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Abstract

Scheduling query execution plans is a particularly com-
plex problem in hierarchical parallel systems, where each
site consists of a collection of local time-shared (e.g.,
CPU(s) or disk(s)) and space-shared (e.g., memory) re-
sources and communicates with remote sites by message-
passing. We develop a general approach to the prob-
lem, capturing thefull complexity of schedulingdistributed
multi-dimensional resource units for all kinds of paral-
lelism within and across queries and operators. We present
heuristic algorithmsfor variousforms of the problem, some
of which are provably near-optimal. Preliminary experi-
mental results confirm the effectiveness of our approach.

1 Introduction

In the shared-nothing [7] and the more general hierarchical (or,
hybrid) [2] multiprocessor architectures, each site consists of its
own set of local resourcesand communicateswith other sites only
by message-passing. Despitethe popularity of these architectures,
the development of effective and efficient query processing and
optimization techniquesto exploit their full potential still remains
an issue of concern [9, 25].

Prior work has already demonstrated the importance of re-
source scheduling during parallel query optimization. One of
the main sources of complexity for the problem is the multi-
dimensionality of the resource needs of database queries. That is,
during their executionqueriestypically require multiple resources,
such as memory buffers and CPU and disk bandwidth. Thisin-
troduces a range of possibilitiesfor effectively scheduling system
resources among concurrent query operators, which can substan-
tially increasethe utilization of these resources and reducethe re-
sponsetime of the query. Moreover, system resources can be cat-
egorized into two radically different classes with respect to their
mode of usageby query plan operators:
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e Time-Shared (TS) (or, preemptable) resources (e.g., CPUs,
disks, network interfaces), that can be sliced between opera-
tors at very low overhead [9, 11]. For such resources, oper-
ators specify an amount of work (i.e., the effective time for
which theresourceis used) that can be stretched over the op-
erator’s execution time.

e Space-Shared (Ss) resources (e.g., memory buffers), whose
time-sharing among operators introduces prohibitively high
overheads [9]. For such resources, operators typically
specify rigid capacity requirements that must be satisfied
throughout their execution.

Most previous work on parallel query scheduling has ignored the
multi-dimensional nature of databasequeriesand hasconcentrated
on simplified models of ss resources, resulting in unrealistic ap-
proachesto the problem. Similar limitations exist in previous ef-
forts within the field of deterministic scheduling theory.!

In our earlier work [11], we have presented a multi-
dimensional framework for query scheduling in shared-nothing
parallel systemswith only TS resources, dealing with the full va-
riety of bushy plans and schedules that incorporate independent
and pipelined forms of inter-operation parallelism aswell asintra-
operation (i.e., partitioned) parallelism. Within this framework,
we have developed a provably near-optimal list scheduling ap-
proach for time-sharing system resources among concurrent op-
erators.

In this paper, we extend our previous formulation to include
both TS and SS resources, representing query operator costs as
pairs of work and demand vectors with one dimension per Ts and
SS resource, respectively. We develop a fast resource schedul-
ing algorithm for operator pipelines called PIPESCHED that be-
longs to the class of list scheduling algorithms[14]. We then ex-
tend our approachto multiple independent pipelines, using alevel-
based (or, shelf-based) scheduling algorithm [5, 24] that treats
PIPESCHED as a subroutine within each level. The resulting al-
gorithm, termed L EVEL SCHED, is analytically shown to be near-
optimal for given degrees of operator parallelism. Furthermore,
we show that L EVEL SCHED can bereadily extendedto handlethe
operator precedence constraints in a bushy query plan as well as
on-line task arrivals (e.g., in adynamic or multi-query execution
environment). Preliminary experimental results confirmthe effec-
tiveness of our algorithms compared to a lower bound on the op-
timal solution, showing that our analytical worst-case boundsare
rather pessimistic compared to the average performance. Finally,
we discussthe implications of our results for the open problem of
designing efficient cost modelsfor parallel query optimization [7].

! Dueto space constraints, we do not discussthe details of earlier work.
For an extensive bibliography, the interested reader is referred to the full
version of the paper [12].



2 Problem Formulation
2.1 Dé€finitions

We consider hierarchical parallel systems[2] with identical mul-
tiprogrammed resource sites connected by an interconnection net-
work. Each site is a collection of d TS resources (e.g., CPU(s),
disk(s), and network interface(s) or communication processor(s))
and s SS resources (e.g., memory). Although memory is proba-
bly the only ss resource that comesto mind when discussing tra-
ditional databasequery operators, often the distinction between Ts
and ss resources depends on the needs of a particular application.
For example, the playback of adigitized videofrom adisk requires
aspecific fraction of the disk bandwidth throughout its execution.
Clearly such an operator viewsthe disk asan ssresource although
traditional databaseoperatorsview it asaTsresource. For thisrea-
son, we decided to address the scheduling problems for general s
rather than restricting our discussionto s = 1 (i.e., memory). An
obvious advantage of this general formulation is that it allows us
the flexibility to “draw the line” between TS and Ss resources at
any boundary, depending on factors such as application require-
ments or user view of resources.

An operator tree [9, 17] is created as a“macro-expansion” of
an execution plan tree by refining each nodeinto asubtree of phys-
ical operator nodes, e.g., scan, pr obe, bui | d (Figure 1(ab)).
Edges represent the flow of data as well as two forms of timing
constraints between operators: pipelining (thin edges) and block-
ing (thick edges). Furthermore, blocking edges occasionally im-
ply a ss resource dependency, where a parent task must use the
same SS resources as its children in order to accesstheir results.
For instance, this is the case with the bui | d operators of Fig-
ure 1(b), which must build their hash tablesin memory, so that the
corresponding pr obe operators, being executed immediately af-
ter them, find those tablesin memory. A query task is amaximal
subgraph of the operator tree containing only pipelining edges. A
query task tree is created from an operator tree by representing
query tasks as single nodes (Figure 1(c)).
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Figure 1: (a) An executionplantree. (b) The corresponding oper-
ator tree. (c) The corresponding query task tree. The thick edges
in (b) indicate blocking constraints.

The above trees clarify the definitions of the three forms of
intra-query parallelism:

e Partitioned parallelism: A single node of the operator tree
is executed on a set of sites by appropriately partitioning its
input data sets.

e Pipelined parallelism: The operators of asingle node of the
task tree are executed on a set of sitesin a pipelined manner.

¢ Independentparallelism: Nodesof thetask tree with no path
between them can be executed in parallel on a set of sites

independent of each other. For example, in Figure 1, tasks
T1-T4 may all beexecutedin parallel, whereastask T5 must
await the completion of T1-T4.

The home of an operator is the set of sites allotted to its exe-
cution. Each operator is either rooted, if its homeis fixed by data
placement constraints (e.g., scanning a materialized intermediate
relation or probing a built hash table), or floating, if the resource
scheduler is free to determine its parallelization.

2.2 Overview

A parallel schedule consists of (1) an operator tree and (2) an al-
location of system resources to operators. Given a query execu-
tion plan, our goal is to find a parallel schedule with minimal re-
sponsetime. Accountingfor both TS and ss resourcedimensions,
our scheduling framework gives rise to interesting tradeoffs with
respect to the degree of partitioned parallelism. Coarse grain op-
erator parallelizations[8, 10, 11] aredesirable sincethey typically
result in reduced communication overhead and effective parallel
executions with respect to TS resource use. On the other hand,
fine grain operator parallelizations are desirable since they imply
smaller ss requirements for each clone thus allowing for better
load balancing opportunities and tighter schedul ability conditions.
A quantification of these tradeoffs and our resolution for them are
presentedin Section 3.1.

We have devised an algorithm for scheduling bushy execution
plan trees that consists of the following steps:

1. Construct the corresponding operator and task trees, and
for each operator, determine its individual resource require-
ments using hardware parameters, DBM S statistics, and con-
ventional optimizer cost models (e.g., [18, 21]).

2. For each floating operator, determine the degree of paral-
lelism based on the TS vs. Ss resource tradeoffs discussed
above (partitioned parallelism).

3. Place the tasks corresponding to the leaf nodes of the task
treeinthereadylist L of the scheduler. While L isnot empty,
perform the following steps:

3.1. Determine a batch of tasks from L that can be exe-
cuted concurrently and schedule them using a prov-
ably near-optimal multi-dimensional list scheduling
heuristic (pipelined and independent parallelism).

3.2. If therearetasksinthetree whoseexecutionisenabled
after Step 3.1, place them in the ready list L.

We prove that our approach is near-optimal for scheduling multi-
pleindependent pipelines. Further, it can bereadily usedto handle
on-line task arrivals (e.g., in adynamic or multi-query execution
environment).

2.3 Assumptions

Our approach is based on the following set of assumptions:

A1l. No Time-Sharing Overhead for TS Resources. Follow-
ing Ganguly et al. [9], slicing a preemptableresource among
multiple operators introduces no additional resource costs.

A2. Uniform Ts ResourceUsage. Following Ganguly et al. [9],
usage of a preemptable resource by an operator is uniformly
spread over the execution of the operator.

A3. Constant ss Resource Demand. Thetotal Ss requirements
of an operator are constant and independent of its degree of
parallelism. For example, the total amount of memory re-
quired by all the clonesof abui | d operator equalsthe size



of ahash table on the build relation. Further, increasing the
degree of parallelism does not increase the ss demands of
individual clones.

A4. Non-increasing Oper ator Execution Times. For the range
of parallelism considered, an operator’s execution time is a
non-increasing function of its degree of parallelism, i.e., al-
lotting more sites cannot increaseits responsetime.

A5. Dynamically Repartitioned Pipelined Outputs. The out-
put of an operator in a pipeline is always repartitioned to
serve as input to the next one. This is amost always accu-
rate, e.g., when the join attributes of pipelined joins are dif-
ferent, the degreesof partitioned parallelism differ, or differ-
ent declustering schemes must be used for load balancing.

3 Quantifying Partitioned Parallelism
3.1 A Resource Usage Modéd

Our treatment of TS resource usageis based on the model of pre-
emptable resources proposed by Ganguly et al. [9], which we
briefly describe here. The usage of a single resource by an op-
erator is modeled by two parameters, 7' and W, where T is the
elapsed time after which the resource is freed (i.e., the response
time of the operator) and W isthe work measured as the effective
time for which the resourceis used by the operator. Intuitively, the
resource is kept busy by the operator only W/ T of the time. Al-
though this abstraction can model the true utilization of a system
resource, it doesnot allow usto predict exactly when the busy pe-
riods are. Thus, we make assumption A2 which, in conjunction
with assumption A1, leadsto straightforward quantification of the
effects of resource sharing [9].

In our previous work [11], we presented a multi-dimensional
version of the model of Ganguly et al. [9] that can quantify the
effects of sharing sites with TS resources among query operators.
We extend that model and describethe usage by anisolated opera-
tor of asite consisting of d TS resourcesand s Ssresourcesby the
triple (727, W, V), where:

o T¢?jsthe(stand-alone) sequential executiontime of the op-
erator,

¢ W isad-dimensional work vector whose componentsdenote
the work done on individual TS resources, i.e., the effective
time[9, 11] for which each resourceis used by the operator;
and

¢ Visan s-dimensional demand vector whosecomponentsde-
note the Ss resource requirements of the operator throughout
itsexecution. For notational convenienceweassumethat the
dimensionsof V' are normalized using the corresponding Ss
capacities of asingle site.
Thisgeneralized view of asystem siteis depictedin Figure 2. Our
model assumesafixed numbering of system resourcesfor all sites;
for example, dimensions 1, 2, 3, and 4 of w may correspond to
CPU, disk-1, disk-2, and network interface, respectively.

Time T*°? is actually a function of the operator’s individual
resource requirements, i.e., its work vector w (sometimes em-
phasized by using 7*°¢(W) instead of T'**?), and the amount of
overlap that can be achieved between processing at different re-
sources[11]. This overlap is a system parameter that depends on
the hardware and software architecture of the resource sites (e.g.,
buffering architecture for disk 1/0) as well as the algorithm im-
plementing the operator. The operator’s SS resource requirements

s-dimensional
unary capacity

d-dimensional
open-ended

W (preemptable)
Figure 2: A site with Ts and ss resources(d = 3, s =2)

V (non-preemptable)

(V') depend primarily on the size of its inputs and the algorithm
used to implement the operator. On the other hand, the opera-
tor’'s work requirements (W) depend on both of these parameters
aswell asits ss resource allotment V.

Notethat, in this paper, we are adopting a somewhat simplified
view of the Ss resource demands, assuming that componentsof
havefixed valuesdetermined by plan parameters. In most real-life
guery execution engines, operator memory requirements are mal-
leable, in the sense that they are typically specified as arange of
possible memory allotments. This flexibility adds an extra level
of difficulty to our scheduling problem. It means that the sched-
uler also hasto select specific ss demand vectors V' that minimize
query response time over all possible (W, V') combinations. We
plan to address this more general problem in our future work.

3.2 Quantifyingthe Granularity of Parallel Execution

As is well known, increasing the parallelism of an operator re-
ducesits executiontime until asaturation point isreached, beyond
which additional parallelism causes a speed-down, due to exces-
sive communication startup and coordination overhead over too
many sites [6]. To avoid operating beyond that point, we want to
ensure that the granules of the parallel execution are sufficiently
coarse [8, 11]. In the presence of Ss resources, any scheduling
method isrestricted in its mapping of clonesto sitesby Ss capacity
constraints, i.e., it is not possible to concurrently execute a set of
clones at a siteif their total Ss requirements exceed the site’s ca-
pacity (in any of the s dimensions). Clearly, coarseoperator clones
imply that each clone has ss resource requirements that are rela-
tively large. This means that, when restricted to coarse grain op-
erator executions, a scheduling method can be limited in its abil-
ity to balancethe total work across sites. Furthermore, coarse ss
reguests can cause severe fragmentation that may lead to under-
utilization of system resources. Thus, taking both Ts and ss re-
sourcesinto account givesriseto interesting tradeoffs with respect
to the granularity of operator clones. Our analytical resultsin Sec-
tion 4 clearly demonstrate this effect.

We view the granularity of a parallel operator op asafunction

of theratio %g%) and V(op, N), where

e W, (op) denotesthe total amount of work performed during
the execution of op on a single site, when all its operands
arelocally resident (i.e., zero communication cost); it corre-
spondsto the processing area [10] of op and is constant for
all possible executionsof op;

e W.(op, N) denotes the total communication overhead in-
curred when the execution of op is partitioned among N
clones; it correspondsto the communication area of the par-
titioned execution of op and is a non-decreasing function of
N;and



e V(op, N) denotes the maximum (normalized) ss resource
requirement of any clone when the execution of op is parti-
tionedamong N clones; it correspondsto the ssgrain size of
the partitioned execution of op andis anon-increasingfunc-
tion of V.

Note that the execution of op with degree of partitioned paral-
lelism equal to NV is feasible only if V(op, N) < 1; thatis, the
partitioning of op must be sufficiently fine-grain for each cloneto
be able to maintain its ss working set at a site. We only consider
such “reasonable” parallelizations in the remainder of the paper.

Definition 3.1 A parallel execution of an operator op with de-
gree of partitioned parallelism equal to N is A-granular if
V(op,N) < A\, wherex < 1.

The following quantification of coarse grain parallelism extends
our earlier formulation [11].

Definition 3.2 A parallel execution of an operator op with degree
of partitioned parallelism equal to NV is coarsegrain with param-
eter f (referred to asaCGy execution) if the communication area
of the executionis no morethan f timesthe processing area of op,
i.e, We(op,N) < f Wy(op).

Definition 3.3 A parallel execution of an operator op with de-
gree of partitioned parallelism egual to N is A-granular CGy,
if the communication area of the execution is no more than f'
times the processing area of op, i.e., W.(op, N) < f' Wy(op),
where f’ isthe minimum value larger than or equal to f such that
V(op,N) < A\

Theintuition behind this definition isthat we may sometimeshave
to compromise our restrictions on communication overheadto en-
sure that the parallelization is in the A-granular region. Thisis
graphically demonstrated in Figure 3.
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Figure 3: A-granular CG; execution: (@) f = f',and (b) f < f'.

3.3 Degree of Partitioned Parallelism

Assuming zero communication costs, the TS and Ss resource re-
quirements of an operator are described by a d-dimensional work
vector W and an s-dimensional demand vector V' whose com-
ponents can be derived from system parameters and traditional
optimizer cost models [21]. By definition, the processing area
of the operator W, (op) is simply the sum of W’s components,
ie, Wy(op) = S WIi. Similaly, the ss grain size
V(op, N) can be estimated using traditional optimizer cost mod-
elsand statistics kept in the database catalogs[20]. Finaly, wees-
timate the communication area W .(op, N) using asimple linear
model of communication costs that has been adopted in previous
studies of shared-nothing architectures [11, 26] and validated on

the Gamma research prototype [6]. Specifically, if D is the total
size of the operator’s input and output transferred over the inter-
connect, then W.(op, N) = a N + 8 D, wherea and 3 are
architecture-specific parameters [11].

The following proposition is an immediate conseguence of
Definition 3.3 and our communication cost model.

Proposition 3.1 The maximum allowable degree of partitioned
parallelism for a A-granular CG execution of operator op is de-
noted by Npaz (0P, f, A) and is equal to the expression

max{ 1, [MJ , min{N : V(op, N) < A} } .

o

4 The Scheduling Algorithm
4.1 Notation and Definitions

Table 4.1 summarizesthe notation usedin this sectionwith abrief
description of its semantics. Detailed definitions of some of these
parameters are given below. Additional notation will be intro-
duced when necessary.

Table 1: Notation
| Parameter | Semantics

P | Number of system sites
d | Number of TS resources per site
s | Number of Ss resourcesper site
B; | Systemsite(i.e, “bin"): (: =1,...,P)
BJ" | Setof Tswork vectorsscheduledat B
BY | Setof ssdemand vectorsscheduledat B;
T#i**(B;) | Executiontimefor al clonesat B,
M | Number of operatorsto be scheduled
op; | Operator,eg., build(z=1,...,M)
N; | Degreeof partitioned parallelism (number
of clones) for op;

Wopl Work vector for op; (including
communication costs for N; clones)
Vop, | Demand vector for op;

T™e%(op,, N;) | Maximum executiontime among the N;
clonesof op; whileaonein system

S | Setof (floating) clonesto be scheduled
SW (SV) | Set of work (demand) vectorsfor all
clonesto be scheduled
STV | Set of volume (time x demand) vectorsfor
all clonesto be scheduled

Length of avector v or set of vectors S

I(v), I(5")

Vector Vopl describes the total (normalized) Ss resource re-
quirements of op,. The componentsof Vopl are computed using
architectural parameters and database statistics. Note that these
components are independent of the degree of partitioned paral-
lelism N;.

Vector Wopl describesthetotal (i.e., processing and commu-
nication) TS resourcerequirementsof op,, givenits degree of par-
alelism N;. Using the notions of communication and processing
area defined in Section 3, the above is expressed as

d
Z Wop, [k] = Wy(0op;) + W.(op;, Ni).
k=1
Theindividual components of Wopl are computed using archi-

tectural parameters and database statistics, aswell asthe ss allot-
ment for op,; and our model for communication costs.



Given an operator clone with a (stand-alone) execution time of
T anda ss demand of V', we definethe volume vector of the clone
astheproduct7'-V, i.e., the resource-time product? for theclone's
execution[3]. S, SV, and STV are used to denote the set of
work, demand, and volume vectors (respectively) for the set S of
all the clonesto be scheduled. We usethe W, V', and T'V super-
scripts in this manner throughout the paper.

The length of a n-dimensional vector v is its maximum
component. The length of a set S” of n-dimensional vectors
is the maximum component in the vector sum of al the vec-
tors in S”. More formally, I(v) = maxi<r<n{v[k]} and
I(s") = maxlSkSn{desu v[k]}.

The performanceratio of a scheduling algorithm is defined as
theratio of the responsetime of the scheduleit generatesover that
of the optimal schedule. All the scheduling problems addressed
in this paper are non-trivial generalizations of traditional multi-
processor scheduling [14] and, thus, they are clearly VP-hard.
Given the intractability of the problems, we develop polynomial
time heuristicsthat are provably near-optimal, i.e., with aconstant
bound on the performance ratio.

Sincethe parallelization of rooted operatorsis pre-determined,
our algorithms are only concerned with the scheduling of floating
operators. Also, for the purposesof this section, the degree of par-
titioned parallelism for all floating operatorsis determined based
on a granularity condition, as shown in Proposition 3.1. In short,
all algorithms presented in this section assume a pre-processing
step that placesrooted clonesat their respectivesitesand computes
the degree of coarse grain parallelism for all floating operators.

4.2 Modding Parallelism and Resource Sharing

We present aset of extensionsto the (one-dimensional) cost model
of atraditional DBMS based on the multi-dimensional resource
model described in Section 3.1. Our extensions account for all
forms of parallelism and quantify the effects of sharing Ts and ss
resources on the responsetime of a parallel execution.

4.2.1 Partitioned and Independent Parallelism

In partitioned parallelism, the work and demand vectors of an
operator are partitioned among a collection of independent op-
erator clones [9]. Each clone executes on a single site and
works on a portion of the operator's data. The partition-
ing of Wop, and Vop, into work and demand vectors for
operator clones is determined based on statistical information
kept in the DBMS catalogs. Given such a partitioning <
(W1, V1), (W2,V2),...,(Wn,,Vn,) > where3 1 W, =
Wop, andY " Vi = Vop,, alower bound on the parallel ex-
ecution time for op; is the maximum of the sequential execution
times of its V; clones; that is, the parallel execution time for op,
is greater than or equal to
max 7Y — seq A
7™ (op;, Ni) = 1§mk?§vl{T (W)}

By our definitions of the TS and Ss resource classes, it is ob-
viousthat aset of clones< (W1,V1),...,(Wk, Vi) > canbe
executed concurrently at some system site only if l(zf Vi<,

2The volume of an operator is defined as the product of the amount of
resource(s) that the operator reservesduring its executionandits execution
time.

i.e,, their ss requirements do not exceed the capacity of the site.
We call such clone collections compatible.

Definition 4.1 Given a collection of M independent operators
{op;,: = 1...M} and their respective degrees of partitioned
paralelism {N;,7 = 1... M}, ascheduleis apartitioning of the
Zf‘i , IV: operator clonesinto a collection of compatible subsets
S1,...,5Sy, followed by a mapping of these subsets to the set of
available sites.

The effects of time-sharing the preemptable resources of a site
among the clonesin a compatible subset .S; can be quantified as
follows. Let.S!" denotethe set of work vectorsfor all clonesin S;.
Since all clones are executed concurrently, the execution time for
theclonesin .S; isdetermined by the ability to overlap the process-
ing of Ts resourcerequestsby different clones. Specifically, under
our model of preemptable resources described in Section 3.1, the
execution time for all the operator clonesin .S; is defined as[11]

T(S:) = max{ max {T°°Y (W)}, 1(S]") } .
wesW

Thus, if welet S(B;) denotethe collection of compatible subsets

mapped to site B; under a given schedule SCHED, the execution

timefor B; is

B = Y max{ max {Tseq(W)},z(s,W)}.
)

5,€S(B; west
@

Clearly, the responsetime of SCHED is determined by the longest
running site; that is,

TP (SCHED, P) = T(B,) .
( . P) 1rsnjasxp{ (B5)}

4.2.2 Pipdined Parallelism

Pipelined parallelism introduces a co-scheduling requirement for
query operators, requiring a collection of clones to execute in
producer-consumer pairs using fine-grain/lock-step synchroniza-
tion. The problems with load-balancing a pipelined execution
have been identified in previous work [13]. Compared to our
model of a schedule for partitioned and independent parallelism
(Definition 4.1), pipelined execution constrainsthe placement and
execution of compatible clone subsetsto ensurethat all the clones
in apiperun concurrently —they all start and terminate at the same
time [16]. This meansthat it is no longer possible to schedulere-
sources at one site independent of the others, as we suggested in
the previous section. Compatible subsets containing clones from
the same pipeline must run concurrently. Furthermore, given that
the scheduleris not allowed to modify the query plan, schedulinga
pipelineisan“all-or-nothing” affair: either all cloneswill execute
in parallel or nonewill. Theimplications of pipelined parallelism
for our scheduling problem will be studied further in Section 4.4
where a near-optimal solution will be developed.

4.3 Scheduling Independent Operators

In this section, we extend our earlier lower bound on the optimal
parallel execution time of independent operators (i.e., operators
not in any pipeline) with anew term that accountsfor the effect of
ss resources. We then demonstrate that a heuristic based on Gra-
ham’sLPT (Largest Processing Time) list scheduling method [14]
can guarantee near-optimal schedulesfor such operators.



Theorem4.1 Let {op;,s = 1,...M} be independent oper-
ators with respective degrees of partitioned parallelism N =
(N1, Na,...,Nuy). Let 'S be the corresponding set of clones
and define 77%*(S) = max;=1,.. u{T™*"(0p;, Ni)}. |If
TP (OPT, P) is the responsetime of the optimal execution on
P sitesthen 77" (OPT, P) > LB(S, P), where

(™) us™)
P P [
Aswith all theoretical results presented here, Theorem 4.1 isstated
without proof due to space constraints. The details can be found
in the full version of this paper [12]. Compared to our earlier re-
sults[11], the lower bound in Theorem 4.1 introduces a third term
containing1(S™V), i.e., thetotal volume of the parallel execution.
Wewill seethat this new parameter playsan important role in our
analytical and experimental results.

The basic idea of our heuristic scheduling algorithm, termed
OPSCHED, is to construct the partition of clonesinto compatible
subsets incrementally, using a Next-Fit rule [4, 5]. Specifically,
OPSCHED scansthe list of clonesin non-increasing order of exe-
cutiontime. At each step, the cloneselectedis placedin thesite B;
of minimal height 7****( B;) (see Equation (1)). This placement
isdoneasfollows. Let S; ,,; denote the topmost compatible sub-
setin B;. If theclonecanfitin S; ,,, without violating Ss capacity
constraints, then add the cloneto S; ,,, and update 7"*¢( B;) ac-
cordingly. Otherwise, setn; = n; + 1, place the cloneby itself in
anew topmost subset S; .., and set 7°"**( B;) accordingly. The
following theorem establishes an absolute performance bound of
d + 2s + 2 for our heuristic.

Theorem 4.2 Given a set of clones S, OPSCHED runs in time
O(]S|1og |S]) and produces a schedule SCHED with response
time 77" (SCHED, P) < (d+ 2s+ 2)- LB(S, P).

LB(S,P) = max{ Tm*(S),

4.4 Scheduling with Pipelining Constraints

The co-scheduling requirement of pipelined operator execution
introduces an extra level of complexity that OPSCHED cannot
address, namely the problem of deciding whether a pipeline is
schedulableon agiven number of sites. Given acollection of oper-
ator clonesin apipeline, the schedul ability question posesan A/ P-
hard decision problem that essentially correspondsto the decision
problem of s-dimensional vector packing [4]. Thus, it is highly
unlikely that efficient (i.e., polynomial time) necessary and suf-
ficient conditions for pipeline schedulability exist. Note that no
such problemswere raised in the previous section, sincethe clones
were executing independently of each other.

In this section, we show that A-granularity with A < 1 for all
operator parallelizations can provide an easily checkablesufficient
condition for pipeline schedulability”. Once schedulability is en-
sured, balancing the work of the pipeline across sites to minimize
its response time still poses an N P-hard optimization problem.
We present a polynomial time scheduling algorithm that is within
a constant multiplicative factor of the response time lower bound
for schedulable A-granular pipelines. Further, we demonstratethat
using alevel-based approach, our methodol ogy can be extended to
provideaprovably near-optimal solution for multipleindependent
pipelines. Finally, we extend our techniquesto handlethe datade-
pendenciesin abushy query plan and on-line task arrivals.

3We use the term \-granular pipelineto describe a pipeline in which
al operator parallelizations are A-granular.

44.1 Scheduling a Single A-granular Pipeline

We present a near-optimal algorithm for scheduling a pipeline C'
consisting of A-granular parallel operators, where A < 1. Let
Sc denotethe collection of clonesin C and define S, S¥, and
T™e?(S¢) in the obvious manner. Note that, by our definitions,
the pipeline C will require at least 1(S%) sites for its execution
(otherwise, A would have to be greater than 1). The following
lemma provides a sufficient condition for schedulability.

Lemma4.l The number  of sites  required to
schedule a A-granular pipeline C' is always less than or equal to
1(SY) - s/(1=N).

Our heuristic, PIPESCHED, belongsto the family of list schedul-
ing algorithms[14]. PIPESCHED assumesthat it is given anumber
of sites P that is sufficient for the scheduling of C', according to
thecondition of Lemma4.1. Thealgorithm considersthe clonesin

S¢ in non-increasing order of their work density ratio ll((%) At
each step, the cloneunder considerationis placedinthe least filled
(i.e., least work) site that has sufficient Ss resourcesto accommo-
dateit; that is, clone (W ;, V;) is packedin bin B suchthat /( B")
isminimal among all sites B; suchthat {(B) U {V:}) < 1. The
PIPESCHED algorithm is depicted in Figure 4. Thefollowing the-
orem bounds the worst-case performance ratio of our algorithm?.

Theorem 4.3 Givena-granular pipeline C', PIPESCHED runsin
time O(|Sc|log |Sc|) and produces a schedule SCHED with re-
sponsetime

CED)

)+1]max{ Tmaa:(sc) ) T

s
1—2A

TP (SCHED, P¢) < [d(1+

b

Algorithm PIPESCHED(C', Pc)

Input: A setof A-granular pipelined operator clones .S and aset
%4

of P¢ sites, where P > % (seeLemma4.1).

Output: A mapping of the clonesto sites that does not violate ss

resource capacity constraints.

1 let L =< (W1, V1),...,(Wn,Vx) > bethelist of all

clonesin non-increasing order of %(Vv‘/—)l

2. fork=1toN do
2.1 let SBx = {B; : (B, U{V}) < 1}, i.e theset of
bins with sufficient ss resourcesfor the k*" clone.
22. let B € SBy be a site such that {(B") =
ming, esn, {(B,")}.
23. place clone (Wy,Vy) a site B and set
B" =BuU{Wx},BY =BU{Vx}.

Figure4: Algorithm PIPESCHED

The bound established in Theorem 4.3 clearly captures the
granularity tradeoffs identified in Section 3. Increasing the de-
gree of partitioned parallelism decreases both 777 (S¢) and A

4Note that the volume term does not come into the expression for the
performance bound of PIPESCHED. This is because, by definition, all
the clones in S must execute in parallel, so {(S¥) < Pg. Thus, for
1(sY)
<

. . Lo STV
the execution of a single pipeline, % < Tmaes(Se) -
T'ma.r(sc).



because of “finer” operator clones, but it also increases the total
amount of work I(SZ") because of the overhead of parallelism.
The importance of such work-space tradeoffs for parallel query
processing and optimization has been stressed in recent work [15].

4.4.2 Scheduling Multiple I ndependent Pipelines

The basic observation hereis that the PIPESCHED algorithm pre-
sented in the previous section can be used to schedule any collec-
tion of independent pipelines as long as schedulability is guaran-
teed by Lemma4.1.

Our algorithm for scheduling multiple independent pipelines
uses aNext-Fit Decreasing Height (NFDH) policy [5] in conjunc-
tion with Lemma4.1to identify pipelinesthat can be scheduledto
execute concurrently on P sites (i.e., in one layer of execution).
PIPESCHED is then used for determining the execution schedule
within each layer. The overall algorithm, LEVEL SCHED, is for-
mally outlined in Figure 5.

Algorithm LEVELSCHED({C,...,Cn}, P)
Input: A set of A-granular operator pipelines{C4, ..
aset of P sites.

Output: A mapping of clonesto sitesthat doesnot violate Ss re-
source capacity constraints or pipelining dependencies.

.,CN} and

1. Sort the pipelinesin non-increasing order of 777 i.e., let
L =< C,...,Cny >, where T (S¢,) > ... >
Tmam(SCN‘).

2. Partition the list L in & maximal schedulable sublists:

L =< Cl,...,Cil >, Ly =< C¢1+1,...,C¢2 >,
Ly =<Ci,_,41,...,Cn > basedon Lemma4.1; that is,
. P(1 =X
l(UCeLng) < Q and
S
. . P(1—-X .
H(Ueer, S USY, L) > % for all ;.

3. fory=1,...,kdo
3.1 call PIPESCHED((Ucer;C), P)

Figure 5: Algorithm LEVELSCHED

Thefollowing theorem gives an upper bound on the worst-case
performanceratio of LEVELSCHED. Note that the co-scheduling
requirement for the clonesin a pipe implies that the total volume
for all the clonesin {C1, ..., On} isl(STV) = (31 Tz .

Tesy, v), sinceany clonein C; will require its share of ss re-

sourcesfor at least 12" time. Thelower boundin Theorem 4.1
holds using the above definition of volume.
Theorem 4.4 Given a collection of N independent A-granular
pipelines comprising a set of clones .S, LEVELSCHED runs in
time O(N|S|log P|S|) and producesascheduleSCHED with re-
sponsetime

)
1-X" " 1-2Xx
It is important to note that, in most cases, the lower bound esti-
mated in Theorem 4.1 will significantly underestimate the optimal
responsetime sinceit assumesthat 100% utilization of systemre-
sourcesis alwayspossibleindependent of the giventasklist. Thus,

252

TP*"(SCHED, P) < [d*(1+

)+

+1]-LB(S, P).

the quadratic multiplicative constantsin Theorem 4.4 reflect only
aworst casethat israther far from the average, asour experimental
results have verified as well.

45 Data Dependencies and On-Line Task Arrivals

Scheduling arbitrary query task trees must ensurethat the blocking
constraints specified by the tree’s edges are satisfied. The LEv-
EL SCHED algorithm can be readily extended to handle such con-
straints by ensuring that the (sorted) ready list of tasks 7. always
containsthe collection of query tasksthat are ready for execution,
i.e., they are not blocked waiting for the completion of some other
(descendant) task in the task tree. In addition, as mentioned in
Section 2, care must be taken to ensure that whenever thereis a
Ss resource dependency between parent and children tasks across
blocking edges, the operators of al such children are co-scheduled
and those of the parent are treated as rooted and scheduled in the
immediately following shelf. All this is done by modifying LEV-
EL SCHED asfollows (see Figure 5):

1. Any sibling pipelinesinthetask tree with Ssresourcedepen-
denciesaretreated asaunit, i.e., theway individual pipelines
are treated in LEVEL SCHED. For the purposes of this algo-
rithm, assumethat the term ‘pipeline’ is interpreted as such
aunit.

2. Initialy, the input set of pipelines {C1,...,Cx} contains
exactly the tasks at the leaf nodes of the query task tree.

3. After Step 3.1, determine the set of tasks C that have been
enabled (i.e., are no longer blocked) because of the last in-
vocation of PIPESCHED. If C# 0, then merge the tasks in
C into theready list I. and go to Step 2. Otherwise, continue
with the next invocation of PIPESCHED.

The exact sameidea of dynamically updating and partitioning the
ready list L canbeusedto handleon-linetask arrivalsinadynamic
or multi-query environment. Basically, newly arriving query tasks
areimmediately merged into . to participate in the partitioning of
L into schedulable sublists right after the completion of the cur-
rent execution layer. Thus, our layer-based approach provides a
uniform scheduling framework for handlingintra-query aswell as
inter-query parallelism.

As we have already indicated in our earlier work [11], deriv-
ing performance bounds in the presence of data dependenciesis
avery difficult problem that continues to elude our efforts. The
difficulty stemsfrom the interdependenciesbetween different ex-
ecutionlayers: scheduling decisionsmade at earlier layerscanim-
pose data placement and operator execution constraintson the lay-
ersthat follow. We leave this problem open for future research.

5 Experimental Performance Evaluation
5.1 Experimental Testbed

We have experimented with the following algorithms:
e TREESCHED : Level-based scheduling of task trees, observ-
ing blocking and data placement constraints (Section 4.5).
e LEVELSCHED : Level-based scheduling of multiple inde-
pendent query tasks (Section 4.4.2).
For both scheduling scenarios (task trees, independent tasks), we
compared the average performance of our scheduling algorithms
with alower bound on the response time of the optimal execution
schedule for the given degrees of partitioned parallelism (deter-
mined by the granularity parameters A and f). Thislower bound



for LEVELSCHED follows directly from Theorem 4.1, whereas,

for TREESCHED, we used the formula:

Ws™) sty
P P

TREEBOUND = max{ , T(CP) },
where S isthe collection of all operator clonesin thetask tree and
T(CP) is the total response time of the critical (i.e., most time-
consuming) path in thetask tree. Dueto spaceconstraints, we only
discussour resultsfor TREESCHED and refer the interested reader
to the full paper [12] for more details.

Some additional assumptions were made to obtain a specific
experimental model from the general parallel executionmodel de-
scribed in Sections 3 and 4. These are briefly summarized below:
EA1. NoDataor Execution Skew: With the exception of startup

cost, the Ts work and ss demand vectors of an operator are
distributed perfectly among all sites participating in its exe-
cution. Startup is added to the work componentsof only one
of these sites, the “ coordinator” for the parallel execution.
EA2. Uniform Ts ResourceOverlapping: Theamount of over-
lap achieved between processing at different TS resources
at a site can be characterized by a single system-wide pa-
rameter ¢ € [0, 1] for al query operators. This parame-
ter allows us to express the response time of a work vec-
tor as a convex combination of the maximum and the sum
of its components, i.e., 7°°Y(W) = emax;<i<a{W[i]} +
(1—e¢) Zle Wi]. Small valuesof € imply limited overlap,
whereasvaluescloser to 1 imply alarger degree of overlap.
EA3. Simple Hash-Join Plan Nodes: The query plan consists
of hash-join nodes, where the memory demand for each join
equalsthe sizeof theinner relation timesa* fudgefactor” ac-
counting for the hash table overhead. Notethat althoughit is
possible to execute a hash-join with less memory [22], such
memory limitations complicate the processing of multi-join
pipelines — since pr obe operators cannot keep their entire
data sets (i.e., inner hash tables) in memory, it is no longer
possible to execute the pr obe pipeline in one pass. This
means that intermediate disk 1/0 hasto be performed at one
or more pipeline stages, essentially modifying the original
plan with the addition of extra blocking and data dependen-
cies. Aspart of our futurework, we plantoinvestigatethe ef-
fects of such memory limitations on our scheduling method-
ology and resullts.
Finally, we should note that our implementationsincorporated an
additional optimization to the basic scheme: After the placement
of a schedulable sublist (Lemma 4.1) of ready pipelines, each re-
maining ready pipeline was checked (in hon-increasing order of
T™*) for possible inclusion in the current level before starting
the next execution level. Although this optimization doesnot help
improve worst-case performance (since Lemma 4.1 is tight), we
found that it really helped the average-case performance of the
heuristics at the cost of a small increase in running time.

We experimented with tree queries of 10, 20, 30, 40, and 50
joins. For each query size, twenty query graphs (trees) were ran-
domly generated and for each graph an execution plan was se-
lected in a random manner from a bushy plan space. We assumed
simplekey join operationsin which the size of theresult relationis
alwaysequal to the size of thelargest of the two join operands. We
used two performance metrics in our study: (1) the average per-
formanceratio defined as the responsetime of the schedules pro-
duced by our heuristics divided by the corresponding lower bound

and averaged over all queriesof thesamesize; and, (2) the average
responsetime of the schedules produced by our heuristics over all

queries of the same size. Experiments were conducted with vari-
ous combinations of valuesfor the A, f, and e parameters. Since
the effects of f and e on scheduler performance were also studied
in our prior work [11], the discussionin this paper mostly concen-
trates on the new parameter A. (The results presented in the next
section areindicative of the results obtained for all valuesof f, €.)

Inall experiments, we assumed system nodesconsistingof d =

3 TS resources (one CPU, one disk unit, and one network inter-
face) and s = 1 ss resource (memory). The work vector com-
ponents for the CPU and the disk were estimated using the cost
model equations given by Hsiao et al. [18]. The communication
costswere calculated using the model describedin Section 3. The
values of the cost model parameters were obtained from the liter-

ature [18, 10, 26] and are summarized in Table 5.1.

Table 2: Experiment Parameter Settings

[[ Configuration/DB Catalog Parameters | Value ||
Number of Sites 10-120
CPU Speed 10 MIPS
Memory per Site 16-64 MB
Effective Disk Service Time per page 5 msec
Startup Cost per site (o) 15 msec
Network Transfer Cost per byte (3) 0.3 usec
Fudge Factor (F) 14
TupleSize 128 bytes
Page Size 32tuples
Relation Size 10% —10°% tuples

[[ CPU Cost Parameters | No. Instr. |
Read Page from Disk 5000
Write Page to Disk 5000
Extract Tuple 300
Hash Tuple 100
Probe Hash Table 200

5.2 Experimental Results

Figure 6(a) depictsthe average performanceratio of TREESCHED
asafunction of system sizefor 40-join queriesand 32MB of mem-
ory at each site, assuming a coarse-granularity parameter f = 0.6
and aresource overlap of 50% (i.e., e = 0.5). Note that our algo-
rithm is consistently within a small constant factor (i.e., lessthan
2) of the lower bound on the optimal schedule length. Although
the distance from the lower bound has certainly increased com-
pared to our results for only TS resources [11], the results clearly
demonstrate that the worst-case multiplicative factors derived in
our analytical boundsare overly pessimistic asfar as average per-
formanceis concerned.

Observing Figure 6(a), it appears that TREESCHED performs
better for larger values of the memory granularity parameter A.
This is slightly counterintuitive and seems to contradict Sec-
tion 4.4: “finer” memory requirements should allow our sched-
ulers to obtain better load balancing and, consequently, better
schedules. However, although the performanceratio of the algo-
rithms improves with larger values of A, the actual performance
(i.e., the response time) of the schedules (shown in Figure 6(b)),
deteriorates with larger A, as expected. The explanation of this
phenomenonliesin Figure 7, which shows how the three compo-
nents of the TREEBOUND lower bound vary with the number of
sitesfor our example set of 40-join queries and 16MB of memory
per site. (We chosea smaller value for memory becauseit better
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Figure 6: Effect of A on (a) the average performance ratio of TREESCHED, and (b) the average schedule response times obtained by

TREESCHED. (f = 0.6, ¢ = 0.5)
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Figure 7: TREEBOUND componentsfor (a) A = 0.2, and (b) A = 0.8. (f = 0.6, ¢ = 0.5)

illustrates the effect of the volume term for our systemsetting.) In
particular, for small values of the number of sites P, the dominant

factor in TREEBOUND is the average volume term (ﬂi—vl). For
larger valuesof P (and, consequently, increased system memory)

TREEBOUND is determined by the average work term ( )

Eventually, as P continuesto grow, the critical path term (T(CP))
starts dominating the other two terms in the bound. Also, note
that as the critical path becomesthe dominant factor in the query
plan execution, our level-based methods become more accurate
in approximating the lower bound. Intuitively, thisis becausethe
“height” of each execution level as determined by the plan’s criti-
cal path will be sufficient to pack the work in that level and, thus,
theresourcelossdueto “shelving” isnot important. (This also ex-
plains why the average performanceratios for various values of A
all convergeto avalue closeto 1 asthe number of sitesincreases.)
For the parameter settings in our experiments, larger values for
the memory granularity A typically imply lower degrees of par-
allelismfor the operatorsin the plan, which meansthat the critical
path will start dominating the other two factorsin TREEBOUND
much sooner. Furthermore, the aforementioned effect on the per-
formance ratio becomes more pronounced since the critical path
term will be significantly larger for larger A (Figure 7). Conse-
quently, larger values for A imply better performance ratios, al-
though the actual schedule responsetimes are worse.

6 Paralle Query Optimization

Perhapsthe major difference between parallel query optimization
and its well-understood centralized counterpart lies in the choice

of responsetime as a more appropriate optimization metric. This
choice of metric implies that a parallel query optimizer cannot af-
ford to ignore resource scheduling during the optimization pro-
cess. Prior work has demonstrated that atwo-phase approach [17]
using the traditional work (i.e., resource consumption) metric dur-
ing the plan generation phase often results in plans that are in-
herently sequential and, consequently, unableto exploit the avail-
able parallelism [1]. On the other hand, using a detailed resource
scheduling model during plan generation (as advocated by the
one-phase approach [19, 23]) can have a tremendous impact on
optimizer complexity and optimization cost. For example, a Dy-
namic Programming (DP) algorithm must use much stricter prun-
ing criteria that account for the use of system resources [9, 19].
This leads to a combinatorial explosion in the state that must be
maintained while building the DP tree, rendering the algorithm
impractical even for small query sizes.

Therole of the optimizer cost model is to provide an abstrac-
tion of the underlying execution system. In this respect, the one-
and two-phase approacheslie at the two different ends of a spec-
trum, incorporating either detailed knowledge (one-phase) or no
knowledge (two-phase) of the parallel environment in the opti-
mizer cost metric. Thegoal isto devise cost metrics that are more
realistic than resource consumption, in the sensethat they are cog-
nizant of the available parallelism, and at the same time are suffi-
ciently efficient to keep the optimization processtractable. In re-
cent work, Ganguly et al. [8] suggested the use of a novel scalar
cost metric for parallel query optimization. Their metric was de-
fined asthe maximum of two “bulk parameters” of aparallel query
plan, namely the critical path length of the plan tree and the aver-



age work per site. Although the model used in the work of Gan-
guly et al. was one-dimensional, it is clear that the “critical path
length” corresponds to the maximum sum of 7"**’s in the task
tree (over al root-to-leaf paths), whereasthe “ averagework” cor-

respondsto ﬂsp—wl with S being all operator clonesin the plan.

Based on our analytical and experimental results, there clearly
exists a third parameter, namely the average volume per site
@ that is an essential component of query plan quality. The
importance of thisthird parameter stemsfrom the fact that it isthe
only one capturing the constraintson parallel executionthat derive
from ss (i.e., memory) resources.

We believe that the triple (critical path, average work, aver-
age volume) capturesall the crucial aspects characterizing the ex-
pected response time of a parallel query execution plan. Conse-
quently, we feel that these three components can providethe basis
for an efficient and accurate cost model for parallel query optimiz-
ers. Finally, note that although Ganguly et al. [8] suggested com-
bining the plan parametersthrough amax{} function to producea
scalar metric, the way these parametersare used should depend on
the optimization strategy. For example, a DP-based parallel opti-
mizer should use our three “bulk parameters” as a 3-dimensional
vector and use a 3-dimensional “less than” to prune the search
space [9]. Clearly, using only three dimensions turns the Partial
Order DP (PODP) approach of Ganguly et al. [9] into afeasible
and efficient paradigm for DP-based parallel query optimization.

7 Conclusions

The problem of scheduling complex queries in hierarchical par-
allel database systems of multiple time-shared and space-shared
resources has been open for a long time both within the database
field and the deterministic schedulingtheory field. Despitetheim-
portance of such architectures in practice, the difficulties of the
problem have led researchersin making various assumptions and
simplifications that are not realistic. In this paper, we have pro-
vided what we believeis the first comprehensiveformal approach
to the problem. We have established a model of resource usage
that allows the scheduler to explore the possibilities for concur-
rent operations sharing both Ts and ss resources and quantify
the effects of this sharing on the parallel execution time. The
inclusion of both types of resources has given rise to interest-
ing tradeoffs with respect to the degree of partitioned parallelism,
which are nicely exposed within our analytical models and re-
sults, and for which we have provided some effective resolutions.
We have provided efficient, near-optimal heuristic algorithms for
query schedulingin such parallel environments, paying special at-
tention to various constraints that arise from the existence of ss
resources, including the co-scheduling requirements of pipelined
operator execution, which has been the most challenging to re-
solve. Our set of resultsapply to all types of query plansand even
sets of plansthat are either provided all at the beginning or arrive
dynamically for scheduling. Asaside-effect of our effort, wehave
identified an important parameter that captures one aspect of par-
allel query execution cost, which should play an important role in
obtaining realistic cost models for parallel query optimization.
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