a9y United States

US 20060085592A1

a2y Patent Application Publication (o) Pub. No.: US 2006/0085592 A1
Ganguly et al.

43) Pub. Date: Apr. 20, 2006

(54) METHOD FOR DISTINCT COUNT

ESTIMATION OVER JOINS OF

CONTINUOUS UPDATE STREAM

(76) Inventors: Sumit Ganguly, Shaktinagar (IN);

Correspondence Address:
PATTERSON & SHERIDAN, LLP/

LUCENT TECHNOLOGIES, INC
595 SHREWSBURY AVENUE
SHREWSBURY, NJ 07702 (US)

Minos N. Garofalakis, Morristown, NJ
(US); Amit Kumar, New Delhi (IN);
Rajeev Rastogi, New Providence, NJ

(22) Filed: Sep. 30, 2004

Publication Classification

(51) Int. CL
GO6F 12/14 (2006.01)
(52) US. Cle oo 711/114

(57) ABSTRACT

The invention provides methods and systems for summa-
rizing multiple continuous update streams using correspond-
ing multiple (parallel) JD Sketch data structures such that,
for example, an approximate answer to a query requiring a
join operation followed by a duplicate elimination step may
be rapidly provided.

120 APPROXIMATE
¢ ANSWER

INPUT / OUTPUT CIRCUIT 121

(21) Appl. No.: 10/957,185
110 4
SN
STREAM FOR R(A,B)
10, 7/
IEEN
STREAM FOR S(B,C)

121 140
SUPPORT
CIRCUITS PRO?ZEZSSOR
123 122
MEMORY 124

SUMMERY GENERATION SG

JD SKETCH MAINTENANCE JDSM

QUERY PROCESSOR QP

JOIN - DISTINCT
ESTIMATION JDE

| OTHER ESTIMATION OE

SUMMARY STORAGE SS
SYNOPSIS || SYNOPSIS 130
FOR FOR OTHER
R(A.B) S(B,C)
QUERY

(COUNT (r (R><18))

Patent Application Publication Apr. 20,2006 Sheet 1 of 4 US 2006/0085592 A1

120 APPROXIMATE
¢ ANSWER
110 1
g N INPUT / OUTPUT CIRCUIT 121 140
STREAM FOR R(AB) > S
110, 7/ SUPPORT
S CIRCUITS PRO?ZEZSSOR
\ 123 2
STREAM FOR S(B,C))
/
MEMORY 124

SUMMERY GENERATION SG
JD SKETCH MAINTENANCE JDSM

QUERY PROCESSOR QP

JOIN - DISTINCT
ESTIMATION JDE

OTHER ESTIMATION OE

SUMMARY STORAGE SS
SYNOPSIS || SYNOPSIS 130
FOR FOR OTHER
R(A,B) S(B,C)
QUERY

FIG. 1 (COUNT (r (RD><IS))

Patent Application Publication Apr. 20,2006 Sheet 2 of 4 US 2006/0085592 A1

stream element: c ——— LSB(h(e))

(-X logM) First level

— total element count

V4

COUNTy | COUNT4 ® o0 COUNT1Ogh

L e e e —— — e e e e w— e —— e S — — —

bit - location counts

The 2-level Hash Sketch Synopsis Structure.

FIG. 2

US 2006/0085592 A1

Patent Application Publication Apr. 20,2006 Sheet 3 of 4

nl|..i|||||||....||||1|..|||||1..|||||11|1...i||||||11||1
|
“ 6oL Ao | e o o | FiNnoD | O1NnOD 6oL Nnoo | ¢ @ ¢ | tinnod | Oinnod
_
_
| (Sweone (Swbono 0
] HEERERRRCEER HERRRRERCERR
IIIII —_— SoN|eA - g UO S8U21ays Ysey |aAg) - Z Juspuadapuj |S T
(Ywbopo [T T= PR e = 0
_
(a'e)

(9'V) Y weang Joj sisdouds yaeys ar

€ 9Old

Patent Application Publication Apr. 20,2006 Sheet 4 of 4 US 2006/0085592 A1

procedure Compose(Xa,5, Xc,5)

Input: Pair of parallel JD sketch synopses for update
streams R(A,B),S(B,C).

Output: Bitmap-sketch Y4 ¢ on (A4, C) value pairs in Rd S

begin

1. Yac=[0,---,0] // initialize

2. for each bucket k of X4 p do

3. for each bucket ! # k of X¢, g do

4. if IntersectionEstimator(X 4, g[k], Xc,s[{]) > 1 then
5. yA,c[m.in{k, l}] =1

6. return(Ya,0)

end

JD Sketch Composition Algorithm.

FIG. 4

procedure JDEstimator((A} 5, X5, 5), 1 =1,...,382,€)

Input: sz independent pairs of parallel JD sketch synopses
(X4, B, X&,p) for the update streams R (A, B), S (B, C) .

Output: (e, §)-estumate for |ra,c(R(A,B) < S(B, C))|.

begin

1. fori:=1to 33 do

2. YV, :=Compose(X} g, X¢,p)

3. let B denote the highest bucket index in the V4 ¢ synopses
4. for index := B downto O do

5. count := 0

6. fori:=1to ss do

7. if V4 c[index] = 1 then count := count +1
8. endfor

9. if((1-20% < CM <1 +)¢ then
10. return(count/(p;,dex * 52))

11. endfor

12. return(fail)

end

Join-Distinct Estimation Algorithm.

FIG. 5

US 2006/0085592 Al

METHOD FOR DISTINCT COUNT ESTIMATION
OVER JOINS OF CONTINUOUS UPDATE STREAM

FIELD OF THE INVENTION

[0001] The invention relates generally to information pro-
cessing systems and, more particularly, to database query
processing over continuous streams of update operations.

BACKGROUND OF THE INVENTION

[0002] Query-processing algorithms for conventional
Database Management Systems (DBMS) typically rely on
several passes over a collection of static data sets in order to
produce an accurate answer to a user query. However, there
is growing interest in algorithms for processing and query-
ing continuous data streams (i.e., data that is seen only once
in a fixed order) with limited memory resources. These
streams in general comprise update operations (insertions,
deletions and the like).

[0003] Providing even approximate answers to queries
over continuous data streams is a requirement for many
application environments; examples include large IP net-
work installations where performance data from different
parts of the network needs to be continuously collected and
analyzed. A large network processes data traffic and provides
measurements of network performance, network routing
decisions and the like. Other application domains giving rise
to continuous and massive update streams include retail-
chain transaction processing (e.g., purchase and sale
records), ATM and credit-card operations, logging Web-
server usage records, and the like.

[0004] For example, assume that each of two routers
within the network provides a respective update stream
indicative of packet related data, router behavior data and
the like. It may be desirable for the data streams from each
of the two routers to be correlated. Traditionally, such
streams are correlated using a JOIN operation, which is used
to determine, for example, how many of the tuples associ-
ated with routers R1 and R2 have the same destination IP
address (or some other inquiry). In the case of this JOIN
query, the two data sets (i.e., those associated with R1 and
R2) are joined and the size of the relevant joined set is
determined (e.g., how many of the tuples have the same
destination address).

[0005] The ability to estimate the number of distinct
(sub)tuples in the result of a join operation correlating two
data streams (i.e., the cardinality of a projection with dupli-
cate elimination over a join) is an important goal. Unfortu-
nately, existing query processing solutions are unable to
provide sufficient responses to complex “Join-Distinct” esti-
mation problems over data streams.

SUMMARY OF THE INVENTION

[0006] Various deficiencies in the prior art are addressed
by a novel method and data structure for summarizing a
continuous update stream. Where the data structure is used
to summarize multiple continuous update streams, approxi-
mate answers to Join-Distinct queries and other queries may
be rapidly provided. Improved accuracy in query response is
achieved in one embodiment by summarizing multiple con-
tinuous data streams using corresponding multiple (parallel)
JD Sketch data structures. One embodiment of the invention

Apr. 20, 2006

is directed to determining a “distinct” join aggregate. That is,
the invention operates to perform a join operation, then
apply a duplicate elimination step to count the number of
distinct tuples produced by the join operation.

[0007] Specifically, a method according to one embodi-
ment of the invention comprises maintaining a summary of
a first continuous stream of tuples by hashing tuples received
from the first continuous data stream according to at least
one initial attribute; and for each bucket of the at least one
initial attribute, generating a corresponding set of 2-level
hash sketches according to at least one other attribute.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The teachings of the present invention can be
readily understood by considering the following detailed
description in conjunction with the accompanying drawings,
in which:

[0009] FIG. 1 depicts an Update-Stream Processing
Architecture according to an embodiment of the present
invention;

[0010] FIG. 2 depicts a data structure of a 2-level hash
sketch synopsis useful in understanding the invention;

[0011] FIG. 3 depicts a data structure of a JD Sketch
update stream synopsis according to an embodiment of the
invention;

[0012] FIG. 4 depicts a pseudo code representation of a
method according to an embodiment of the invention for
composing parallel JD Sketch data structures; and

[0013] FIG. 5 depicts a pseudo code representation of a
Joint-Distinct estimation method according to an embodi-
ment of the invention.

[0014] To facilitate understanding, identical reference
numerals have been used, where possible, to designate
identical elements that are common to the figures.

DETAILED DESCRIPTION OF THE
INVENTION

[0015] The invention will be described within the context
of a computer or communications network in which the
provisioning and relationships of various routers and other
data are of interest. It will be appreciated that the invention
is broadly applicable to any system or application domain in
which the efficient summarizing and, optionally, Join-Dis-
tinct query processing of multiple continuous update data
streams is desired.

[0016] Briefly, presented herein is a space-efficient algo-
rithmic solution to the general Join-Distinct cardinality
estimation problem over continuous update streams. The
proposed estimators are probabilistic in nature and rely on
novel algorithms for building and combining a new class of
hash-based synopses, termed “JD sketches”, that are useful
in summarizing update streams. Also presented are novel
estimation algorithms that use the JD sketch synopses to
provide low error, high-confidence Join-Distinct estimates
using only small space and small processing time per update.

[0017] First, the JD sketch synopsis data structure is
introduced and its maintenance over a continuous stream of
updates (rendering a multi-set of data tuples) is described.
Briefly, the JD synopses make use of 2-level hash sketch

US 2006/0085592 Al

structures while imposing an additional level of hashing that
is adapted to effectively project and count on the attributes
in the distinct-count clause. The JD sketch synopses never
require rescanning or re-sampling of past stream items,
regardless of the deletions in the stream: at any point in time,
the synopsis structure is guaranteed to be identical to that
obtained if the deleted items had never occurred in the
stream. The JD sketch synopses are used to summarize
multiple continuous data streams such that approximate
answers to Join-Distinct queries and other queries may be
rapidly provided.

[0018] Second, based on the JD sketch synopses, a novel
probabilistic algorithm for estimating Join-Distinct cardi-
nalities over update streams is provided. That is, the inven-
tion operates to perform a join operation, then apply a
duplicate elimination step to count the number of distinct
tuples produced by the join operation. A key element of the
solution is a new techmque for intelligently composing
independently-built JD sketches (on different tuple streams)
to obtain an estimate for the cardinality of their Join-Distinct
result. The invention provides a novel approach to solve this
difficult estimation problem in the context of a data-stream-
ing or update-streaming model. Furthermore, even though
the estimators are presented in a single-site setting, the
invention may be extended to the more general distributed-
stream model.

[0019] A method according to an embodiment of the
invention operates to build small space summaries of each of
the update streams of interest. That is, as the individual
update records or tuples stream by, a small space summary
of these records/tuples is built and maintained for each
stream. The small space summary for each stream is sup-
ported by a respective plurality (e.g., Z) of a new data
structure denoted by the inventors as a JD Sketch synopsis.
In response to a user query, the invention operates to process
the small space summaries (i.e., the Z parallel JD Sketch
data structures) of the streams relevant to the user query
according to a Join-Distinct operation to provide thereby
very good approximate response(s) to the query.

[0020] Each of the Z JD Sketch data structures associated
with any update stream represents a respective synopsis of
that update stream up to a particular point in time. Each of
the Z JD Sketch data structures (JDS;-JDS,) is determined
in a consistent manner between streams. That is, assuming
two streams of interest, the first JD Sketch JDS, of a first
stream STREAMI is constructed in the same manner as the
first JD Sketch JDS, of a second stream STREAM2, the
second JD Sketch JDS, of the first stream STREAMI1 is
constructed in the same manner as the second JD Sketch
JDS, of the second stream STREAM2 and so on. Thus, each
of the records or tuples received from an update stream is
hashed and stored according to each of the Z JD Sketch
synopsis. The Z JD Sketches associated with each update
stream forms a small space summary of that update stream.

[0021] The JD Sketch data structure is not a standard hash
table. It may be conceptualized as a hash table having
buckets which additionally include second level hash struc-
tures adapted to capture information pertaining to the set of
elements of a stream. That is, only a summary of the set of
information mapping to each hash table bucket is actually
kept in the bucket. This summary hash table bucket sum-
mary may comprise, illustratively, a set of 2-level hash

Apr. 20, 2006

sketch synopses. Thus, each hash table bucket stores a
corresponding set of hash tables of those data elements that
map or “collide” into the hash table bucket.

[0022] As previously noted, each of the corresponding 1-Z
JD Sketch data structures maintained for each stream is
constructed in the same manner. That is, for each of the
update streams, their small space summaries are built using
corresponding JD Sketch data structures. Specifically, the
first level hash function and set of second level hash func-
tions for a first JD Sketch data structure JDS1 of a first
stream STREAMI1 corresponds to the first level hash func-
tion and set of second level hash functions for a first JD
Sketch data structure JDS1 of a second stream STREAM?2
(and so on). Such corresponding JD Sketch pairs are herein
referred to as parallel JD Sketch pairs.

[0023] In their most general form, data base data streams
are actually update streams; that is, the stream is a sequence
of updates to data items, comprising data-item deletions as
well as insertions. Such continuous update streams arise
naturally, for example, in the network installations of large
Internet service providers, where detailed usage information
(SNMP/RMON packet-flow data, active VPN circuits, etc.)
from different parts of the underlying network needs to be
continuously collected and analyzed for interesting trends.

[0024] The processing of such streams follows, in general,
a distributed model where each stream (or, part of a stream)
is observed and summarized by its respective party (e.g., the
element-management system of an individual IP router) and
the resulting synopses are then collected (e.g., periodically)
at a central site, where queries over the entire collection of
streams can be processed. This model is used, for example,
in the Interprenet IP network monitoring product provided
by Lucent Technologies, Inc., of Murray Hill, N.J.

[0025] There are several forms of queries that users or
applications may wish to pose (online) over such continuous
update streams; examples include join or multi-join aggre-
gates, norm and quantile estimation, or histogram and wave-
let computation. Estimating the number of distinct (sub-
)Jtuples in the result of an equi-join operation correlating two
update streams (i.e., the cardinality of a projection with
duplicate elimination over a join) is one of the fundamental
queries of interest for several data-analysis scenarios.

[0026] As an example, a network-management application
monitoring active [P-sessions may wish to correlate the
active sessions at routers R1 and R2 by posing a query such
as: “What is the number of distinct (source, destination)
IP-address pairs seen in packets routed through R1 such that
the source address is also seen in packets routed by R2?”
Such a query would be used, for example, when trying to
determine the load imposed on a core router R1 by the set
of customers connected to a specific router R2 at the edge of
the network. This query may be described as the number of
distinct tuples in the output of the following project-join
query, where R;(sour,,dest;) denotes the multi-set of source-
destination address pairs observed in the packet stream
through a router R, as follows:

Teour; dest, (R1 (sOur), dest; PIsour,=sour,R,(sour,,

dest;f)

[0027] The ability to provide effective estimates for the
cardinality of such “Join-Distinct” query expressions over
the observed IP-session data streams in the underlying

US 2006/0085592 Al

network can be crucial in quickly detecting possible denial-
of-service attacks, network routing or load-balancing prob-
lems, potential reliability concerns (catastrophic points-of-
failure), and so on. Join-Distinct queries are also an integral
part of query languages for relational database systems (e.g.,
the DISTINCT clause in the SQL standard). Thus, one-pass
synopses for effectively estimating Join-Distinct cardinali-
ties can be extremely useful, e.g., in the optimization of such
queries over Terabyte relational databases.

[0028] FIG. 1 depicts an Update-Stream Processing
Architecture according to an embodiment of the present
invention. The architecture of FIG. 1 is presented as a
general purpose computing element adapted to perform the
various stream processing tasks described herein. It will be
appreciated by those skilled in the art and informed by the
present invention that the architecture of FIG. 1 may be
usefully employed within the context of a network manage-
ment system at a Network Management Layer, an Element
Management Layer or some other level. Moreover, while not
discussed in detail herein, appropriate systems and apparatus
for practicing the data structures, methodology and other
aspects of the invention may be found in any system
benefiting from the data processing and other techmques
described herein.

[0029] Specifically, FIG. 1 comprises an update-stream
processing architecture 120 including a processor 122 as
well as memory 124 for storing various control programs
and other programs as well as data. The memory 124 may
also store an operating system supporting the various pro-
grams.

[0030] The processor 122 cooperates with conventional
support circuitry such as power supplies, clock circuits,
cache memory and the like as well as circuits that assist in
executing the software routine stored in the memory 124. As
such, it is contemplated that some of the steps discussed
herein as software processes may be implemented within
hardware, for example as circuitry that cooperates with the
processor 122 to perform various steps. The processing
architecture 120 also contains input/output (I/O) circuitry
121 which forms an interface between the various functional
elements communicating with the architecture 120.

[0031] The architecture 120 may be advantageously
employed within the context of a network management
system (NMS), an element management system (EMS) or
any other network management system. Similarly, the inven-
tion has broad applicability to any system in which large
amounts of data must be rapidly processed within the
context of update streams.

[0032] The invention may be implemented as a computer
program product wherein computer instructions, when pro-
cessed by a computer, adapt the operation of the computer
such that the methods, data structures and/or techniques of
the present invention are invoked or otherwise provided.
Instructions for invoking the inventive methods may be
stored in fixed or removable media, transmitted via a data
stream in a broadcast media, and/or stored within a working
memory within a computing device operating according to
the instructions.

[0033] In an embodiment of the invention depicted in
FIG. 1, a first update-stream 110, is associated with a first
multi-set of relational tuples R(A,B), while a second update-

Apr. 20, 2006

stream 110, is associated with a second multi-set of rela-
tional tuples denoted as S(B,C). The update-stream process-
ing architecture 120 processes the two update streams 110,
through 110, to produce corresponding summaries. The
corresponding summaries are the processed in response to,
illustratively, a user query 130 to provide therefrom an
approximate answer 140.

[0034] Memory 124 is depicted as including a summary
generation SG algorithm is utilized to provide summary
information pertaining to the received update streams, illus-
tratively a JD sketch maintenance algorithm JDSM. The
summary (sets of parallel JD sketch pairs) for each of the
update streams 110,, 110, is stored within summary storage
SS within memory 124. As depicted in FIG. 1, the summary
storage SS includes a synopsis for stream R(A,B), a synopsis
for stream S(B,C) and, optionally, a synopsis for other
update streams. Thus, while the architecture of FIG. 1 is
depicted as processing two update streams, more update
streams may be summarized and otherwise processed in
accordance with the present invention.

[0035] Memory 124 is also depicted as including a query
processor QP including a join-distinct estimation algorithm
(JDE) as well as another estimation algorithm OE. The JDE
algorithm also utilizes a JD Sketch composition algorithm.
Thus, summaries in the form of JD Sketchs are generated/
maintained by the summary generation SG algorithm. The
summaries/JD Sketches are then composed and otherwise
utilized by the JDE algorithm to respond to queries.

[0036] It will be appreciated by those skilled in the art and
informed by the teachings of the present invention that while
the memory 124 includes a plurality of data structures,
algorithms and storage regions, there is no requirement
within the context of the present invention that a single
memory device as depicted be utilized within the context of
the update-stream processing architecture. Specifically, any
combination of internal, external and/or associated memory
may be utilized to store the software instructions necessary
to provide summary generation SG functions, query proces-
sor QP functions and summary storage SS functions. Thus,
while the architecture depicts the memory as an integral
portion of a relatively unified structure, the memory 124
may in fact be distributed internal or external to the update-
stream processing architecture 120.

[0037] The update-stream processing architecture of FIG.
1 is adapted in one embodiment for Join-Distinct cardinality
estimation. Each input stream renders a multi-set of rela-
tional tuples (R(A,B) or S(B,C)) as a continuous stream of
updates. Note that, in general, even though A, B, and C are
denoted as single attributes in the model described herein,
they can in fact denote sets of attributes in the underlying
relational schema. Furthermore, without loss of generality, it
will assumed for convenience that each attribute Xe{A,B,
C} takes values from the integer domain [My]={0, . . .
,Mx~1}. Each streaming update (illustratively, for input
R(A,B)) is a pair of the form <(a,b),+v>, where (a,b)e[M |x
[Mg] denotes the specific tuple of R(A,B) whose frequency
changes, and +v is the net change in the frequency of (a,b)
in R(A,B), i.e., “xv” to (“~v”) denotes v insertions (resp.,
deletions) of tuple (a,b). It is assumed that all deletions in the
update streams are legal; that is, an update <(a,b),—v> can
only be issued if the net frequency of (a,b) in R(A,B) is at
least v. Also let N denote an upper bound on the total number

US 2006/0085592 Al

of data tuples (i.e., the net sum of tuple frequencies) in either
R(A,B) or S(B,C). In contrast to conventional DBMS pro-
cessing, the inventive stream processor is likely allowed to
see the update tuples for each relational input only once and
in the fixed order of arrival as they stream in from their
respective source(s). Backtracking over an update stream
and explicit access to past update tuples are impossible.

[0038] The invention finds particular applicability within
the context of estimating the number of distinct(A,C) (sub-
Jtuples in the result of the data-stream join R(A,B)>mp
S(B,C). More specifically, in approximating the result of the
query Q=|m, (R(A,B)»S(B,C))| or, using SQL:

Q= SELECT COUNT DISTINCT (A, C)
FROM R(A,B), S(B,C)
WHERE R.B = S.B

[0039] The term [X| is used to denote the set cardinality
(i.e., number of distinct elements with positive net fre-
quency) in the multi-set X. In general, the attribute sets A,
B, and C in Q are not necessarily disjoint or non-empty. For
example, the target attributes A and C may in fact contain the
join attribute B, and either A or C can be empty (i.e., a
one-sided projection). To simplify the discussion, the esti-
mation algorithms assume that both A and C are non-empty
and disjoint from B (i.e., A,C =¢ and ANB=BNC=W). The
invention is also applicable to other forms of Join-Distinct
estimation. With respect to notation, the term A is used as a
shorthand to denote the set of distinct A-values seen in
R(A,B), and |A| to denote the corresponding set cardinality
(i.e., |Al=jm, (R(A,B)]). (B,C and [B|,|C| are used similarly,
with B being the distinct B-values seen in either R(A,B) or
S(B,C), i.e., the union my (R(A,B))Un,(S(B,C))).

[0040] FIG. 2 depicts a data structure of a 2-level hash
sketch update stream synopsis useful in understanding the
invention. Specifically, the subject invention utilizes a data
structure that includes a 2-level hash sketch stream synopsis.
In one embodiment, the 2-level hash sketch stream synopsis
is formed according to a modification of a technique devel-
oped by Flajolet and Martin (FM). The FM technique
proposed the use of hash-based techniques for estimating the
number of distinct elements (i.e., |A]) over an insert-only
data stream A (i.e., a data stream without deletions or other
non-insert updates). Briefly, assuming that the elements of A
range over the data domain [M], the FM algorithm relies on
a family of hash functions H that map incoming elements
uniformly and independently over the collection of binary
strings in [M]. It is then easy to see that, if he H and (s)
denotes the position of the least-significant 1 bit in the binary
string s, then for any

1
i€ (M), (WD) €10, logh 1} and = 7.

The basic hash synopsis maintained by an instance of the
FM algorithm (i.e., a specific choice of hash function he H)
is simply a bit-vector of size @(log M). This bit-vector is
initialized to all zeros and, for each incoming value i in the
input (multi-)set A, the bit located at position (h(i)) is turned

Apr. 20, 2006

on. Of course, to boost accuracy and confidence, the FM
algorithm employs averaging over several independent
instances (i.e., r independent choices of the mapping hash-
function he H and corresponding synopses). The key idea
behind the FM algorithm is that, by the properties of the hash
functions in H, it is expected that a fraction of

of the distinct values in A to map to location 1 in each
synopsis; thus, it is expected that |[A]/2 values to map to bit
0, |Al/4 to map to bit 1, and so on. Therefore, the location of
the leftmost zero (say A) in a bit-vector synopsis is a good
indicator of log|A|, or, 2*~|A|.

[0041] A generalization of the basic FM bit-vector hash
synopsis, termed a 2-level hash sketch, enables accurate,
small-space cardinality estimation for arbitrary set expres-
sions (e.g., including set difference, intersection, and union
operators) defined over a collection of general update
streams (ranging over the domain [M], without loss of
generality). 2-level hash sketch synopses rely on a family of
(first-level) hash functions H that uniformly randomize input
values over the data domain [M]; then, for each domain
partition created by first-level hashing, a small (logarithmic-
size) count signature is maintained for the corresponding
multi-set of stream elements.

[0042] More specifically, a 2-level hash sketch uses one
randomly-chosen first-level hash function heH that, as in the
FM algorithm, is used in conjunction with LSB operator to
map the domain elements in [M] onto a logarithmic range
{0, ..., ©(log M)} of first-level buckets with exponentially
decreasing probabilities. Then, for the collection of elements
mapping to a given first-level bucket, a count signature
comprising an array of log M+1 element counters is main-
tained. This count-signature array consists of two parts: (a)
one total element count, which tracks the net total number of
elements that map onto the bucket; and, (b) log M bit-
location counts, which track, for each 1=1, . . . , log M, the
net total number of elements e with ,(e)=1 that map onto the
bucket (where, ,(€) denotes the value of the 1" bit in the
binary representation of ee[M]). Conceptually, a 2-level
hash sketch for a streaming multi-set A can be seen as a
two-dimensional array S, of size ®(log M)x(log M+1)=
O(log®M), where each entry S,[k|1] is a data-element
counter of size O(log N) corresponding to the 1™ count-
signature location of the k'™ first-level hash bucket. Assume
that, for a given bucket k, S ,[k,0] is always the total element
count, whereas the bit-location counts are located at S ,[k,1],
..., S,[k, log M]. The structure of this 2-level hash sketch
synopses is pictorially depicted in FIG. 2.

[0043] The algorithm for maintaining a 2-level hash
sketch synopsis S, over a stream of updates to a multi-set A
operates as follows. The sketch structure is first initialized to
all zeros and, for each incoming update <e,+v>, the element
counters at the appropriate locations of the SA sketch are
updated; that is, set S,[(h(e)),0]:=S,[(h(e)),0]xv to update
the total element count in e ’s bucket and, for each 1=1, . .
., log M such that ,(e)=1, set S [(h(e)),1]:=S s[(h(e)).l]+V to
update the corresponding bit-location counts. Note here that
the 2-level hash sketch synopses are essentially impervious

US 2006/0085592 Al

to delete operations; in other words, the sketch obtained at
the end of an update stream is identical to a sketch that never
sees the deleted items in the stream.

Join-Distinct Synopsis Data Structure

[0044] FIG. 3 depicts a data structure of a JD Sketch
update stream synopsis according to an embodiment of the
invention. Each JD Sketch data structure is associated with
one first level hash function and a set of second level hash
functions. Multiple JD Sketch data structures are maintained
in parallel. That is, each record/tuple is processed according
to the requirements of each of the Z JD Sketch data
structures. Each respective Z JD Sketch data structure rep-
resents a small-space summary of an update data stream.

[0045] The JD sketch synopsis data structure for update
stream R(A,B) uses hashing on attribute(s) A (similar, in one
embodiment, to the basic FM distinct-count estimator) and,
for each hash bucket of A, a family of 2-level hash sketches
is deployed as a concise synopsis of the B values corre-
sponding to tuples mapped to this A-bucket. More specifi-
cally, a JD sketch synopsis X , i for stream R(A,B) relies on
a hash function h, selected at random from an appropriate
family of randomizing hash functions H, that uniformly
randomize values over the domain [M,] of A. As in the FM
algorithm (and 2-level hash sketches), this hash function h,
is used in conjunction with the operator to map A-values
onto a logarithmic number of hash buckets {0, . . . ,®)(log
M,)} with exponentially-decreasing probabilities. Bach
such bucket X, p[i] is an array of s, independent 2-level
hash sketches built on the (multi-)set of B values for (A,B)
tuples whose A component maps to bucket i. Let X, B[l,]]
(1=j<s,) denote the i 2-level hash sketch on B for the i

A bucket One aspect of the JD sketch definition is that the
B hash functions (hg) used by the i 2-level hash sketch in
X 4 p are, in one embodiment, identical across all A buckets.
That is, X, g[i,,j] and X g[i,.j] use the same (first-level)
hash functions on B for any i,,i, in {0, . . . ,@(log M)}

[0046] As with 2-level hash sketches, conceptually, a JD
sketch X, 5 for the update stream R(A,B) can be seen as a
four-dimensional array of total size O(log M,)xs,x0(log
Mp)x(log Mp+1)=s,-0(log M, log®Mg), where each entry
X4 plid.k1] is a counter of size O(log N). The JD sketch
structure is pictorially depicted in FIG. 3. It should be noted
that a JD sketch X, ;, can be thought of as a three-level hash
sketch where the first level of hashing is on attribute(s) A,
and a subsequent set of 2-level hash sketches on the B
attribute(s).

[0047] The maintenance algorithm for a JD sketch syn-
opsis built over the R(A,B) stream operates as follows. All
counters in the data structure are initialized to zeros and, for
each incoming update <(a,b),xv> (where (a,b)e[M, |x[Mz]),
the a value is hashed using h, () to locate an appropriate
A-bucket, and all the 2-level hash sketches in that bucket are
then updated using the <b,+v> tuple; that is, each of the s,
2-level hash sketches X, p[h4(a),j] (=1, s,) is updated
with <b,+v> using the 2-level hash sketch maintenance
algorithm described herein.

Join-Distinct Estimator

[0048] A Join-Distinct estimation algorithm according to
an embodiment of the invention constructs several indepen-
dent pairs of parallel JD sketch synopses (X, 5, X p) for
the input update streams R(A,B) and S(B,C) (respectively).

Apr. 20, 2006

For the X sketch, attribute C plays the same role as
attribute A in X, 5 (i.e., it is used to determine a first-level
bucket in the JD sketch). Furthermore, both X, 5 and X 5
use exactly the same hash functions for B in corresponding
2-level hash sketches for any A or C bucket; that is, the
B-hash functions for X, g[*,j]and X g *,j] are identical for
eachi=1, ..., s, (here, “*” denotes any first-level bucket in
either of the two JD sketches). Then, at estimation time, each
such pair of parallel JD sketches is composed in a novel
manner to build a synopsis for the number of distinct (A,C)
pairs in the join result. This composition is novel and
non-trivial, and relies on the use of new, composable fami-
lies of hash functions (h,() and h.()) for the first level of
a JD sketch synopses. The basic JD sketch composition step
will now be described in detail.

Composing a Parallel JD Sketch Pair.

[0049] Consider a pair of parallel JD sketch synopses
(Xam Xcp) over R(A,B) and S(B,C). The goal of the JD
sketch composition step is to combine information from
X, and X g to produce a bitmap synopsis for the number
of distinct (A C) value pairs. This bltmap is built using only
(A,C) pairs in the result of the join Rs«S. Thus, the com-
position step uses X, 5 and X 5 to determine (with high
probability) the (A,C)-value pairs that belong in the join
result, and map such pairs to the cells of a bitmap Y, - of
logarithmic size (i.e., O(log M, +log M.)) with exponen-
tially-decreasing probabilities.

[0050] FIG. 4 depicts a pseudo code representation of a
method for composing parallel JD Sketch data structures.
The JD sketch composition algorithm of FIG. 4, termed
Compose considers all possible combinations of fist level
bucket indices k=1 from the two input parallel JD sketches
(the k=1 restriction comes from a techmcal condition on the
composition of the two first-level hash functions on A and
C). For each such bucket pair X, g[k] and X g[l], the
composition algorithm employs the corresponding 2-level
hash sketch synopses on B to estimate the size of the
intersection for the sets of B values mapped to those
first-level buckets (procedure IntersectionEstimator in Step
4). If that size is estimated to be greater than zero (i.e., the
two buckets share at least one common join-attribute value),
then the bit at location min{k,1} of the output (A,C)-bitmap
Y 4 ¢ is set to one (Step 5). Since the JD sketches do not store
the entire set of B values for each first-level bucket but,
rather, a concise collection of independent 2-level hash
sketch synopses, the decision of whether two first-level
buckets join is necessarily approximate and probabilistic
(based on the 2-level hash sketch intersection estimate).

[0051] The JD sketch composition algorithm implements
a composite hash function h, () over (A,C)-value pairs that
combines the first-level hash functions h,() and h.() from
sketches X, 5 and X , respectively.

[0052] The composite hash function and its properties will
now be examined in more detail. The ability to use the final
(A,C) bitmap synopsis Y , output by algorithm Compose
to estimate the number of distinct (A,C)-value pairs in
R(A,B)<(B,C) depends on designing a composite hash
function h, () (based on the individual functions h (), ha(
)) that guarantees certain randomizing properties similar to
those of the hash functions used in the 2-level hash sketch
estimators. More specifically, the composite hash function
h, () preferably (a) allows mapping of (A,C)-value pairs

US 2006/0085592 Al

onto a logarithmic range with exponentially-decreasing
probabilities, and (b) guarantees a certain level of indepen-
dence between distinct tuples in the (A,C)-value pair
domain. The key problem is that, since the tuples from
R(A,B) and S(B,C) are seen in arbitrary order and are
individually summarized in the X , 5 and X. , synopses, the
composite hash-function construction can only use the hash
values (h,()) and (h.()) maintained in the individual JD
sketches. This limitation makes the problem non-trivial,
since it reduces the efficacy of standard pseudo-random
hash-function constructions, such as using finite-field poly-
nomial arithmetic over [M, [x[Mc].

[0053] The inventors have established the existence of
composable hash-function pairs (h,(), ho()) and demon-
strate that, for such functions, the composition procedure in
algorithm Compose indeed guarantees the required proper-
ties for the resulting composite hash function (i.e., expo-
nentially-decreasing mapping probabilities as well as pair
wise independence for (A,C)-value pairs).

[0054] Specifically, the hash functions (b, (),ho()) used to
build a parallel JD sketch pair (X, 5,Xcp) can be con-
structed so that the hash-function composition procedure in
algorithm Compose: (1) guarantees that (A,C)-value pairs
are mapped onto a logarithmic range O(log max{M,,M})
with exponentially-decreasing probabilities (in particular,
the mapping probability for the i bucket is p;=@(4~));
and, (2) results in a composite hash function h, ~() that
guarantees pair wise independence in the domain of (A,C)-
value pairs.

The Join-Distinct Estimator.

[0055] FIG. 5 depicts a pseudo code representation of a
Joint-Distinct estimation method according to an embodi-
ment of the invention. Specifically, FIG. 5 depicts the
pseudo-code of an algorithm for producing an (€,d) proba-
bilistic estimate for the Join-Distinct problem (termed JDEs-
timator). Briefly, the estimator employs an input collection
of s, independent JD sketch synopsis pairs built in parallel
over the input update streams R(A,B) and S(B,C). Each such
parallel ID sketch pair (X' A,B,XiC,B) is first composed (using
algorithm Compose) to produce a bitmap synopsis Y’ AC
over the (A,C)-value pairs in the join result (Steps 1-2).
Then, the resulting s, Y* a,c bitmaps are examined level-by-
level in parallel, searching for the highest bucket level
(“index) at which the number of bitmaps that satisfy the
condition: “Y*, []=1", lies between

s2- (1= Ze)g and s - (1 + €)e (Steps 4-11).

The final estimate returned is equal to the fraction of Y* AcC
synopses satisfying the condition at level “index” (i.e.,
“count/s,”) scaled by the mapping probability for that level
p=0(4~*).

[0056] The inventors have established that for appropriate
settings of the JD Sketch synopsis parameter s, and s,, the
join-distinct estimation procedure can guarantee low relative
error with high probability. Specifically, let S, denote a
random sample of distinct (A,C)-value pairs drawn from the
Cartesian product [M,]x[Mc] of the underlying value
domains, where each possible pair is selected for inclusion

Apr. 20, 2006

in the sample with probability p. Also, define two additional
random variables U, and T, over the sample S, of (A,C)-
value pairs as follows:

[0057] Up=|{b: J(a,c)eSp such that [(a,b) eR(A,B) OR
(bc) eSB,O)H,

[0058] Tp=|{b: 3(a,c)eSp such that [(a,b) eR(A,B) AND
(b,c) eSB,O)]}.

[0059] The following theorem summarizes the results of
the analysis, using M=max{M, ,My,M.} to simplify the
statement of the worst-case space bounds:

[0060] Let m denote the result size of an input query on
two update streams R(A,B) and S(B,C), and let

Up €
M = max{Ma, Mg, Mc}, e(p) = E[T—plTp > lJ, where p = p

The algorithm JDEstimator returns an (€,d)-estimate (i.e., an
estimate that is within an e relative error of the correct
answer with probability at least 1-8) for m using JD Sketch
synopses with a total storage requirement of 0(s, s, log®M
log N) and per-tuple update time of

O(s; logM), where: 51 = G(WJ an

dsy= @(log(l/é)].

€

Extensions

[0061] Handling Other Forms of Join-Distinct Count Que-
ries. The discussion thus far has focused on the query
Q=[m, ~(R(A,B)<S(B,C))|, where A,C=¢ and ANB=BNC=
¢). The Join-Distinct estimation techmques can be adapted
to deal with other forms of Join-Distinct COUNT queries
conforming to the general query pattern described herein.

[0062] Consider the case of a one-sided projection query
Q'=|m, s(R(A.B)<S(B,C))|, where the estimate of the num-
ber of distinct R(A,B) tuples joining with at least one tuple
from S(B,C) (i.e., the number of distinct tuples in a stream
semi-join) is sought. The JDEstimator algorithm can readily
handle the estimation of Q' by replacing attribute C with B
in the JD sketch construction and estimation steps already
described for Q. Thus, for Q', the JD sketch synopsis built
on the S(B,C) side uses a first-level hash function on
attribute B in addition to the per-bucket 2-level hash sketch
collections (also built on B); then, when the JD sketch
composition process is applied (at estimation time), the
output is a set of bitmap synopses Y , 5 on (A,B)-value pairs
that is used to produce an estimate for Q'.

[0063] Similarly consider the case of a “full-projection”
query Q"=nA,B,C(R(A,B)<S(B,C)|) that simply outputs
the number of distinct (A,B, C) tuples in the join result.
Handling Q" involves replacing A(C) by (A,B) (resp., (B,C))
in the JD sketch construction and JDEstimator algorithms
for Q. The results of the analysis for the estimators can also
be readily extended to cover these different forms of Join-
Distinct estimation problems.

[0064] The Join-Distinct estimation algorithms described
thus far have primarily utilized logarithmic or polylogarith-

US 2006/0085592 Al

mic space requirements. Such a restriction makes sense, for
example, when joining on attributes with very large numbers
of distinct values (e.g., (source, destination) IP-address
pairs). When this is not the case, and using O(/B|) space is
a viable option for estimating Q=|m, ~(R(A,B}<S(B,C)), an
alternative Join-Distinct estimation algorithm may be used.
Briefly, the alternative algorithm again relies on the idea of
using composable hash functions to compose a bit-vector
sketch on (A,C) from hash sketches built individually on
R(A,B) and S(B,C); however, the synopsis structure used is
different from that of JDEstimator. More specifically, by
making use of a @(|B|) bit-vector indicating the existence of
a particular B value in an input stream; for each non-empty
B-bucket, a collection of independent FM synopses (using
counters instead of bits) is maintained that summarizes the
collection of distinct A(C) values for tuples in R(A,B) (resp.,
S(B,C)) containing this specific B-value. (These FM syn-
opses are built using composable hash functions h,() and
h-(), as discussed above. At estimation time, the A and C
synopses for each B-value that appears in both R(A,B) and
S(B,C) (note that, since by using O(|B|) space, this co-
occurrence test is now exact) are composed to produce an
(A,C)-bitmap sketch for that B-value. Then, all such (A,C)-
bitmaps are unioned (by bitwise OR-ing) to give bit-vectors
on (A,C) for the result of RS, that can be directly used for
estimating Q. This alternative Join-Distinct estimator can
produce an (E,d)-estimate for Q using

o)

space, and can be extended to handle other forms of Join-
Distinct queries (like Q' and Q" above).

[0065] The above-described invention provides a method-
ology for summarizing a continuous stream of tuple updates
using the JD Sketch data structure. Multiple JD Sketch data
structure may be used to summarize a tuple update stream,
where each of the JD Sketch data structures is computed
using a respective base attribute. Two (or more) tuple update
streams may be summarized in parallel using respective
multiple JD Sketch data structures, where pairs (i.e., one
associated with each stream and having a common attribute)
of JD Sketch data structures are maintained in parallel. The
parallel JD Sketch data structures enable rapid approxima-
tions in response to join-distinct queries by performing a
join operation and then applying a duplicate elimination step
to count the number of distinct tuples produced by the join
operation.

[0066] While the forgoing is directed to various embodi-
ments of the present invention, other and further embodi-
ments of the invention may be devised without departing
from the basic scope thereof. As such, the appropriate scope
of the invention is to be determined according to the claims,
which follow.

1. ANOR flash memory device comprising:

a cell array including banks each composed of sectors,
each sector being constructed of memory cells coupled
to wordlines and bitlines;

a row selector to designate one of the wordlines in each
bank in response to a row address;

Apr. 20, 2006

a column selector to designate bitlines in a unit of a
predetermined number in each bank in response to a
column address;

a data input buffer to receive and hold program data bits
in the unit of the predetermined number or less; and

a program driver to contemporaneously apply a program
voltage to the designated bitlines in response to the
program data bits held in the data input buffer.

2. The NOR flash memory device as set forth in claim 1,
wherein the data input buffer is comprised of unit buffers
each assigned to the banks.

3. The NOR flash memory device as set forth in claim 2,
wherein each unit buffer receives the program data bits in the
units of the predetermined number in parallel.

4. The NOR flash memory device as set forth in claim 1,
wherein the program driver is supplied with a high voltage
greater than a power source voltage to generate the program
voltage.

5. The NOR flash memory device as set forth in claim 4,
wherein the program driver supplies the program voltage
from the high voltage or a ground voltage in response to the
program data bits.

6. The NOR flash memory device as set forth in claim 2,
wherein the program driver is comprised of unit drivers each
assigned to the banks.

7. The NOR flash memory device as set forth in claim 1,
wherein the predetermined number is 16.

8. The NOR flash memory device as set forth in claim 1,
further comprising a fail detector to compare data bits of the
cell array with the program data bits of the data input buffer.

9. The NOR flash memory device as set forth in claim 8§,
wherein the fail detector is shared by all of the banks.

10. The NOR flash memory device as set forth in claim 1,
wherein the bitlines are constructed of local bitlines con-
nected to the memory cells, and global bitlines connected to
the local bitlines.

11. A system comprising:

a host to generate data bits in units of a first predetermined
number in a second predetermined number of times or
less; and

a NOR flash memory device operable in a program mode
with the data bits supplied from the host, comprising:

a cell array including banks disposed in correspondence
with the second predetermined number of times, each
bank being composed of sectors, each sector being
constructed of memory cells coupled to wordlines and
bitlines;

a row selector to designate one of the wordlines in each
bank in response to a row address;

a column selector to designate bitlines in units of the first
predetermined number in each bank in response to a
column address;

a data input buffer to receive and hold the data bits in the
units of the first predetermined number in the second
predetermined number of times or less; and

a program driver to contemporaneously apply a program
voltage to the designated bitlines in response to the data
bits held in the data input buffer.

US 2006/0085592 Al

12. The system as set forth in claim 11, wherein the
program driver is supplied with a high voltage greater than
a power source voltage from the host.

13. The system as set forth in claim 11, further comprising
a fail detector to compare data bits of the cell array with the
data bits of the data input buffer.

14. The system as set forth in claim 13, wherein the fail
detector is shared by all of the banks.

15. The system as set forth in claim 11, wherein the first
predetermined number is 16.

16. A method of programming a NOR flash memory
device including a cell array with a number n banks each
composed of sectors each of which is constructed of
memory cells coupled to wordlines and bitlines, a row
selector for designating one of the wordlines in each bank in
response to a row address, and a column selector for
designating units of i bitlines in each bank in response to a
column address, the method comprising:

receiving a command to enable a program operation of i
data bits at the same time;

receiving addresses to designate locations to store the data
bits;
receiving and temporarily holding the i data bits an n

number of times or less, corresponding to the desig-
nated bitlines; and

simultaneously applying a program voltage to the desig-
nated bitlines in response to the data bits temporarily
held.

17. The method as set forth in claim 16, further compris-
ing, prior to receiving the command segmenting entire
program data into units of n banks and supplying the i data
bits n times or less.

18. The method as set forth in claim 16, further compris-
ing comparing data bits of the cell array with data bits of a
data input buffer and detecting a fail of programming.

19. The method as set forth in claim 18, further compris-
ing repeating applying the program voltape and comparing
the data bits of the cell array until the data bits of the cell
array are identical to the data bits temporarily held.

Apr. 20, 2006

20. The method as set forth in claim 16, wherein the
command to enable the program operation of the i data bits
includes receiving the i data bits in parallel.

21. The method as set forth in claim 16, wherein simul-
taneously applying a program voltage includes applying the
program voltage to the selected bitlines by receiving an
external high voltage that is greater than a power source
voltage.

22. The method as set forth in claim 21, wherein simul-
taneously applying a program voltage includes supplying the
high voltage to the designated bitlines as the program
voltage when the data bits are “0”, and supplies a ground
voltage to deselected bitlines when the data bits are “1”.

23. The method as set forth in claim 16, wherein i is 16.

24. A NOR flash memory device comprising:

a cell array including banks each composed of sectors,
each sector being constructed of memory cells coupled
to wordlines and bitlines;

a row selector to designate one of the wordlines in each
bank in response to a row address, the row selector
including one row decoder for each one of the sectors;

a column selector to designate bitlines in a unit of a
predetermined number in each bank in response to a
column address, the column selector including one
column decoder for each one of the sectors;

a data input buffer to receive and hold program data bits
in the unit of the predetermined number or less; and

a program driver to contemporaneously apply a program
voltage to the designated bitlines in response to the
program data bits held in the data input buffer.

25. The NOR flash memory device as set forth in claim
24, wherein the row decoder and the column decoder are
grouped in a pair to correspond to one of the sectors.

26. The NOR flash memory device as set forth in claim
25, wherein the column selector includes a global column
decoder corresponding to each one of the banks.

#* #* #* #* #*

