
SPIRIT: Sequential Pattern Mining with
Regular Expression Constraints

Minos N. Garofalakis
Bell Laboratories

minos@bell-labs.com

Rajeev Rastogi
Bell Laboratories

rastogi@bell-labs.com

Kyuseok Shim
Bell Laboratories

shim@bell-labs.com

Abstract
Discovering sequential patterns is an important problem in
data mining with a host of application domains including
medicine, telecommunications, and the World Wide Web.
Conventional mining systems provide users with only a
very restricted mechanism (based on minimum support)
for specifying patterns of interest. In this paper, we pro-
pose the use of Regular Expressions (REs) as a flexible
constraint specification tool that enables user-controlled
focus to be incorporated into the pattern mining process.
We develop a family of novel algorithms (termed SPIRIT
– Sequential Pattern mIning with Regular expressIon con-
sTraints) for mining frequent sequential patterns that also
satisfy user-specified RE constraints. The main distin-
guishing factor among the proposed schemes is the de-
gree to which the RE constraints are enforced to prune the
search space of patterns during computation. Our solu-
tions provide valuable insights into the tradeoffs that arise
when constraints that do not subscribe to nice properties
(like anti-monotonicity) are integrated into the mining pro-
cess. A quantitative exploration of these tradeoffs is con-
ducted through an extensive experimental study on syn-
thetic and real-life data sets.

1 Introduction
Discovering sequential patterns from a large database of
sequences is an important problem in the field of knowl-
edge discovery and data mining. Briefly, given a set of data
sequences, the problem is to discover subsequences that are
frequent, in the sense that the percentage of data sequences
containing them exceeds a user-specified minimum sup-
port [3, 11]. Mining frequent sequential patterns has found
a host of potential application domains, including retailing
(i.e., market-basket data), telecommunications, and, more
recently, the World Wide Web (WWW). In market-basket
databases, each data sequence corresponds to items bought
by an individual customer over time and frequent patterns
can be useful for predicting future customer behavior. In
telecommunications, frequent sequences of alarms output

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

by network switches capture important relationships be-
tween alarm signals that can then be employed for on-
line prediction, analysis, and correction of network faults.
Finally, in the context of the WWW, server sites typi-
cally generate huge volumes of daily log data capturing
the sequences of page accesses for thousands or millions of
users

�

. Discovering frequent access patterns in WWW logs
can help improve system design (e.g., better hyperlinked
structure between correlated pages) and lead to better mar-
keting decisions (e.g., strategic advertisement placement).

As a more concrete example, the Yahoo! Internet di-
rectory (www.yahoo.com) enables users to locate interest-
ing WWW documents by navigating through large topic
hierarchies consisting of thousands of different document
classes. These hierarchies provide an effective way of
dealing with the abundance problem present in today’s
keyword-based WWW search engines. The idea is to allow
users to progressively refine their search by following spe-
cific topic paths (i.e., sequences of hyperlinks) along a (pre-
defined) hierarchy. Given the wide variety of topics and the
inherently fuzzy nature of document classification, there
are numerous cases in which distinct topic paths lead to dif-
ferent document collections on very similar topics. For ex-
ample, starting from Yahoo!’s home page users can locate
information on hotels in New York City by following ei-
ther Travel:Yahoo!Travel:North America:United
States:New York:New York City:Lodging:Hotels
or Travel:Lodging:Yahoo!Lodging:New York:New
York Cities:New York City:Hotels and Motels,
where “:” denotes a parent-child link in the topic hierar-
chy. Mining user access logs to determine the most fre-
quently accessed topic paths is a task of immense market-
ing value, e.g., for a hotel or restaurant business in New
York City trying to select a strategic set of WWW locations
for its advertising campaign.

The design of effective algorithms for mining frequent
sequential patterns has been the subject of several studies in
recent years [3, 4, 7, 8, 11, 12]. Ignoring small differences
in the problem definition (e.g., form of input data, defini-
tion of a subsequence), a major common thread that runs
through the vast majority of earlier work is the lack of user-
controlled focus in the pattern mining process. Typically,

�

In general, WWW servers only have knowledge of the IP address of
the user/proxy requesting a specific web page. However, referrers and
cookies can be used to determine the sequence of accesses for a particular
user (without compromising the user’s identity).

the interaction of the user with the pattern mining system is
limited to specifying a lower bound on the desired support
for the extracted patterns. The system then executes an ap-
propriate mining algorithm and returns a very large number
of sequential patterns, only some of which may be of actual
interest to the user. Despite its conceptual simplicity, this
“unfocused” approach to sequential pattern mining suffers
from two major drawbacks.

1. Disproportionate computational cost for selective
users. Given a database of sequences and a fixed value
for the minimum support threshold, the computational
cost of the pattern mining process is fixed for any po-
tential user. Ignoring user focus can be extremely un-
fair to a highly selective user that is only interested in
patterns of a very specific form.

2. Overwhelming volume of potentially useless results.
The lack of tools to express user focus during the pat-
tern mining process means that selective users will
typically be swamped with a huge number of frequent
patterns, most of which are useless for their purposes.

The above discussion clearly demonstrates the need for
novel pattern mining solutions that enable the incorpora-
tion of user-controlled focus in the mining process. There
are two main components that any such solution must pro-
vide. First, given the inadequacy of simple support con-
straints, we need a flexible constraint specification lan-
guage that allows users to express the specific family of
sequential patterns that they are interested in. For instance,
returning to our earlier “New York City hotels” example, a
hotel planning its ad placement may only be interested in
paths that (a) begin with Travel, (b) end in either Hotels
or Hotels and Motels, and (c) contain at least one of
Lodging, Yahoo!Lodging, Yahoo!Travel, New York,
or New York City, since these are the only topics directly
related to its line of business. Second, we need novel pat-
tern mining algorithms that can exploit user focus by push-
ing user-specified constraints deep inside the mining pro-
cess. The abstract goal here is to exploit pattern constraints
to prune the computational cost and ensure system perfor-
mance that is commensurate with the level of user focus
(i.e., constraint selectivity).

We should note that even though recent work has ad-
dressed similar problems in the context of association rule
mining [9, 10], the problem of incorporating a rich set of
user-specified constraints in sequential pattern mining re-
mains, to the best of our knowledge, unexplored. Fur-
thermore, as we will discover later in the paper, pattern
constraints raise a host of new issues specific to sequence
mining (e.g., due to the explicit ordering of items) that
were not considered in the subset and aggregation con-
straints for itemsets considered in [9, 10]. For example,
our pattern constraints do not satisfy the property of anti-
monotonicity [9]; that is, the fact that a sequence satisfies a
pattern constraint does not imply that all its subsequences
satisfy the same constraint. These differences mandate
novel solutions that are completely independent of earlier

results on constrained association rule mining
�

[9, 10].
In this paper, we formulate the problem of mining se-

quential patterns with regular expression constraints and
we develop novel, efficient algorithmic solutions for push-
ing regular expressions inside the pattern mining process.
Our choice of regular expressions (REs) as a constraint
specification tool is motivated by two important factors.
First, REs provide a simple, natural syntax for the suc-
cinct specification of families of sequential patterns. Sec-
ond, REs possess sufficient expressive power for specify-
ing a wide range of interesting, non-trivial pattern con-
straints. These observations are validated by the exten-
sive use of REs in everyday string processing tasks (e.g.,
UNIX shell utilities like grep or ls) as well as in recent
proposals on query languages for sequence data (e.g., the
Shape Definition Language of Agrawal et al. [1]). Return-
ing once again to our “New York City hotels” example,
note that the constraint on topic paths described earlier in
this section can be simply expressed as the following RE:
Travel(Lodging|Yahoo!Lodging|Yahoo!Travel|-
New York|New York City)(Hotels|Hotels and
Motels), where “|” stands for disjunction. We propose
a family of novel algorithms (termed SPIRIT – Sequen-
tial Pattern mIning with Regular expressIon consTraints)
for mining frequent sequential patterns that also belong to
the language defined by the user-specified RE. Our algo-
rithms exploit the equivalence of REs to deterministic fi-
nite automata [6] to push RE constraints deep inside the
pattern mining computation. The main distinguishing fac-
tor among the proposed schemes is the degree to which the
RE constraint is enforced within the generation and prun-
ing of candidate patterns during the mining process. We
observe that, varying the level of user focus (i.e., RE en-
forcement) during pattern mining gives rise to certain in-
teresting tradeoffs with respect to computational effective-
ness. Enforcing the RE constraint at each phase of the
mining process certainly minimizes the amount of “state”
maintained after each phase, focusing only on patterns that
could potentially be in the final answer set. On the other
hand, minimizing this maintained state may not always be
the best solution since it can, for example, limit our abil-
ity to do effective support-based pruning in later phases.
Such tradeoffs are obviously related to our previous obser-
vation that RE constraints are not anti-monotone [9]. We
believe that our results provide useful insights into the more
general problem of constraint-driven, ad-hoc data mining,
showing that there can be a whole spectrum of choices
for dealing with constraints, even when they do not sub-
scribe to nice properties like anti-monotonicity or succinct-
ness [9]. An extensive experimental study with synthetic
as well as real-life data sets is conducted to explore the
tradeoffs involved and their impact on the overall effec-
tiveness of our algorithms. Our results indicate that incor-
porating RE constraints into the pattern mining computa-
tion can some times yield more than an order of magnitude

�

Due to space constraints, we omit a detailed discussion of earlier
work. The interested reader is referred to the full version of this paper [5].

improvement in performance, thus validating the effective-
ness of our approach. Our experimentation with real-life
WWW server log data also demonstrates the versatility of
REs as a user-level tool for focusing on interesting patterns.
The work reported in this paper has been done in the con-
text of the

���������	��

�
data mining project at Bell Labo-

ratories (www.bell-labs.com/projects/serendip).

2 Problem Formulation
2.1 Definitions

The main input to our mining problem is a database of
sequences, where each sequence is an ordered list of ele-
ments. These elements can be either (a) simple items from
a fixed set of literals (e.g., the identifiers of WWW doc-
uments available at a server [4], the amino acid symbols
used in protein analysis [12]), or (b) itemsets, that is, non-
empty sets of items (e.g., books bought by a customer in
the same transaction [11]). The list of elements of a data
sequence � is denoted by ��� � � ������� ����� , where ��� is the�����

element of � . We use � � � to denote the length (i.e., num-
ber of elements) of sequence � . A sequence of length ! is
referred to as a ! -sequence. (We consider the terms “se-
quence” and “sequential pattern” to be equivalent for the
remainder of our discussion.) Table 1 summarizes the no-
tation used throughout the paper with a brief description of
its semantics. Additional notation will be introduced when
necessary.

Symbol Semantics"�#�$%#'&(#*)+)+) Generic sequences in the input database, "-$
. Sequence resulting from the concatenation of
sequences " and $/ " / Length, i.e., number of elements, of sequence ""*0 1�243 element of sequence ""�50 Zero or more occurrences of element "60 (Kleene
closure operator)" 0 / "87 Select one element out of " 0 and "97 (disjunction
operator):
Regular expression (RE) constraint;=<
Deterministic finite automaton for RE

:> #'?�#9@ #+)+)+) Generic states in automaton
;A<

B Start state of automaton
;=<

>DC�EF ? Transition from state
>

to state ? in
; <

on
element " 0> CG ? Transition path from state

>
to state ? in

; <
on

the sequence of elements "H�I
Set of candidate J -sequencesK I
Set of frequent J -sequences

Table 1: Notation.

Consider two data sequences ��LM��� � � �N����� ���O� andP LM� P
�
P

�Q����� P9R � . We say that � is a subsequence ofP
if � is a “projection” of

P
, derived by deleting elements

and/or items from
P
. More formally, � is a subsequence

of
P

if there exist integers S � �TS � �VU�U�UW�XS � such that� �ZY P\[8]
, � �^Y P\[�_

, . . . , � � Y P\[�`
. Note that for se-

quences of simple items the above condition translates to

� � L P\[8]
, � � L P\['_

, . . . , � � L P\['`
. For example, sequences�badc�� and �Ta=e�fg� are subsequences of �TadehchfO� ,

while �icOaN� is not. Srikant and Agrawal [11] observe
that, when mining market-basket sequential patterns, users
often want to place a bound on the maximum distance be-
tween the occurrence of adjacent pattern elements in a data
sequence. For example, if a customer buys bread today and
milk after a couple of weeks then the two purchases should
probably not be seen as being correlated. Following [11],
we define sequence � to be a subsequence with a maximum
distance constraint of j , or alternately j -distance subse-
quence, of

P
if there exist integers S � �kS � �lU�U�Um�kS � such

that � �nY P\[8]
, � �nY P\['_

, . . . , � � Y P\['`
and SporqsSpo�t �vu j

for each !wLxemyzcmy�U�U�U6y8{ . That is, occurrences of adjacent
elements of � within

P
are not separated by more than j el-

ements. As a special case of the above definition, we say
that � is a contiguous subsequence of

P
if � is a a -distance

subsequence of
P
, i.e., the elements of � can be mapped to

a contiguous segment of
P
.

A sequence � is said to contain a sequence | if | is a
subsequence of � . We define the support of a pattern | as
the fraction of sequences in the input database that contain| . Given a set of sequences

�
, we say that �r} �

is maximal
if there are no sequences in

� q�~p��� that contain it.
A RE constraint

�
is specified as a RE over the al-

phabet of sequence elements using the established set of
RE operators, such as disjunction (�) and Kleene closure
(�) [6]. Thus, a RE constraint

�
specifies a language of

strings over the element alphabet or, equivalently, a regu-
lar family of sequential patterns that is of interest to the
user. A well-known result from complexity theory states
that REs have exactly the same expressive power as deter-
ministic finite automata [6]. Thus, given any RE

�
, we

can always build a deterministic finite automaton ��� such
that �D� accepts exactly the language generated by

�
. In-

formally, a deterministic finite automaton is a finite state
machine with (a) a well-defined start state (denoted by �)
and one or more accept states, and (b) deterministic tran-
sitions across states on symbols of the input alphabet (in
our case, sequence elements). A transition from state � to
state � on element �p� is denoted by �Z� E� � . We also use
the shorthand ���� � to denote the sequence of transitions
on the elements of sequence � starting at state � and ending
in state � . A sequence � is accepted by � � if following
the sequence of transitions for the elements of � from the
start state results in an accept state. Figure 1 depicts the
state diagram of a deterministic finite automaton for the REap�A��ehe��peAc=fv��f�f�� (i.e., all sequences of zero or more 1’s
followed by ehe , e�c�f , or fhf). Following [6], we use dou-
ble circles to indicate an accept state and � to emphasize
the start state (�) of the automaton. For brevity, we will
simply use “automaton” as a synonym for “deterministic
finite automaton” in the remainder of the paper.

2.2 Problem Statement

Given an input database of sequences, we define a sequen-
tial pattern to be frequent if its support in the database ex-

1

2 3

2

4

4
a b c d>

Figure 1: Automaton for the RE a �=�\e�eM��eAc=fn��f�f�� .
ceeds a user-specified minimum support threshold. Prior
work has focused on efficient techniques for the discovery
of frequent patterns, typically ignoring the possibility of al-
lowing and exploiting flexible structural constraints during
the mining process. In this paper, we develop novel, ef-
ficient algorithms for mining frequent sequential patterns
in the presence of user-specified RE constraints. Due to
space constraints, the discussion in this paper focuses on
the case of sequences of simple items with no maximum
distance constraints. The necessary extensions to handle
itemset sequences and distance constraints for pattern oc-
currences are described in detail in the full version of this
paper [5]. The following definitions establish some useful
terminology for our discussion.
Definition 2.1 A sequence � is said to be legal with respect
to state � of automaton � � if every state transition in � �
is defined when following the sequence of transitions for
the elements of � from � .
Definition 2.2 A sequence � is said to be valid with respect
to state � of automaton � � if � is legal with respect to � and
the final state of the transition path from � on input � is an
accept state of � � . We say that � is valid if � is valid with
respect to the start state � of � � (or, equivalently, if � is
accepted by � �).

Example 2.1 : Consider the RE constraint
� Lap�g�\eges��e�cgf �(f f � and the automaton �D� , shown in

Figure 1. Sequence � a eAcn� is legal with respect to state� and sequence �Vc f�� is legal with respect to state � ,
while sequences �^aWcAf�� and � e=f � are not legal with
respect to any state of �D� . Similarly, sequence � c�f �
is valid with respect to state � (since � �������L � � and � is an
accept state), however it is not valid, since it is not valid
with respect to the start state � of � � . Examples of valid
sequences include � aAadeAeM� and ��e=c�fn� .

Having established the necessary notions and terminol-
ogy, we can now provide an abstract definition of our con-
strained pattern mining problem as follows.
	 Given: A database of sequences

�
, a user-specified

minimum support threshold, and a user-specified RE
constraint

�
(or, equivalently, an automaton � �).

	 Find: All frequent and valid sequential patterns in
�

.

Thus, our objective is to efficiently mine patterns that are
not only frequent but also belong to the language of se-
quences generated by the RE

� �
. To this end, the next sec-

tion introduces the SPIRIT family of mining algorithms for

Our algorithms can readily handle a set of RE constraints by collaps-

ing them into a single RE [6].

pushing user-specified RE constraints to varying degrees
inside the pattern mining process.

3 Mining Frequent and Valid Sequences
3.1 Overview

Figure 2 depicts the basic algorithmic skeleton of the
SPIRIT family, using an input parameter � to denote a
generic user-specified constraint on the mined patterns.
The output of a SPIRIT algorithm is the set of frequent
sequences in the database

�
that satisfy constraint � . At a

high level, our algorithmic framework is similar in structure
to the general Apriori strategy of Agrawal and Srikant [2].
Basically, SPIRIT algorithms work in passes, with each
pass resulting in the discovery of longer patterns. In the ! ���
pass, a set of candidate (i.e., potentially frequent and valid)! -sequences �do is generated and pruned using information
from earlier passes. A scan over the data is then made,
during which the support for each candidate sequence in
� o is counted and

o is populated with the frequent ! -
sequences in �do . There are, however, two crucial dif-
ferences between the SPIRIT framework and conventional
Apriori-type schemes (like GSP [11]) or the Constrained
APriori (CAP) algorithm [9] for mining associations with
anti-monotone and/or succinct constraints.

1. Relaxing � by inducing a weaker (i.e., less restric-
tive) constraint ��� (Step 1). Intuitively, constraint ���
is weaker than � if every sequence that satisfies � also
satisfies ��� . The “strength” of ��� (i.e., how closely
it emulates �) essentially determines the degree to
which the user-specified constraint � is pushed inside
the pattern mining computation. The choice of ��� dif-
ferentiates among the members of the SPIRIT family
and leads to interesting tradeoffs that are discussed in
detail later in this section.

2. Using the relaxed constraint ��� in the candidate gen-
eration and candidate pruning phases of each pass.
SPIRIT algorithms maintain the set
 of frequent se-
quences (up to a given length) that satisfy the relaxed
constraint ��� . Both
 and ��� are used in:

(a) the candidate generation phase of pass !
(Step 6), to produce an initial set of candidate! -sequences � o that satisfy ��� by appropriately
extending or combining sequences in
 ; and,

(b) the candidate pruning phase of pass ! (Steps 8-
9), to delete from � o all candidate ! -sequences
containing at least one subsequence that satisfies
��� and does not appear in
 .

Thus, a SPIRIT algorithm maintains the following invari-
ant: at the end of pass ! ,
 o is exactly the set of all fre-
quent ! -sequences that satisfy the constraint ��� . Note that
incorporating ��� in candidate generation and pruning also
impacts the terminating condition for the repeat loop in
Step 15. Finally, since at the end of the loop,
 contains
frequent patterns satisfying the induced relaxed constraint
��� , an additional filtering step may be required (Step 17).

Procedure SPIRIT(� , �)
begin
1. let ����� � a constraint weaker (i.e., less restrictive) than �
2.

K � � K
� � � frequent items in � that satisfy � �

3. J�� ���
4. repeat 	
5. // candidate generation
6. using ��� and

K
generate

H I � �
	 potentially frequentJ -sequences that satisfy � ���
7. // candidate pruning
8. let
 := 	 "�� H I : " has a subsequence $ that satisfies

� � and $��� K �
9.

H�I � � H�I��

10. // candidate counting
11. scan � counting support for candidate J -sequences in

H I
12.

K I � � frequent sequences in
H�I

13.
K � � K���K I

14. J�� � J����
15. � until TerminatingCondition(

K
, � �) holds

16. // enforce the original (stronger) constraint �
17. output sequences in

K
that satisfy �

end

Figure 2: SPIRIT constrained pattern mining framework.

Given a set of candidate ! -sequences � o , counting sup-
port for the members of � o (Step 11) can be performed
efficiently by employing specialized search structures, like
the hash tree [11], for organizing the candidates. The im-
plementation details can be found in [11]. The candidate
counting step is typically the most expensive step of the
pattern mining process and its overhead is directly propor-
tional to the size of �do [11]. Thus, at an abstract level,
the goal of an efficient pattern mining strategy is to em-
ploy the minimum support requirement and any additional
user-specified constraints to restrict as much as possible the
set of candidate ! -sequences counted during pass ! . The
SPIRIT framework strives to achieve this goal by using two
different types of pruning within each pass ! .
	 Constraint-based pruning using a relaxation ��� of the

user-specified constraint � ; that is, ensuring that all
candidate ! -sequences in � o satisfy ��� . This is ac-
complished by appropriately employing ��� and
 in
the candidate generation phase (Step 6).

	 Support-based pruning; that is, ensuring that all sub-
sequences of a sequence � in � o that satisfy ��� are
present in the current set of discovered frequent se-
quences
 (Steps 8-9). Note that, even though all
subsequences of � must in fact be frequent, we can
only check the minimum support constraint for subse-
quences that satisfy ��� , since only these are retained
in
 .

Intuitively, constraint-based pruning tries to restrict � o
by (partially) enforcing the input constraint � , whereas
support-based pruning tries to restrict �=o by checking the
minimum support constraint for qualifying subsequences.
Note that, given a set of candidates �=o and a relaxation
��� of � , the amount of support-based pruning is maximized

when � � is anti-monotone [9] (i.e., all subsequences of a se-
quence satisfying ��� are guaranteed to also satisfy ���). This
is because support information for all of the subsequences
of a candidate sequence � in �do can be used to prune it.
However, when ��� is not anti-monotone, the amounts of
constraint-based and support-based pruning achieved vary
depending on the specific choice of � � .

3.1.1 Pushing Non Anti-Monotone Constraints

Consider the general problem of mining all frequent se-
quences that satisfy a user-specified constraint � . If � is
anti-monotone, then the most effective way of using � to
prune candidates is to push � “all the way” inside the min-
ing computation. In the context of the SPIRIT framework,
this means using � as is (rather than some relaxation of �)
in the pattern discovery loop. The optimality of this so-
lution for anti-monotone � stems from two observations.
First, using � clearly maximizes the amount of constraint-
based pruning since the strongest possible constraint (i.e.,
� itself) is employed. Second, since � is anti-monotone, all
subsequences of a frequent candidate ! -sequence that sur-
vives constraint-based pruning are guaranteed to be in

(since they also satisfy �). Thus, using the full strength of
an anti-monotone constraint � maximizes the effectiveness
of constraint-based pruning as well as support-based prun-
ing. Note that this is exactly the methodology used in the
CAP algorithm [9] for anti-monotone itemset constraints.
An additional benefit of using anti-monotone constraints
is that they significantly simplify the candidate generation
and candidate pruning tasks. More specifically, generating
� o is nothing but an appropriate “self-join” operation over

 o�t � and determining the pruned set � (Step 8) is sim-
plified by the fact that all subsequences of candidates are
guaranteed to satisfy the constraint.

When � is not anti-monotone, however, things are not
that clear-cut. A simple solution, suggested by Ng et al. [9]
for itemset constraints, is to take an anti-monotone relax-
ation of � and use that relaxation for candidate pruning.
Nevertheless, this simple approach may not always be fea-
sible. For example, our RE constraints for sequences do not
admit any non-trivial anti-monotone relaxations. In such
cases, the degree to which the constraint � is pushed in-
side the mining process (i.e., the strength of the (non anti-
monotone) relaxation ��� used for pruning) impacts the ef-
fectiveness of both constraint-based pruning and support-
based pruning in different ways. More specifically, while
increasing the strength of ��� obviously increases the ef-
fectiveness of constraint-based pruning, it can also have a
negative effect on support-based pruning. The reason is
that, for any given sequence in �=o that survives constraint-
based pruning, the number of its subsequences that sat-
isfy the stronger, non anti-monotone constraint � � may de-
crease. Again, note that only subsequences that satisfy ���
can be used for support-based pruning, since this is the only
“state” maintained from previous passes (in
).

Pushing a non anti-monotone constraint ��� in the pattern
discovery loop can also increase the computational com-

plexity of the candidate generation and pruning tasks. For
candidate generation, the fact that ��� is not anti-monotone
means that some (or, all) of a candidate’s subsequences
may be absent from
 . In some cases, a “brute-force” ap-
proach (based on just ���) may be required to generate an
initial set of candidates � o . For candidate pruning, comput-
ing the subsequences of a candidate that satisfy ��� may no
longer be trivial, implying additional computational over-
head. We should note, however, that candidate generation
and pruning are inexpensive CPU-bound operations that
typically constitute only a small fraction of the overall com-
putational cost. This fact is also clearly demonstrated in our
experimental results (Section 4). Thus, the major tradeoff
that needs to be considered when choosing a specific � �
from among the spectrum of possible relaxations of � is
the extent to which that choice impacts the effectiveness of
constraint-based and support-based pruning. The objective,
of course, is to strike a reasonable balance between the two
different types of pruning so as to minimize the number of
candidates for which support is actually counted in each
pass.

3.1.2 The SPIRIT Algorithms

The four SPIRIT algorithms for constrained pattern min-
ing are points spanning the entire spectrum of relaxations
for the user-specified RE constraint ��� �

. Essentially,
the four algorithms represent a natural progression, with
each algorithm pushing a stronger relaxation of

�
than

its predecessor in the pattern mining loop
�
. The first

SPIRIT algorithm, termed SPIRIT(N) (“N” for Naive), em-
ploys the weakest relaxation of

�
– it only prunes candi-

date sequences containing elements that do not appear in�
. The second algorithm, termed SPIRIT(L) (“L” for Le-

gal), requires every candidate sequence to be legal with re-
spect to some state of � � . The third algorithm, termed
SPIRIT(V) (“V” for Valid), goes one step further by filter-
ing out candidate sequences that are not valid with respect
to any state of � � . Finally, the SPIRIT(R) algorithm (“R”
for Regular) essentially pushes

�
“all the way” inside the

mining process by counting support only for valid candi-
date sequences, i.e., sequences accepted by � � . Table 2
summarizes the constraint choices for the four members of
the SPIRIT family within the general framework depicted
in Figure 2. Note that, of the four SPIRIT algorithms,
SPIRIT(N) is the only one employing an anti-monotone
(and, trivial) relaxation ��� . Also, note that the progressive
increase in the strength of ��� implies a subset relationship
between the frequent sequences determined for each pass! ; that is,

K������	�
����
����I � K������	�
�	��
����I � K������	�
����
����I � K������	�
�	��
����I)

The remainder of this section provides a detailed dis-
cussion of the candidate generation and candidate pruning
�
The development of the SPIRIT algorithms is based on the equivalent

automaton form � < of the user-specified RE constraint � . Algorithms
for constructing � < from � can be found in the theory literature [6].

Algorithm Relaxed Constraint ��� (��� �
)

SPIRIT(N) all elements appear in
�

SPIRIT(L) legal wrt some state of �D�
SPIRIT(V) valid wrt some state of � �
SPIRIT(R) valid, i.e., � � � ��� �

Table 2: The four SPIRIT algorithms.

phases for each of the SPIRIT algorithms. Appropriate
terminating conditions (Step 15) are also presented. The
quantitative study of the constraint-based vs. support-based
pruning tradeoff for the SPIRIT algorithms is deferred until
the presentation of our experimental results (Section 4).

3.2 The SPIRIT(N) Algorithm

SPIRIT(N) is a simple modification of the GSP algo-
rithm [11] for mining sequential patterns. SPIRIT(N) sim-
ply requires that all elements of a candidate sequence � in
� o appear in the RE

�
. This constraint is clearly anti-

monotone, so candidate generation and pruning are per-
formed exactly as in GSP [11].

Candidate Generation. For every pair of ��! q a�� -
sequences � and

P
in
 o�t � , if � [�� � L P [

for all a u S u
! q�e , then ��� P o�t � � is added to � o . This is basically
a self-join of

o�t � , the join attributes being the last !nq e
elements of the first sequence and the first ! q e elements
of the second.

Candidate Pruning. A candidate sequence � is pruned
from � o if at least one of its �\!OqTa�� -subsequences does
not belong to

opt � .

Terminating Condition. The set of frequent ! -sequences,

 o , is empty.

3.3 The SPIRIT(L) Algorithm

SPIRIT(L) uses the automaton � � to prune from � o candi-
date ! -sequences that are not legal with respect to any state
of � � . In our description of SPIRIT(L), we use
 o ����� to
denote the set of frequent ! -sequences that are legal with
respect to state � of �D� .

Candidate Generation. For each state � in � � , we add to
� o candidate ! -sequences that are legal with respect to �
and have the potential to be frequent.

Lemma 3.1: Consider a ! -sequence � that is legal with
respect to state � in �D� , where � �

]
q � � is a transition in�r� . For � to be frequent, � � � ����� � o�t � � must be in

 o�t � ���6� and �	� � ����� � o � must be in
 opt � ����� .
Thus, the candidate sequences for state � can be computed
as follows. For every sequence � in
 o�t � ���6� , if � �

]
q � �

is a transition in � � , then for every sequence
P

in
�o�t � �����
such that � [�� � L P\[

for all a u S u ! q�e , the candidate
sequence � � P o�t � � is added to �do . This is basically
a join of

o�t � �\�6� and
 opt � ����� , on the condition that the

��!vqke�� -length suffix of �D}
�o�t � �\�6� matches the ��!vqQe � -
length prefix of

P }
�o�t � ����� and � �
]

q � � is a transition in� � .

Candidate Pruning. Given a sequence � in �do , the candi-
date generation step ensures that both its prefix and suffix of
length !�qDa are frequent. We also know that in order for � to
be frequent, every subsequence of � must also be frequent.
However, since we only count support for sequences that
are legal with respect to some state of � � , we can prune �
from � o only if we find a legal subsequence of � that is not
frequent (i.e., not in
). The candidate pruning procedure
computes the set of maximal subsequences of � with length
less than ! that are legal with respect to some state of au-
tomaton �r� . If any of these maximal subsequences is not
contained in
 , then � is deleted from � o .

We now describe an algorithm for computing the max-
imal legal subsequences of a candidate sequence � . Let
maxSeq(� , �) denote the set of maximal subsequences of� that are legal with respect to state � of � � . Then, if
we let

P LM� � � ����� ��� � ��� , a superset of maxSeq(� , �)
can be computed from maxSeq(� , P) using the fact that:
(a) maxSeq ���py+��� Y maxSeq �\�py P ���Z~ � � ��� ��� � }
maxSeq ��� y P �+���	~ � � � , if � �

]
q � � is a transition in � � ;

and, (b) maxSeq ���py+��� Y maxSeq ��� y P � , otherwise. The in-
tuition is that for a subsequence 		} maxSeq(�py+�), either
	 does not involve � � , in which case 	 is a maximal subse-
quence of

P
that is legal with respect to � , or 	 � L � � and�
	 ������� 	�� �
�(� is a maximal subsequence of

P
with respect

to state � . Based on the above observation, we propose a
dynamic programming algorithm, termed FINDMAXSUB-
SEQ, for computing maxSeq(�py+�) for all states � of ���
(Figure 3). Intuitively, FINDMAXSUBSEQ works by com-
puting the set maxSeq for successively longer suffixes of
the input sequence � , beginning with the suffix consisting
of only the last element of � .

More specifically, given an input sequence � and two
sets of states in � � (� P ��� P and �r{ �), algorithm FIND-
MAXSUBSEQ returns the set of all maximal subsequencesP

of � such that (a) the length of
P

is less than � � � , and (b)
P

is legal with respect to a state � in � P ��� P and if � �� � , then� }��r{ � . In each iteration of the for loop spanning Steps
3–17, for each state � in �D� , maximal legal subsequences
for the suffix � ��� ����� ��� � �h� are computed and stored in
maxSeq[�]. At the start of the � ��� iteration, maxSeq[�] con-
tains the maximal subsequences of � � � � � ����� ��� � � � that
are both legal with respect to state � and result in a state
in �r{ � . Thus, if a transition from � to � on element � �
is in � � , then the maximal legal subsequences for � com-
prise those previously computed for �b� � � � ����� ��� � � � and
certain new sequences involving element � � . These new se-
quences containing � � are computed in the body of the for
loop spanning Steps 5–9 and stored in tmpSeq[�]. A point
to note is that, since we are only interested in maximal le-
gal subsequences that result in a state in �r{ � , we add ��� to
tmpSeq[�] only if �h}��D{ � (Step 7).

After the new maximal subsequences involving ��� are

Procedure FINDMAXSUBSEQ(� $�B��6$, ��� @ , ")
begin
1. for each state

>
in automaton

;A<
do

2. maxSeq[
>
] := �

3. for � :=
/ " / down to 1 do 	

4. for each state
>

in automaton
;A<

do 	
5. tmpSeq[

>
] = �

6. if (there exists a transition
> C! � F ? in

; <
) 	

7. if (?�� �"� @) tmpSeq[
>
] := 	 "$# �

8. tmpSeq[
>
] := tmpSeq[

>
]
� 	 , "%# $
. � $ � maxSeq & ?(' �

9. �
10. �
11. for each state

>
in automaton

;A<
do 	

12. maxSeq[
>
] := maxSeq[

>
]
�

tmpSeq[
>
]

13. for each sequence $ in maxSeq[
>
] do

14. if (there exists & in maxSeq & > ' � 	 , "$#
)*)*)8"�+ C + . �
such that $ is a subsequence of &)

15. delete $ from maxSeq[
>
]

16. �
17. �
18. return ,.-0/ � $\B���$ maxSeq[

>
] - 	 " � (after

deleting non-maximal sequences)
end

Figure 3: Algorithm for finding maximal subsequences.

stored in tmpSeq[�] for every state � of ��� , they are
added to maxSeq[�], following which, non-maximal subse-
quences in maxSeq[�] are deleted (Steps 11–16) 1 . Finally,
after maximal legal subsequences for the entire sequence �
have been computed for all the states of � � , only those for
states in � P ��� P are returned (Step 18).

To recap, the candidate pruning procedure of SPIRIT(L)
invokes FINDMAXSUBSEQ to determine all the maximal
legal subsequences of each candidate � in �=o , and deletes� from � o if any of these subsequences is not frequent. For
SPIRIT(L), algorithm FINDMAXSUBSEQ is invoked with
� P ��� P and �r{ � both equal to the set of all states in ��� .

Terminating Condidition. The set of frequent ! -
sequences that are legal with respect to the start state � of� � is empty; that is,

o ��� � is empty.

Time Complexity. Consider the candidate pruning over-
head for a candidate ! -sequence � in �do . Compared to
the candidate pruning step of SPIRIT(N), which has a time
complexity of 2n�\!m� (to determine the ! subsequences of�), the computational overhead of candidate pruning in
SPIRIT(L) can be significantly higher. More specifically,
the worst-case time complexity of computing the maximal
legal subsequences of � using algorithm FINDMAXSUB-
SEQ can be shown to be 2n�\! �43 � �r�v� 3 �maxSeq(�) � � , where� � � � is the number of states in � � and �maxSeq(�) � is
the number of maximal legal subsequences for � . To see
this, note that the outermost for loop in Step 3 of FIND-
MAXSUBSEQ is executed ! times. The time complexity
of the first for loop in Step 4 is 2n�z� � � � 3 �maxSeq(�) � � ,
5
In Steps 13–15, we have to be careful not to consider 6�7 #
89898 7 + C +�:

to delete other sequences in maxSeq[;] since we are interested in maximal
sequences whose length is less than < 7=< .

while that of the second for loop in Step 11 is 2n��! 3
� � � � 3 �maxSeq(�) � � , since maxSeq[�] can be implemented
as a trie, for which insertions, deletions, and subsequence
checking for ! -sequences can all be carried out in 2n�\!m�
time.

We must point out that the higher time complexity
of candidate pruning in SPIRIT(L) is not a major effi-
ciency concern since (a) the overhead of candidate gen-
eration and pruning is typically a tiny fraction of the
cost of counting supports for candidates in �=o , and (b)
in practice, �maxSeq �\�p��� can be expected to be small for
most sequences. In the worst case, however, for a ! -
sequence, �maxSeq(�) � can be 2n�\e o � . This worst case sce-
nario can be avoided by imposing an a-priori limit on the
size of maxSeq[�] in FINDMAXSUBSEQ and using appro-
priate heuristics for selecting victims (to be ejected from
maxSeq[�]) when its size exceeds that limit.

Space Overhead. SPIRIT(N) only utilizes
�o�t � for the
candidate generation and pruning phases during the ! ���
pass. In contrast, the candidate pruning step of SPIRIT(L)
requires
 to be stored in main memory since the maxi-
mal legal subsequences of a candidate ! -sequence may be
of any length less than ! . However, this should not pose
a serious problem since each
 o computed by SPIRIT(L)
contains only frequent and legal ! -sequences, which are
typically few compared to all frequent ! -sequences. In ad-
dition, powerful servers with several gigabytes of memory
are now fairly commonplace. Thus, in most cases, it should
be possible to accommodate all the sequences in
 in main
memory. In the occasional event that
 does not fit in mem-
ory, one option would be to only store
�opt � y�U�U�U6y

o�t � for
some ��� a . Of course, this means that maximal subse-
quences whose length is less than !wq � cannot be used
to prune candidates from �do during the candidate pruning
step.

3.4 The SPIRIT(V) Algorithm

SPIRIT(V) uses a stronger relaxed constraint ��� than
SPIRIT(L) during candidate generation and pruning. More
specifically, SPIRIT(V) requires every candidate sequence
to be valid with respect to some state of � ��� . In our de-
scription of SPIRIT(V), we use
�o �\�6� to denote the set of
frequent ! -sequences that are valid with respect to state �
of � � .

Candidate Generation. Since every candidate sequence �
in � o is required to be valid with respect to some state � , it
must be the case that the �\!nq a�� -length suffix of � is both
frequent and valid with respect to state � , where � �

]
q � �

is a transition in � � . Thus, given a state � of � � , the set
of potentially frequent and valid ! -sequences with respect
to � can be generated using the following rule: for every
transition � � Eq � � , for every sequence

P
in
 opt � ����� , add� ��� P � to the set of candidates for state � . The set � o is

�
Note that an alternative approach would be to require candidates to

be legal with respect to the start state of � < . This approach is essentially
symmetric to SPIRIT(V) and is not explored further in this paper.

simply the union of these candidate sets over all states � of� � .

Candidate Pruning. The pruning phase of SPIRIT(V) is
very similar to that of SPIRIT(L), except that only valid
(rather that legal) subsequences of a candidate can be used
for pruning. More specifically, given a candidate sequence� in � o , we compute all maximal subsequences of � that
are valid with respect to some state of � � and have length
less than ! . This is done by invoking algorithm FINDMAX-
SUBSEQ with � P ��� P equal to the set of all states of ��� and
�r{ � equal to the set of all accept states of �D� . If any of
these subsequences is not contained in
 , then � is deleted
from � o .
Terminating Condition. The set of frequent ! -sequences

o is empty. Unlike SPIRIT(L), we cannot terminate
SPIRIT(V) based on just
�o ��� � becoming empty (where� is the start state of � �). The reason is that, even though
there may be no frequent and valid sequences of length !
for � , there could still be longer sequences that are frequent
and valid with respect to � .

3.5 The SPIRIT(R) Algorithm

SPIRIT(R) essentially pushes the RE constraint
�

“all the
way” inside the pattern mining computation, by requiring
every candidate sequence for which support is counted to
be valid (i.e., ����� �

).

Candidate Generation. Since
 contains only valid
and frequent sequences, there is no efficient mechanism
for generating candidate ! -sequences other than a “brute
force” enumeration using the automaton � � . The idea is
to traverse the states and transitions of � � enumerating all
paths of length ! that begin with the start state and end at
an accept state. Obviously, each such path corresponds to
a valid ! -sequence containing the elements that label the
transitions in the path. (The terms “path” and “sequence”
are used interchangeably in the following description.)

We employ two optimizations to improve the efficiency
of the above exhaustive path enumeration scheme. Our first
optimization uses the observation that, if a path of length
less than ! corresponds to a sequence that is valid but not
frequent, then further extending the path is unnecessary
since it cannot yield frequent ! -sequences. The second op-
timization involves exploiting cycles in � � to reduce com-
putation.

Lemma 3.2: Suppose for a path � P � � (of length less
than !), both

P
and � P � � result in the same state from

the start state � . (That is, � corresponds to a cycle in � � .)
Then, if the path � P � 	�� obtained as a result of extending� P � � with 	 is to yield a candidate ! -sequence, it must
be the case that � P 	�� is both frequent and valid.

Consider the generation of candidate ! -sequences � o .
Given a path � P � � satisfying the assumptions of
Lemma 3.2, we only need to extend � P � � with se-
quences 	 for which � P 	 � belongs to
 � � � � � � (since
the length of � P 		� is less than !). Due to space con-
straints, we have omitted the detailed definition of the can-

didate generation algorithm for SPIRIT(R) and examples
of its operation. The interested reader is referred to [5].

Candidate Pruning. A candidate sequence � in �=o can
be pruned if a valid subsequence of � is not frequent. The
maximal valid subsequences of � can be computed by in-
voking algorithm FINDMAXSUBSEQ with � P ��� P equal to~��(� and �D{ � equal to the set of all accept states of � � .

Terminating Condition. For some iteration S , sets

 [y�U�U�U�y
 [�� � ��� � t � are all empty, where � � � � is the num-
ber of states in automaton � � . To see this, consider any
frequent and valid sequence � whose length is greater thanS��i� � � � qXa . Obviously, � contains at least one cycle
of length at most � �D�v� and, therefore, � must contain at
least one frequent and valid subsequence of length at leastS . However, no valid sequence with length greater than
or equal to S is frequent (since
 [y�U�U�U�y
 [�� � � � � t � are all
empty). Thus, � cannot be a frequent and valid sequence.

4 Experimental Results
In this section, we present an empirical study of the four
SPIRIT algorithms with synthetic and real-life data sets.
The objective of this study is twofold: (1) to establish
the effectiveness of allowing and exploiting RE constraints
during sequential pattern mining; and, (2) to quantify the
constraint-based vs. support-based pruning tradeoff for the
SPIRIT family of algorithms (Section 3.1).

In general, RE constraints whose automata contain
fewer transitions per state, fewer cycles, and longer paths
tend to be more selective, since they impose more stringent
restrictions on the ordering of items in the mined patterns.
Our expectation is that for RE constraints that are more se-
lective, constraint-based pruning will be very effective and
the latter SPIRIT algorithms will perform better. On the
other hand, less selective REs increase the importance of
good support-based pruning, putting algorithms that use the
RE constraint too aggressively (like SPIRIT(R)) at a disad-
vantage. Our experimental results corroborate our expec-
tations. More specifically, our findings can be summarized
as follows.

1. The SPIRIT(V) algorithm emerges as the overall win-
ner, providing consistently good performance over
the entire range of RE constraints. For certain REs,
SPIRIT(V) is more than an order of magnitude faster
than the “naive” SPIRIT(N) scheme.

2. For highly selective RE constraints, SPIRIT(R) out-
performs the remaining algorithms. However, as the
RE constraint becomes less selective, the number of
candidates generated by SPIRIT(R) explodes and the
algorithm fails to even complete execution for certain
cases (it runs out of virtual memory).

3. The overheads of the candidate generation and prun-
ing phases for the SPIRIT(L) and SPIRIT(V) algo-
rithms are negligible. They typically constitute less
than 1% of the total execution time, even for complex

REs with automata containing large numbers of tran-
sitions, states, and cycles.

Thus, our results validate the thesis of this paper that incor-
porating RE constraints into the mining process can lead to
significant performance benefits. All experiments reported
in this section were performed on a Sun Ultra-2/200 work-
station with 512 MB of main memory, running Solaris 2.5.
The data sets were stored on a local disk.

4.1 Synthetic Data Sets

We used a synthetic data set generator to create a database
of sequences containing items. The input parameters to our
generator include the number of sequences in the database,
the average length of each sequence, the number of distinct
items, and a Zipf parameter � that governs the probability
of occurrence,

���� �
	 � ���� , of each item
�

in the database. The
length for each sequence is selected from a Poisson dis-
tribution with mean equal to the average sequence length.
Note that an item can appear multiple times in a single data
sequence.

In addition, since we are interested in a sensitivity anal-
ysis of our algorithms with respect to the RE constraint�

, we used an RE generator to produce constraints with a
broad range of selectivities. Each RE constraint output by
the generator consists of blocks and each block in turn con-
tains terms with the following structure. A term ��� is a dis-
junction of items and has the form �\� � � � � � ����� � �=��� . Each
block
h� is simply a concatenation of terms, � � � ������� � R .
Finally, the constraint

�
is constructed from blocks and has

the form ��
 � �

 � � ����� �

h�m� � – thus, every sequence that
satisfies

�
is a concatenation of one or more sequences sat-

isfying the block constraints. The generic structure of the
automaton � � for

�
is shown in Figure 4. RE constraints

with different selectivities can be generated by varying the
number of items per term, the number of terms per block,
and the number of blocks in

�
. Note that, in terms of the

automaton � � , these parameters correspond to the num-
ber of transitions between a pair of states in � � , the length
of each cycle, and the number of cycles contained in �M� ,
respectively.

a

number of terms per block

number of items per term

number of blocks

Figure 4: Structure of automaton for RE generation.

The RE generator accepts the maximum number of
items per term, the number of terms per block, and the
number of blocks as input parameters. In the RE constraint
that it outputs, the number of items per term is uniformly
distributed between 1 and the maximum specified value.

The items in each term of
�

are chosen using the same
Zipfian distribution that was used to generate the data set.
The RE generator thus enables us to carry out an extensive
study of the sensitivity of our algorithms to a wide range of
RE constraints with different selectivities.

Table 3 shows the parameters for the data set and the RE
constraint, along with their default values and the range of
values for which experiments were conducted. The default
value of ��LTa U � was chosen to model an (approximate) 70-
30 rule and to ensure that the item skew was sufficient for
some interesting patterns to appear in the data sequences.
In each experiment, one parameter was varied with all other
parameters fixed at their default values. Once again, due to
space constraints, we only present a subset of our exper-
imental results. The full set of results (including scaleup
and maximum distance experiments) can be found in [5].

Parameter Default Range
No. of Sequences ��� 5 �) ��� � – �) �) ��� 5
Avg. Sequence Length ���
No. of Items �������
Zipf Value 1.0
Max. No. of Items per Term ��� � – ���
No. of Terms Per Block � � – ���
No. of Blocks � � – ���
Min. Support �) � �) � – �) �
Max. Distance � � – � �

Table 3: Synthetic data and RE constraint parameters.

4.2 Performance Results with Synthetic Data Sets

Maximum Number of Items Per Term. Figure 5(a) il-
lustrates the execution times of the SPIRIT algorithms as
the maximum number of items per term in

�
is increased.

As expected, as the number of items is increased, the
number of transitions per state in � � also increases and
so do the numbers of legal and valid sequences. Thus,
constraint-based pruning becomes less effective and the
performance of all SPIRIT algorithms deteriorates as more
items are added to each term. As long as the number of
items per term does not exceed 15,

�
is fairly selective;

consequently, constraint-based pruning works well and the
SPIRIT algorithms that use

�
to prune more candidates

perform better. For instance, when the maximum num-
ber of items per term is 10, the SPIRIT(N), SPIRIT(L),
SPIRIT(V), and SPIRIT(R) algorithms count support for
7105, 1418, 974, and 3822 candidate sequences, respec-
tively. SPIRIT(R) makes only two passes over the data for
valid candidate sequences of lengths 4 and 8. The remain-
ing algorithms make 8 passes to count supports for candi-
dates with lengths up to 8, a majority of which have lengths
4 and 5.

However, beyond 15 items per term, the performance of
the algorithms that rely more heavily on constraint

�
for

pruning candidates degenerates rapidly. SPIRIT(R) sus-
tains the hardest hit since it performs very little support-
based pruning and its exhaustive enumeration approach for
candidate generation results in an enormous number of can-

didates of length 4. In contrast, since SPIRIT(N) only
uses

�
to prune sequences not involving items in

�
, and

few new items are added to terms in
�

once the number
of items per term reaches 15, the execution times for the
SPIRIT(N) algorithm hold steady. Beyond 25 items per
term, the running times of SPIRIT(L) and SPIRIT(V) also
stabilize, since decreases in the amount of constraint-based
pruning as

�
becomes less selective are counterbalanced

by increases in support-based pruning. At 30 items per
term, SPIRIT(V) continues to provide a good balance of
constraint-based and support-based pruning and, thus, per-
forms the best.

Number of Terms Per Block. The graph in Figure 5(b)
plots the running times for the SPIRIT algorithms as the
number of terms per block is varied from 2 to 10. Increas-
ing the number of terms per block actually causes each cy-
cle (involving the start state �) to become longer. The ini-
tial dip in execution times for SPIRIT(L), SPIRIT(V), and
SPIRIT(R) when the number of terms is increased from 2
to 4 is due to the reduction in the number of candidate se-
quences of lengths 4 and 5. This happens because with
short cycles of length 2 in � � , sequences of length 4 and
5 visit the start state multiple times and the start state has
a large number of outgoing transitions. But when ��� con-
tains cycles of length 4 or more, the start state is visited at
most once, thus causing the number of candidate sequences
of lengths 4 and 5 to decrease. As cycle lengths grow be-
yond 4, the number of legal sequences (with respect to a
state in � �) starts to increase due to the increase in the
number of states in each cycle. However, the number of
valid sequences (with respect to a state in � �) does not
vary much since each of them is still required to terminate
at the start state � .

Note that when the number of terms exceeds 6, the num-
ber of candidates generated by SPIRIT(R) simply explodes
due to the longer cycles. On the other hand, SPIRIT(V)
provides consistently good performance throughout the en-
tire range of block sizes.

Number of Blocks. Figure 6(a) depicts the performance
of the four algorithms as the number of blocks in

�
is

increased from 2 to 10. The behavior of the four algo-
rithms has similarities to the “number of items per term”
case (Figure 5(a)). The only difference is that, as the num-
ber of blocks is increased, the decrease in

�
’s selectivity

and the increase in the number of legal and valid sequences
in �D� are not as dramatic. This is because the number
of blocks only affects the number of transitions associated
with the start state – the number of transitions for other
states in � � stays the same. Once again, SPIRIT(V) per-
forms well consistently, for the entire range of numbers of
blocks. An interesting case is that of SPIRIT(R) whose
execution time does degrade beyond SPIRIT(V)’s, as the
number of blocks is increased, but it still manages to do
better than SPIRIT(L), even when

�
contains 10 blocks.

This can be attributed predominantly to the effectiveness
of the optimization for cycles in ��� that is applied during
SPIRIT(R)’s candidate generation phase. In general, due to

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(s
ec

)

Maximum Number of Items per Term

SPIRIT(N)
SPIRIT(L)
SPIRIT(V)
SPIRIT(R)

0

500

1000

1500

2000

2500

2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Terms per Block

SPIRIT(N)
SPIRIT(L)
SPIRIT(V)
SPIRIT(R)

(a) (b)

Figure 5: Performance results for (a) number of items and (b) number of terms.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Blocks

SPIRIT(N)
SPIRIT(L)
SPIRIT(V)
SPIRIT(R)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
xe

cu
tio

n
T

im
e

(s
ec

)

Minimum Support

SPIRIT(N)
SPIRIT(L)
SPIRIT(V)
SPIRIT(R)

(a) (b)

Figure 6: Performance results for (a) number of blocks and (b) minimum support.

our cycle optimization, one can expect the SPIRIT(R) algo-
rithm to perform reasonably well, even when ��� contains
a large number of cycles of moderate length.

Minimum Support. The execution times for the SPIRIT
algorithms as the minimum support threshold is increased
from 0.5 to 2.0 are depicted in Figure 6(b). As expected, the
performance of all algorithms improves as the minimum
support threshold is increased. This is because fewer can-
didates have the potential to be frequent for higher values
of minimum support. Furthermore, note that the running
times of algorithms that rely more heavily on support-based
pruning improve much more rapidly.

4.3 Real-life Data Set

For our real-life data experiments, we used the WWW
server access logs from the web site of an academic CS
department � . The logs contain the sequences of web pages
accessed by each user

�
starting from the department’s

web site, for the duration of a week. The department’s
�
At the department’s request, we do not disclose its identity.�
We use IP addresses to distinguish between users.

home page contains links to a number of topics, including
Academics, Admissions, Events, General infor-
mation, Research, People, and Resources. There are
additional links to the university and college home pages to
which the CS department belongs, but we chose not to use
these links in our RE constraint. Users navigate through
the web pages by clicking on links in each page, and the
sequences of pages accessed by a user are captured in the
server logs.

We used a RE constraint to focus on user access pat-
terns that start with the department’s home page (lo-
cated at /main.html) and end at the web page contain-
ing information on the M.S. degree program (located at
/academics/ms-program.html). In addition, we re-
stricted ourselves to patterns for which the intermediate
pages belong to one of the aforementioned 7 topics (e.g.,
Academics). Thus, the automaton �D� contains three
states. There is a transition from the first (start) state to
the second on /main.html and a transition from the sec-
ond state to the third (accept) state on /academics/ms-
program.html. The second state has 15 transitions to it-
self, each labeled with the location of a web page belonging
to one of the above 7 topics. We used a minimum support

Size Frequent and Valid Sequences
2 6 /main.html/academics/ms-program.html :
3 6 /main.html/general/contacts.html/academics/

ms-program.html :6 /main.html/general/nav.html/academics/ms-program.html :6 /main.html/academics/academics.html/academics/
ms-program.html :6 /main.html/academics/nav.html/academics/
ms-program.html :6 /main.html/admissions/nav.html/academics/
ms-program.html :6 /main.html/admissions/admissions.html/academics/
ms-program.html :

4 6 /main.html/general/nav.html/general/contacts.html/
academics/ms-program.html :6 /main.html/academics/nav.html/academics/academics.html/
academics/ms-program.html :6 /main.html/admissions/nav.html/admissions/
admissions.html/academics/ms-program.html :

Table 4: Interesting patterns discovered in the WWW logs.

Algorithm Exec. Time (sec) Candidates Passes
SPIRIT(N) 1562.8 5896 13
SPIRIT(L) 32.77 1393 10
SPIRIT(V) 16.0. 59 5
SPIRIT(R) 17.67 52 7

Table 5: Execution statistics for the SPIRIT algorithms.

threshold of 0.3%. The number of access sequences logged
in the one week data set was 12868.

The mined frequent and valid access patterns are listed
in increasing order of size in Table 4. Note that there
is a number of distinct ways to access the M.S. degree
program web page by following different sequences of
links (e.g., via admissions, academics). The execution
times and the numbers of candidates generated by the
four SPIRIT algorithms are presented in Table 5. As ex-
pected, since the RE constraint is fairly selective, both
SPIRIT(V) and SPIRIT(R) have the smallest running times.
SPIRIT(L) is about twice as slow compared to SPIRIT(V)
and SPIRIT(R). The execution time for SPIRIT(N) is al-
most two orders of magnitude worse than SPIRIT(V) and
SPIRIT(R), since it generates a significantly larger num-
ber of candidate sequences with lengths between 5 and 9
(almost 4000). We believe that our results clearly demon-
strate the significant performance gains that can be attained
by pushing RE constraints inside a real-life pattern mining
task.

5 Conclusions
In this paper, we have proposed the use of Regular Expres-
sions (REs) as a flexible constraint specification tool that
enables user-controlled focus to be incorporated into the
pattern mining process. We have developed a family of
novel algorithms (termed SPIRIT) for mining frequent se-
quential patterns that also satisfy user-specified RE con-
straints. The main distinguishing factor among the pro-
posed schemes is the degree to which the RE constraints

are enforced to prune the search space of patterns during
computation. The SPIRIT algorithms are illustrative of
the tradeoffs that arise when constraints that do not sub-
scribe to nice properties (like anti-monotonicity) are inte-
grated into the mining process. To explore these trade-
offs, we have conducted an extensive experimental study on
synthetic and real-life data sets. The experimental results
clearly validate the effectiveness of our approach, showing
that speedups of more than an order of magnitude are possi-
ble when RE constraints are pushed deep inside the mining
process. Our experimentation with real-life data also illus-
trates the versatility of REs as a user-level tool for focusing
on interesting patterns.

Acknowledgments: We would like to thank Narain
Gehani, Hank Korth, and Avi Silberschatz for their encour-
agement. Without the support of Yesook Shim, it would
have been impossible to complete this work.

References
[1] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zaït. “Query-

ing Shapes of Histories”. In Proc. of the 21st Intl. Conf. on
Very Large Data Bases, September 1995.

[2] R. Agrawal and R. Srikant. “Fast Algorithms for Mining
Association Rules”. In Proc. of the 20th Intl. Conf. on Very
Large Data Bases, September 1994.

[3] R. Agrawal and R. Srikant. “Mining Sequential Patterns”.
In Proc. of the 11th Intl. Conf. on Data Engineering, March
1995.

[4] M.-S. Chen, J. S. Park, and P. S. Yu. “Efficient Data Mining
for Path Traversal Patterns”. IEEE Trans. on Knowledge and
Data Engineering, 10(2):209–221, March 1998.

[5] M. N. Garofalakis, R. Rastogi, and K. Shim. “SPIRIT:
Sequential Pattern Mining with Regular Expression Con-
straints”. Bell Labs Tech. Memorandum BL0112370-
990223-03TM, February 1999.

[6] H. R. Lewis and C. Papadimitriou. “Elements of the Theory
of Computation”. Prentice Hall, Inc., 1981.

[7] H. Mannila and H. Toivonen. “Discovering Generalized
Episodes Using Minimal Occurrences”. In Proc. of the 2nd
Intl. Conf. on Knowledge Discovery and Data Mining, Au-
gust 1996.

[8] H. Mannila, H. Toivonen, and A. I. Verkamo. “Discovering
Frequent Episodes in Sequences”. In Proc. of the 1st Intl.
Conf. on Knowledge Discovery and Data Mining, August
1995.

[9] R. T. Ng, L. V.S. Lakshmanan, J. Han, and A. Pang. “Ex-
ploratory Mining and Pruning Optimizations of Constrained
Association Rules”. In Proc. of the 1998 ACM SIGMOD
Intl. Conf. on Management of Data, June 1998.

[10] R. Srikant, Q. Vu, and R. Agrawal. “Mining Association
Rules with Item Constraints”. In Proc. of the 3rd Intl. Conf.
on Knowledge Discovery and Data Mining, August 1997.

[11] R. Srikant and R. Agrawal. “Mining Sequential Patterns:
Generalizations and Performance Improvements”. In Proc.
of the 5th Intl. Conf. on Extending Database Technology
(EDBT’96), March 1996.

[12] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D.
Shasha, and K. Zhang. “Combinatorial Pattern Discovery
for Scientific Data: Some Preliminary Results”. In Proc.
of the 1994 ACM SIGMOD Intl. Conf. on Management of
Data, May 1994.

