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(57) ABSTRACT

A method of estimating an aggregate of a join over data-
streams in real-time using skimmed sketches, that only
examines each data element once and has a worst case space
requirement of O(n*/7T), where ] is the size of the join and n
is the number of data elements. The skimmed sketch is an
atomic sketch, formed as the inner product of the data-
stream frequency vector and a random binary variable, from
which the frequency values that exceed a predetermined
threshold have been skimmed off and placed in a dense
frequency vector. The join size is estimated as the sum of the
sub-joins of skimmed sketches and dense frequency vectors.
The atomic sketches may be arranged in a hash structure so
that processing a data element only requires updating a
single sketch per hash table. This keeps the per-element
overhead logarithmic in the domain and stream sizes.
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Step 30: Extract dense frequencies in F and G into dense frequency vectors f and g

Step 32: Generate residual frequency vectors f =f-f and g’ =g-g°

A

Step 34: Calculate skimmed atomic sketches:

X (] = Zu fu &

Xslijl=2ugu §iju

Step 35: Calculate dense atomic sketches:

XAF [l,,]] = ZU fAU giju

XAg [i,j] = 2u 9% ‘iiju

Step 36: Estimate subjoins:

f-g" calculated exactly from f andg’
f g’ = ESTJOINSIZE (X% X'g)
g" F = ESTJOINSIZE (X% X
f-g'= ESTJOINSIZE (X¢ X'g)

aoow

g

A 4

fg= f'g" + fg+ g f+fg

Step 38: Return estimate join:

FIG. 2
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Basic AGMS versus Skimmed Sketches, Zipf=1.0
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PROCESSING DATA-STREAM JOIN
AGGREGATES USING SKIMMED SKETCHES

FIELD OF THE INVENTION

[0001] The present invention relates to methods of que-
rying data-streams, and more particularly to methods of
estimating SQL-like aggregate queries over join operations
on one or more data-streams.

BACKGROUND OF THE INVENTION

[0002] Large volumes of data in the form of continuous
data-streams are generated by a number of applications
including telecommunication networks, retail chain transac-
tions and banking automated teller machine (ATM) trans-
actions.

[0003] In order to monitor these data-streams and detect
patterns that may, for instance, indicate fraudulent use,
equipment malfunction or non-optimal configuration, it is
desirable to query these data-streams in real time using
algorithms that only have access to each data element in the
stream once and in the arbitrary order in which the data
element appears in the data-stream. Because of the limita-
tions of the computers doing the monitoring, it is also
desirable that these algorithms use only a relatively small
amount of memory. Moreover, the need for real-time
answers means that the time for processing each element
should also be small.

[0004] A particularly desirable form of monitoring is the
ability to perform queries on these data-streams that are
similar to the structured query language (SQL) queries
performed on more traditional fixed data bases.

[0005] For instance, a telecommunications network opera-
tor might want to know how many subscribers in a particular
area are experiencing incomplete calls. In a traditional
relational database, this question would be answered by
examining two tables, the first table relating subscribers to
their location, and the second table relating subscribers to
incomplete calls. In particular, a SQL join of the two tables
would be preformed to create a new table relating the
subscribers in a particular location to incomplete calls, i.e.,
a table of subscribers in that location who are experiencing
incomplete calls. The required result is the number of
subscribers in the new table, i.e., the required results is the
size of the join.

[0006] The problem is how to provide a reasonably accu-
rate approximate answer to such SQL-like queries over join
operations, such as calculating the size of a join, when the
data is arriving in a data-stream and each data element can
only be examined once. Moreover, the estimated answer
needs to be provided in real time using limited computer
memory.

SUMMARY OF THE INVENTION

[0007] Briefly described, the invention provides a method
of estimating the size, or other aggregate quantities, of a join
over one or more data-streams in real-time. The method only
examines each data element in the data-stream once, uses a
limited amount of computer memory and is effective on
large volumes of data.

[0008] The approximate size of the join between two
data-streams may be obtained using sketches that are essen-
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tially pseudo-random projections of the data distributions for
the streams involved. Sketches use random variables that are
essentially vectors having a randomly chosen value of either
+1 or -1 for each data-stream domain value, and in which
the expected number of +1 elements is essentially equal to
the expected number of —1 elements. An atomic sketch is the
inner product of the data-stream frequency vector and this
random binary variable vector. As long as the same random
variable vector is used to create atomic sketches of two
different data-streams, the size of a join between those data
streams can be estimated as the product of the atomic
sketches.

[0009] In order to obtain an estimate of a given degree of
accuracy, this basic method uses several independent instan-
tiations of this basic sketch estimate and has a worst case
space requirement of O(n*/J?), where ] is the size of the join
and n is the number of data elements.

[0010] In a preferred embodiment, this worst case space
requirement is reduced to O(n*/J), by using a novel skimmed
sketches method to obtain the approximate size of the join
between two data-streams.

[0011] The skimmed sketch of the preferred embodiment
is obtained by first skimming off the dense frequency values
from the sketches of each data-stream, i.e., the frequency
values that exceed a predetermined threshold. The skimmed
off values are kept in a dense frequency vector. The overall
join size is then estimated as the sum of the appropriate
sub-joins of corresponding skimmed sketches and dense
frequency vectors for the two streams.

[0012] In a further embodiment of the invention, the
atomic sketches of each data stream are arranged in a hash
structure so that processing a data element from the data-
stream requires updating only a single sketch per hash table.
This allows the per-element overhead to be kept logarithmic
in the domain and stream sizes.

[0013] These and other features of the invention will be
more fully understood by references to the following draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 is a schematic representation of a stream
query-processing architecture.

[0015] FIG. 2 is a flow diagram showing the steps of
join-size estimation using skimmed sketches.

[0016] FIG. 3 is a schematic representation of a hash
sketch data structure in which each counter is essentially an
atomic sketch constructed over the stream elements that map
to that bucket.

[0017] FIG. 4 is a schematic representation of the use of
dyadic intervals to reduce the executing time of a hash based
dense frequency skimming algorithm.

[0018] FIGS. 5 A & B show experimental results com-
paring basic sketch and skimmed sketch relative errors in
estimating join-size.

DETAILED DESCRIPTION

[0019] The present invention provides a method of per-
forming queries on data-streams that are similar to the more
traditional structured query language (SQL) queries per-
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formed on fixed data bases. In particular, the present inven-
tion provides a method of estimating binary-join aggregate
queries over one or more data-streams in real-time using a
technique based on pseudo-random projections of the data
distribution for the data-streams involved. The method uses
a single pass algorithm that only examines each data element
in the data-stream once, in the order the data arrives, to
maintain a reasonably accurate synopsis of the data-stream
that can be stored in a limited amount of computer memory
and used to provide approximate answers with some guar-
antees on the error of the approximation.

[0020] The size of a join between two data streams F and
G is given by the inner product of the frequency vectors f,
and g, of the data-streams, i.e., [F|x|G|=2f,.g,.

[0021] This inner product may be approximated using
sketches of the streaming data, as described in more detail
in, for instance, an article by S. Ganguly et al. entitled
“Processing Data-Stream Join Aggregates Using Skimmed
Sketches”, published online in February 2004, and as pp.
569-586 in “Lecture Notes in Computer Science”, Volume
2992/2004, “Advances in Database Technology—EDBT
2004: 9th International Conference on Extending Database
Technology, Heraklion, Crete, Greece, Mar. 14-18, 2004”,
edited by Elisa Bertino et al., published by Springer-Verlag,
Heidelberg, Germany, 2004, the entire contents of which are
hereby incorporated by reference, and which hereafter is
referred to as “Ganguly et al”.

[0022] One method of creating sketches suitable for SQL-
like queries is to first select a family of four-wise indepen-
dent random binary variables &, that are essentially vectors
having a randomly chosen value of either +1 or -1 for each
data-stream domain value, and in which the expected num-
ber of +1 elements is essentially equal to the expected
number of -1 elements, i.e., the probability of each binary
element in the variable is essentially equal to 2. The atomic
sketch X; of a data stream F is then given by the inner
product of the data-stream frequency vector f, and the
random binary variable &, i.e., the sum of the product of each
domain frequency and the random binary variable’s element
associated with that frequency, i.e. Xz=2 & . Such an
atomic sketch is essentially a random linear projection of the
data-stream frequency distributions.

Such a linear projection can be easily maintained over a
stream by adding &, to X when u is inserted in the
data-stream (and subtracting when u is deleted).

[0023] As long as the same family of random variables is
used to create atomic sketches of two different data-streams,
the product of atomic sketches gives an atomic estimate of
the join size because the value of |F|x|G] is given by the sum
2. f,.g, which is the expected value of X Xg=
L EDE, 2.5 This expectation occurs because, on aver-
age, the multiplication cross-product terms cancel each
other.

[0024] A synopsis is the family of atomic sketches for a
data-stream generated by using several independent families
of random variables &. The final estimate of the join size may
then be estimated as the median value of the join size
estimates of the collection of individual atomic sketch
estimates in the synopsis.

[0025] As shown in, for instance, Ganguly et al., in order
to provide good guarantees for the accuracy of the estimate,
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this simple sketch estimate has worst case space requirement
of O(n*J?), where J represents the size of the join and n
represents the number of data elements. The minimum space
requirement needed for an estimate that provides good
guarantees for the accuracy of the estimate has, however,
been shown to be O(n*/]). The skimmed sketch method of
this invention is an algorithm in which the worst case space
requirement is equal to this minimum possible requirement.

[0026] The skimmed sketch is obtained by first skimming
the dense frequency values off the atomic sketch of the
data-stream, i.e., the frequency values that exceed a prede-
termined threshold. The skimmed off values are kept in a
dense frequency vector, and the residual values in the atomic
sketch form the skimmed atomic sketch. The overall join
size is then estimated as the sum of the sub-joins of skimmed
sketches and dense frequency vectors.

[0027] In a further embodiment of the invention, the
random sketches of the data stream are arranged in a hash
structure so that processing a data element from the data-
stream only requires updating a single sketch per hash table.
This allows the per-element overhead to be kept logarithmic
in the domain and stream sizes.

[0028] FIG. 1 is a schematic representation of a stream
query-processing architecture 10 comprising two, continu-
ous data-streams, G 12 and F 14, a stream query processing
engine 16, a sketch 18 for data-steam F and a sketch 20 for
data-stream G, both stored in computer memory 22, a query
24 and an approximate answer 26.

[0029] The data-streams G 12 and F 14 are both unordered
sequences of elements with values from the domain D={1 .
.. m}. The element values may themselves be vectors or
have vectors associated with them. These vectors may
include values that indicate if the specified data elements are
inserted or deleted from the stream. The skim-sketch method
is capable of dealing with general update streams, i.e.,
data-streams having both insertion and deletion operations.

[0030] The query 24 may take the general form of an
aggregate of a join of the two data-streams, i.e.,
Q=AGG(F|X|G), where AGG is any arbitrary aggregate
operator such as, but not limited to, COUNT, SUM, or
AVERAGE.

[0031] If f, and g, denote the frequencies of the domain
value u in the streams F and G respectively, then the result
of the join query COUNT((FX|G) is Z.f,.g,

[0032] In contrast to conventional database management
systems (DBMS), the stream query processing engine 16
only sees each element in streams F and G once and in the
fixed order in which the elements happen to arrive. The order
of element arrival in each stream is arbitrary, and elements
with duplicate values can occur anywhere over the duration
of the stream.

[0033] The computer memory 22 is small compared to the
number of data elements in the data-streams and is used to
maintain a concise and accurate synopsis of each data-
stream, each synopsis comprising one or more sketches 18
for data-steam F and corresponding sketches 20 for data-
stream G. The main constraints on each synopsis are (1) that
it is much smaller than the total number of data elements
(also known as “tuples”) in the data stream, in particular that
its size is logarithmic or poly-logarithmic with respect to the
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size of the data-stream, and (2) that the synopsis can be
computed in a single pass over the tuples in the data-stream,
in any, arbitrary order of their arrival. Furthermore, at any
point in time, the query processing algorithms must be able
to combine the maintained synopses to produce an approxi-
mate answer to the query.

TABLE 1

Procedure ESTIOINSIZE.

Procedure ESTIOINSIZE(XF, Xg, S1, $2)
Input: Sketches Xy and X for streams F and G (respectively).
Output: Estimate of binary-join size of F and G.

begin

1. fori=1tos,doY; = (Zj:fl Xeli, j1 - Xali, jD/sq;
2. return median {Y), Y5, , Y, };

end

[0034] Table 1 shows the steps of join-size estimation
using basic sketching in the procedure ESTJOINSIZE (X,
X, 815 S3)- The procedure takes as its input two arrays of
atomic sketches X, X, each being an array of size s, by s,.
These arrays are sometimes called synopses. Specifically,
the synopsis S(F) comprises a two-dimensional array of s,
by s, atomic sketches, where s, is a parameter that deter-
mines the accuracy of the estimate and s, is a parameter that
determines the confidence in the estimate. Each atomic
sketch in the synopsis array X[ij], 1ZiZs,, 1Z5jSs,, is
constructed in the same way as the atomic sketch Xy of a
data stream F, described earlier, but with an independent
family of four-wise independent variables {9 u=1,...m}.
Thus, atomic sketch X[i,j]= &Y.

[0035] In line 1 of ESTIOINSIZE, s, estimates Y; of the
join size between data-streams F and G are calculated
averaged over s, atomic estimates Xg[1,j]Xg[1,j]-

[0036] Inline 2 of ESTJOINSIZE, the median value Y of
the s, Y, join size estimates is selected as the best estimate
of the join size.

[0037] This can be shown to produce an estimate with a
relative error of at most € as long as s, is O(V(f’g*/e) with
probability of at least 1-9, as long as s, is O(log(m/d), where
is the sum over all u of £,%, and is the sum over all u of g >.

[0038] Unfortunately, this means that, in order to provide
good guarantees for the accuracy of the estimate, the method
of ESTIOINSIZE has a worst case size requirement of
O(n*/J%), where ] is the size of the join and n is the number
of data elements. The minimum space requirement needed
for an estimate that provides good guarantees for the accu-
racy of the estimate has, however, been shown to be O(n*/]).
(See, for instance, Ganguly et al.). Moreover, processing
each element from the data-streams requires updating every
one of the s, by s, atomic sketches, which is highly unde-
sirable when dealing with rapid rate streams.

[0039] FIG. 2 is a flow diagram showing the steps of
join-size estimation using skimmed sketches, which is a
method that has a worst case space requirement that matches
the lower bound of Om*/J).

[0040] In step 30, atomic sketches X and X are created
and maintained as the data elements u arrive in each data-
stream. For instance, atomic sketch Xy is maintained by
adding &, to X when u is inserted in the data-stream F (and
subtracting when u is deleted from data-stream F).
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[0041] Instep 32, at estimation time, the dense frequencies
in F and G are extracted from atomic sketches X and X
and transferred to dense frequency vectors f* and g~ respec-
tively. A domain value u is considered dense if its frequency
f, (or g,) is equal to or exceeds a pre-determined threshold
value T. Atomic skimmed sketch X' and X' are the residual
elements in the atomic sketches after the dense frequencies
have been skimmed off, i.e., all the values are less then the
predetermined threshold value T.

[0042] In step 34, two synopsis arrays of atomic dense
sketches X" and X are created using the dense frequency
vectors and an independent family of four-wise independent
variables {€9 : u=1, . . . m}. Thus, atomic dense sketch

X J[ij]=2£",EY, and atomic dense sketch X [i,j]=2.g
-

[0043] In step 36, the four possible subjoins ".g", " .g,
f.g” and g.I' are estimated. The dense subjoin f".g" is
calculated exactly, that is with zero error, which is possible
because the dense frequency vectors are known exactly. The
other three subjoins are calculated using the appropriate
arrays of the atomic sketches and the method of the proce-
dure ESTJOINSIZE, as described above.

[0044] Instep 38, the estimate of the join size is computed
to be the sum of the estimates of the subjoins.

[0045] As shown in, for instance, Ganguly et al., all the
frequencies greater than T=O(n/s,) can be extracted with
high reliability from the sketches of the data-streams. As a
result, in the worst case, ', and g', can be at most n.T=O(n?/
;) (which happens when there are n/T values with fre-
quency T). Thus, in the worst case, the maximum additive
error in the estimate computed by skimming dense frequen-
cies is Ovn®.(n*/s,)/s,)=0(n*/s,). It follows that for a desired
level of accuracy e, the space s, required in the worst case,
becomes O(n” (e.(f.g))), which is the square root of the space
required by the basic sketching technique, and matches the
lower bound achievable by any join size estimation algo-
rithm.

[0046] FIG. 3 shows a hash data structure 41 that allows
the skimmed sketch estimation technique detailed above to
be implemented effectively in a streaming data environment.
Hash data structure 41 comprises an array H of s, hash tables
40. Each of the p hash tables 40 has s, hash buckets 42. Each
hash bucket 42 contains a single counter for elements that
hash into that bucket. The array H can be viewed as a
two-dimensional array of counters, with H[p,q] representing
the counter in bucket q of hash table p. Associated with each
of the p hash tables 40 is a pair-wise independent hash
function h,, that maps incoming data elements in the data-
stream over the range of buckets in the hash table 40, i.e., b :
{1,...,m}—{1, ..., s,}. For each hash table p there is also
an associated family of binary variables EP , such that {EP :
u=1,...m}.

[0047] Initially, all counters H[p,q] are set to zero. Each
data element u in stream F 14, is first hashed to a hash bucket
42 using the family of hash function h,, i.e., g=h,(u). The
counter H[p.q] in each destination hash bucket 42 is updated
using the function 44, i.e., H[p,q]=H[p,q]+EP,. Each counter
H[p,q] is, therefore, essentially an atomic sketch constructed
over the stream elements that hash to the q th hash bucket 41
of the p th hash table 40.
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[0048] If the data element specifies that value u has been
deleted from the data-stream 14, &P is simply subtracted. As
there are s, hash tables, the time to process each data element
is essentially the time to update a single counter in each hash
table, i.e. O(s,). As the join size can be estimated with a
strong probabilistic error guarantee as long as s,=O(log m),
maintaining the hash sketch data structure 41 for a data-
stream 14 only requires logarithmic time per stream ele-
ment.

[0049] By randomly distributing domain values across the
s, hash buckets 40, the hash functions h, help separate the
dense domain values. The self-join sizes within each hash
bucket are much smaller, allowing the dense domain values
to be fairly accurately (and with constant probability) cal-
culated by computing the product H[p,q]. EP,,. The total join
size estimate u is then the sum of the join sizes from the
individual hash buckets. The probability of the estimate
being accurate to be within a giving error can be boosted to
1-9, by selecting the median estimate of the s,=O(log(m/9)
different frequency estimates for u obtained from each of the
hash tables 40.

TABLE 2

Procedure SKIMDENSE

Procedure SKIMDENSE(H)

Input: Hash sketch H for stream F. .

Output: Skimmed sketch and frequency estimates f for dense values.
begin

1. for every domain value u € D do fu =0;

2. E :=¢; T' := O(ws,);

3. for every domain value u € D do {

4. for each hash table p do { q := h,(w); ivup =
Hlp,q} " &5} .,

5. EST(u) := median{f,!,.. , £,5°};

6. if (EST(u) = 2T") then { f, := EST(u); E == E U {u}; }

7.

8. for every domain value u such that ivu >0do

9. for each hash table p do { q := h(w); H[p, q] =
Hlp. q] - (£, - &) }

10. return (H, f, E);

end

[0050] Table 2 shows the steps of procedure SKIM-
DENSE which uses this method to extract all the dense
domain values u of a data-stream F into a dense frequency
vector 1.

[0051] Procedure SKIMDENSE takes a hash structure 41
as the input.

[0052] In line 1 of SKIMDENSE, the procedure sets all
dense vectors ~ to zero.

[0053] Inline 2 of SKIMDENSE, the threshold is set to be
of the order of the number of data elements seen, divided by
the number of hash bins 42 in the hash tables 40.

[0054] In lines 3 to 7 of SKIMDENSE, the procedure
loops through all the domain values u. For each domain
value u, the procedure, in line 4, goes through each of the p
hash tables 40, finds the qth hash bin 42 to which the element
u hashes, and then obtains an estimate of u’s frequency £ *,
as the product of the counter H[p,q] stored in the hash bin
42 and the random binary variable value &P, for u, i.e., f
*=Hlp.q] &

[0055] Inline 5 of SKIMDENSE, the final estimate of the
frequency ofu is taken as the median of the estimates of each
of the s, hash-tables 40.
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[0056] Inline 6 of SKIMDENSE, the estimated values are
compared with the threshold value T'. If they are sufficiently
greater than the threshold value, they are determined to be
a dense value, and the estimated value is stored as the dense
domain value, and the domain value u is added to the vector
E of dense domain values. Between them, E and ", con-
stitute the vector of dense domain frequencies.

[0057] Inlines 8 and 9 of SKIMDENSE, for each domain
value u that has been determined to be dense, the hash
buckets 42 of all p hash tables 40 to which domain u hashes,
are adjusted by subtracting off the contribution of the dense
domain value to the corresponding sketch.

[0058] In line 10 of SKIMDENSE, the dense domain
values, the set of dense domain values and the skimmed hash
sketch structure are returned as the output of the procedure.
The analysis of this procedure, as detailed in, for instance,
Ganguly et al., shows that the procedure will extract all
dense frequencies with high probability.

[0059] The simple SKIMDENSE procedure has a runtime
complexity of O(m) as it examines every domain value u.
This is a problem if domain sizes are large, as they are, for
instance, with 64-bit IP addresses. This runtime complexity
can, however, be reduced to be of O(s, .log m) by using the
concept of dyadic intervals, as illustrated in FIG. 4.

[0060] FIG. 4 illustrates an hierarchical tree of values in
which the value at a given level is the sum of the two values
in the next level down. From this illustration of a data tree,
it can be seen that if a high level value is less than the
required threshold, then none of the values in the tree below
that point can exceed the threshold and the tree does not
have to be examined further. Node values in such a tree
correspond to the total frequencies of the corresponding
intervals in the dyadic tree.

[0061] An optimized SKIMDENSE procedure maintains
sketches 41 at log (m) levels. The SKIMDENSE routine
then starts at the top of the hierarchical tree and estimates the
dense frequency values at each level, and uses this to prune
which branches of the tree it will examine at the next lower
level, until level 1=0 is reached. Specifically, if for a value
u at level 1>0, the estimated frequency at a given node is less
than the required threshold, the entire sub-tree beneath that
node does not need to be examined. For instance if the
estimate of u at node 48 is less than or equal to the required
threshold, then nodes 47 do not need to be examined, and all
values of u from 1-8 at level 1=0 are known to be not dense.

[0062] At each level 1 there can be at most O(n/T") values
with frequency T' or higher, the worst-case complexity of
this optimized SKIMDENSE algorithm is O(s,.log(m)).

[0063] Tables 3 and 4 show procedures used to estimate
the join size of two data streams.

TABLE 3

Procedure ESTSUBJOINSIZE

Procedure ESTSUBJOIN§IZE(‘}, H)
Input: Frequency vector v of dense frequencies and hash sketch H'.
Output: Estimate of subjoin size.

begin
1. forp=1tos,do {
2. JP:=0;
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TABLE 3-continued

Procedure ESTSUBJOINSIZE

3. for each domain value u s.t. {/u >0do {q:=
., hy();JP = JP + Hp, q] - (v, - &) }

5. return median{jl,... ,jsz};

end

[0064] Table 3 shows the steps of procedure ESTSUB-
JOINSIZE, which estimates the subjoin size between a
given dense frequency vector and a given skimmed hash
structure 41. In lines 1 to 4 of ESTSUBJOINSIZE, a join
estimate JP is calculated for each of the s, hash tables 40. In
line 5, the median value of the 52 estimated values of the join
size is returned as the best estimate of the join.

TABLE 4

Procedure ESTSKIMJOINSIZE

Procedure ESTSKIMJOINSIZE(Hg, Hi ]
Input: Hy and Hg are the hash sketches for streams F and G.
Output: Estimate of join size.

begin

1. (H'f, T, Ep) := SKIMDENSE(Hy); (H'g, g, Eq) =
SKIMDENSE(Hg);

2. jd,d :=f-é; jds =

ESTSUBJOINSIZE(f, H';); J., := ESTSUBJOINSIZE(g, H');

3. forp=1tos,do {
4. jssp =0
5. forq=1tos, do I.P = TP+ Help, q] - Help, ql;
6.
i R s 2
7. I = median {Jisl,... IS
8. T=lag+JatTat+ s
9. return J;
end

[0065] Table 4 shows the steps of procedure ESTSKIM-
JOINSIZE, which takes two hash structures 41 as the input,
one for a data-stream F and one for a data-stream G, and
returns an estimate of the join size. Procedure ESTSKIM-
JOINSIZE uses procedures ESTSUBJOINSIZE and SKIM-
DENSE in making the estimation.

[0066] In line 1 of ESTSKIMIJOINSIZE, the procedure
SKIMDENSE is used to create skimmed hash structures 41
and the values and members of a dense frequency vector for
both data-streams F and G.

[0067] In line 2 of ESTSKIMIOINSIZE, three sub-joins
are calculated. The dense-dense subjoin is calculated exactly
as the vector inner product of the dense frequency vectors
estimated in step 1. The two sparse-dense subjoins are both
calculated using the ESTSUBJOINSIZE procedure.

[0068] Inlines 3 to 6 of ESTSKIMIOINSIZE, the sparse-
sparse subjoin is estimated for each of the s, hash tables 40,
essentially as the sum of the sub-joins of each of the
corresponding hash bins 42 in the skimmed hash structures
for data-streams F and G.

[0069] Inline 7 of ESTSKIMIOINSIZE, the best estimate
of the sparse-sparse subjoin is boosted by taking it to be the
median of the s, join estimates obtained in lines 3-6.

[0070] In line 8 of of ESTSKIMJOINSIZE, the total join
size for data-streams F and G is calculated as the sum of the
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four subjoins, i.e., the sum of the dense-dense, dense-sparse,
sparse-dense and sparse-sparse subjoins.

[0071] Each of the sub-join errors is O((n%/s, )(log n)"’3).
This is a result of the errors depending on the hash bucket
self5join sizes. Since each residual frequency value in the
skimmed hash structures 41 is at most T=O(n/s,), each
bucket self-join size is proportional to O(n*/s,?), with high
probability.

[0072] In the worst-case, the skimmed sketch algorithm
requires approximately O(n*/(e.(f.g)) amount of space,
which is equal to the lower bound achievable by any join
size estimation algorithm. Also, since the maintenance of the
hash sketch data structure involves updating s, hash bucket
counters per stream element, the processing time per ele-
ment of our skimmed-sketch algorithm is O(log(m/d)).

[0073] FIGS. 5 A and B show experimental results of
using the skimmed-sketch algorithm to determine join sizes
for two data streams. The error in the join size estimates
obtained using the ESTSKIMJOINSIZE is compared to the
error obtained using the basic sketching method of proce-
dure ESTIJOINSIZE (also called the AGMS or the Alon,
Gibbons, Matias, Szegedy method).

[0074] The experiments used synthetic data sets having
four million data elements for each data-stream, that evalu-
ate the size of the join between a Zipfian distribution and a
right-shifted Zipfian distribution, shifted by shift parameter
s and having the same Zipf parameter z. The shift parameter
s controls the join size, with s=0 being essentially a self-join
and with the join size decreasing with increased s. The
results demonstrate that the skimmed-sketch technique of
this invention offer roughly half the relative error of basic
sketch method. Similar results, not shown, have been
obtained for real census bureau data, as detailed in Ganguly
et al.

[0075] The above-described steps can be implemented
using standard well-known programming techmques. Soft-
ware programming code which embodies the present inven-
tion is typically stored in permanent memory of some type,
such as permanent storage of a workstation located at Bell
Labs of Lucent Technologies in Murry Hill, N.J. In a
client/server environment, such software programming code
may be stored in memory associated with a server. The
software programming code may be embodied on any of a
variety of known media for use with a data processing
system, such as a diskette, or hard drive, or CD-ROM. The
code may be distributed on such media, or may be distrib-
uted to users from the memory or storage of one computer
system over a network of some type to other computer
systems for use by users of such other systems. The tech-
niques and methods for embodying software program code
on physical media and/or distributing software code via
networks are well known and will not be further discussed
herein.

[0076] 1t will be understood that each element of the
illustrations, and combinations of elements in the illustra-
tions, can be implemented by general and/or special purpose
hardware-based systems that perform the specified functions
or steps, or by combinations of general and/or special-
purpose hardware and computer instructions.

[0077] These program instructions may be provided to a
processor to produce a machine, such that the instructions
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that execute on the processor create means for implementing
the functions specified in the illustrations. The computer
program instructions may be executed by a processor to
cause a series of operational steps to be performed by the
processor to produce a computer-implemented process such
that the instructions that execute on the processor provide
steps for implementing the functions specified in the illus-
trations. Accordingly, the figures support combinations of
means for performing the specified functions, combinations
of steps for performing the specified functions, and program
instruction means for performing the specified functions.

[0078] Although the invention has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the
claimed invention.

What is claimed is:
1. A method of estimating a join aggregate over one or
more data-streams, the method comprising the steps of:

maintaining one of more atomic sketches over said one or
more data-steams;

skimming dense frequencies from said atomic sketches,
thereby creating a dense

frequency vector and an atomic skimmed-sketch for each
of said one or more data-streams, and;

generating an atomic estimate of said join aggregate using
said atomic skimmed-sketches and said dense fre-
quency vectors.

2. The method of claim 1 wherein said step of maintaining
one or more atomic sketches comprises the steps of: obtain-
ing a data element having a value from said one or two
data-streams; forming a product of said value and a ran-
domly chosen binary variable; and incrementing said atomic
sketch by said product.

3. The method of claim 2 wherein said step of generating
an atomic estimate of said join aggregate comprises the step
of summing the sub-joins of said atomic skimmed-sketches
and said dense frequency vector.

4. The method of claim 3 wherein said data elements
include one or more deletion operations; and wherein said
step of maintaining one or more atomic sketches comprises
the step of decrementing said atomic sketch by said product.

5. The method of claim 2 wherein said randomly chosen
binary variable is one element value of a vector having an
element value for each domain value of the data stream, and
wherein substantially half of said element values are +1 and
substantially half of said element values are -1.

6. The method of claim 1 wherein said step of skimming
dense frequencies from said atomic sketches comprises the
step of extracting all frequencies of said data streams having
a value greater than or equal to a threshold value.

7. The method of claim 2 wherein said step of summing
the sub-joins of said skimmed atomic sketches and said
dense frequency vector comprises the steps of: forming an
atomic dense sketch using said dense frequency vector and
a family of said randomly chosen binary variables; calcu-
lating an exact dense-dense subjoin using said dense fre-
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quency vectors; calculating a dense-sparse and sparse-dense
join using said atomic dense sketches and said atomic
skimmed sketches; calculating a sparse-sparse subjoin using
said atomic skimmed-sketches; and summing said dense-
dense subjoin, said dense-sparse subjoin, said sparse-dense
subjoin and said sparse-sparse subjoin.

8. The method of claim 1 wherein said step of maintaining
one or more atomic sketches comprises the step of hashing
a data element to a hash-table.

9. The method of claim 8 wherein said step of maintaining
one or more atomic sketches comprises the steps of creating
a counter for each hash bucket of said hash table, said
counter comprising said atomic sketch for said data elements
that hash to said hash bucket.

10. The method of claim 9 further comprising the steps of
selecting one or more independent families of said randomly
chosen binary variables that are four-wise independent;
creating an array of said hash tables using said independent
families of binary variables; and generating an estimate of
said join aggregate further comprises selecting the median
join aggregate of said atomic estimate of join aggregate
made using each of said hash tables.

11. The method of claim 10 wherein said creating a dense
frequency vector for each of said one or two data-streams
further comprises selecting a median value of estimates of a
domain frequency made using one of said counters from
each of said array of hash tables.

12. The method of claim 11 wherein said calculating a
sparse-sparse subjoin comprises selecting a median value of
estimates made using the sum of hash bin subjoins for each
of said hash tables.

13. A computer-readable medium for estimating a join
aggregate over one or more data-streams, comprising
instructions for:

maintaining one of more atomic sketches over said one or
more data-steams;

skimming dense frequencies from said atomic sketches,
thereby creating a dense

frequency vector and an atomic skimmed-sketch for each
of said one or more data-streams, and;

generating an atomic estimate of said join aggregate using
said atomic skimmed-sketches and said dense fre-
quency vectors.
14. A computing device for estimating a join aggregate
over one or more data-streams, comprising:

a computer-readable medium comprising instructions for:

maintaining an array of parallel hash tables wherein
each hash bucket is an atomic sketch of data-ele-
ments from said one or more data-streams;

generating an array of hash table join estimates by
summing the individual joins of said hash bucket
across pairs of said parallel hash tables;

selecting said estimate of a join aggregate as the
median value of said array of hash table join esti-
mates.



