The method of claim 5, wherein said step of identifying
said second-level hash buckets containing only data-ele-
ments having a same domain value comprises identifying
said second-level hash buckets in which each bit of said
bit-location counter is either equal to zero or equal to said
total-element count.

7. The method of claim 6, wherein said data-elements
further comprise an event insertion value and an event
deletion value, and further comprising the step of updating
a count signature by incrementing said total-element count
and said sample bit-location counter if said event has said
event insertion value, and decrementing said total-element
count and said sample bit-location count if said data-element
has said event deletion value.

8. The method of claim 7, further comprising the step of
calculating a distinct-count estimate for said plurality of
data-elements by dividing said distinct-count by said sample
rate of said first sample.

9. The method of claim 8, wherein said data-elements
further comprise a source value and a destination value, and
wherein said hashing is performed using an address pair
formed by combining said source value and said destination
value.

10. The method of claim 9, further comprising the step of
calculating a distinct-source frequency for a first distinct
destination by analyzing said count signatures, said distinct-
source frequency being a total number of distinct data-
elements having said destination value of said first distinct
destination.

11. The method of claim 10, further comprising repeating
said step of calculating a distinct-source frequency for a
plurality of distinct-destinations; and further comprising the
step of ordering said plurality of distinct-destinations by size
of said distinct-source frequency.

12. The method of claim 9, further comprising the steps
of: storing a distinct-sample comprising said data-elements

Apr. 6, 2006

having a same domain value in said first of said first-level
hash buckets; analyzing said distinct sample to obtain a
distinct-source frequency for a first distinct destination; and
updating a distinct-destination heap containing a plurality of
distinct-destinations ordered by size of said distinct-source
frequency.

13. The method of claim 12, further comprising the step
of storing said distinct-count.

14. The method of claim 13, further comprising the steps
of using said stored distinct-count to locate an appropriate
first-level hash bucket having a sample of a predetermined
size; and providing said plurality of distinct-destinations
ordered by size of said distinct-source frequency contained
in said distinct-destination heap associated with said appro-
priate first-level hash bucket.

15. A computer-readable medium, comprising instruc-
tions for:

obtaining a plurality of data-elements;

generating an indexed set of event samples of said data-
elements, each of said samples having a sample rate
that is an exponentially decreasing function of the
index of said sample; and

associating a set of count signatures with a first sample,
each of said count signatures comprising a total event
count and a bit-location count.

16. The computer-readable medium of claim 14, wherein
generating an indexed set of event samples comprises hash-
ing said events to a first-level set of hash buckets so that each
of said first-level hash buckets contains a number of events
that decreases exponentially with hash index.

17. A computing device comprising: a computer-readable
medium comprising instructions for: obtaining a plurality of
data-elements;

generating an indexed set of event samples of said data-
elements, each of said samples having a sample rate
that is an exponentially decreasing function of the
index of said sample; and

associating a set of count signatures with a first sample,
each of said count signatures comprising a total event
count and a bit-location count.

