
Parallel Query Scheduling and Optimization with
Time- and Space-Shared Resources

Minos N. Garofalakis
University of Wisconsin–Madison

minos@cs.wisc.edu

Yannis E. Ioannidis
�

University of Wisconsin–Madison

yannis@cs.wisc.edu

Abstract

Scheduling query execution plans is a particularly com-
plex problem in hierarchical parallel systems, where each
site consists of a collection of local time-shared (e.g.,
CPU(s) or disk(s)) and space-shared (e.g., memory) re-
sources and communicates with remote sites by message-
passing. We develop a general approach to the prob-
lem, capturing the full complexity of schedulingdistributed
multi-dimensional resource units for all kinds of paral-
lelism within and across queries and operators. We present
heuristic algorithms for various forms of the problem, some
of which are provably near-optimal. Preliminary experi-
mental results confirm the effectiveness of our approach.

1 Introduction

In the shared-nothing [7] and the more general hierarchical (or,
hybrid) [2] multiprocessor architectures, each site consists of its
own set of local resources and communicates with other sites only
by message-passing. Despite the popularity of these architectures,
the development of effective and efficient query processing and
optimization techniques to exploit their full potential still remains
an issue of concern [9, 25].

Prior work has already demonstrated the importance of re-
source scheduling during parallel query optimization. One of
the main sources of complexity for the problem is the multi-
dimensionality of the resource needs of database queries. That is,
during their executionqueries typically require multiple resources,
such as memory buffers and CPU and disk bandwidth. This in-
troduces a range of possibilities for effectively scheduling system
resources among concurrent query operators, which can substan-
tially increase the utilization of these resources and reduce the re-
sponse time of the query. Moreover, system resources can be cat-
egorized into two radically different classes with respect to their
mode of usage by query plan operators:

�

Partially supported by the National Science Foundation underGrants
IRI-9113736 and IRI-9157368 (PYI Award), and by grants from IBM,
DEC, HP, AT&T, Informix, and Oracle.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

� Time-Shared (TS) (or, preemptable) resources (e.g., CPUs,
disks, network interfaces), that can be sliced between opera-
tors at very low overhead [9, 11]. For such resources, oper-
ators specify an amount of work (i.e., the effective time for
which the resource is used) that can be stretched over the op-
erator’s execution time.

� Space-Shared (SS) resources (e.g., memory buffers), whose
time-sharing among operators introduces prohibitively high
overheads [9]. For such resources, operators typically
specify rigid capacity requirements that must be satisfied
throughout their execution.

Most previous work on parallel query scheduling has ignored the
multi-dimensional nature of databasequeries and has concentrated
on simplified models of SS resources, resulting in unrealistic ap-
proaches to the problem. Similar limitations exist in previous ef-
forts within the field of deterministic scheduling theory.

�

In our earlier work [11], we have presented a multi-
dimensional framework for query scheduling in shared-nothing
parallel systems with only TS resources, dealing with the full va-
riety of bushy plans and schedules that incorporate independent
and pipelined forms of inter-operation parallelism as well as intra-
operation (i.e., partitioned) parallelism. Within this framework,
we have developed a provably near-optimal list scheduling ap-
proach for time-sharing system resources among concurrent op-
erators.

In this paper, we extend our previous formulation to include
both TS and SS resources, representing query operator costs as
pairs of work and demand vectors with one dimension per TS and
SS resource, respectively. We develop a fast resource schedul-
ing algorithm for operator pipelines called PIPESCHED that be-
longs to the class of list scheduling algorithms [14]. We then ex-
tend our approachto multiple independent pipelines, using a level-
based (or, shelf-based) scheduling algorithm [5, 24] that treats
PIPESCHED as a subroutine within each level. The resulting al-
gorithm, termed LEVELSCHED, is analytically shown to be near-
optimal for given degrees of operator parallelism. Furthermore,
we show that LEVELSCHED can be readily extended to handle the
operator precedence constraints in a bushy query plan as well as
on-line task arrivals (e.g., in a dynamic or multi-query execution
environment). Preliminary experimental results confirm the effec-
tiveness of our algorithms compared to a lower bound on the op-
timal solution, showing that our analytical worst-case bounds are
rather pessimistic compared to the average performance. Finally,
we discuss the implications of our results for the open problem of
designing efficient cost models for parallel query optimization [7].

�

Due to space constraints, we do not discuss the details of earlier work.
For an extensive bibliography, the interested reader is referred to the full
version of the paper [12].

2 Problem Formulation

2.1 Definitions

We consider hierarchical parallel systems [2] with identical mul-
tiprogrammed resource sites connected by an interconnection net-
work. Each site is a collection of

�
TS resources (e.g., CPU(s),

disk(s), and network interface(s) or communication processor(s))
and � SS resources (e.g., memory). Although memory is proba-
bly the only SS resource that comes to mind when discussing tra-
ditional database query operators, often the distinction between TS

and SS resources depends on the needs of a particular application.
For example, the playbackof a digitized video from a disk requires
a specific fraction of the disk bandwidth throughout its execution.
Clearly such an operator views the disk as an SS resource although
traditional databaseoperators view it as a TS resource. For this rea-
son, we decided to address the scheduling problems for general �
rather than restricting our discussion to ����� (i.e., memory). An
obvious advantage of this general formulation is that it allows us
the flexibility to “draw the line” between TS and SS resources at
any boundary, depending on factors such as application require-
ments or user view of resources.

An operator tree [9, 17] is created as a “macro-expansion” of
an execution plan tree by refining each node into a subtree of phys-
ical operator nodes, e.g., scan, probe, build (Figure 1(a,b)).
Edges represent the flow of data as well as two forms of timing
constraints between operators: pipelining (thin edges) and block-
ing (thick edges). Furthermore, blocking edges occasionally im-
ply a SS resource dependency, where a parent task must use the
same SS resources as its children in order to access their results.
For instance, this is the case with the build operators of Fig-
ure 1(b), which must build their hash tables in memory, so that the
corresponding probe operators, being executed immediately af-
ter them, find those tables in memory. A query task is a maximal
subgraph of the operator tree containing only pipelining edges. A
query task tree is created from an operator tree by representing
query tasks as single nodes (Figure 1(c)).

(c)

R1R2

R3

R4

SORTMERGE

HASH JOIN

HASH JOIN

JOIN

SCAN(R1)

SORT

SCAN(R2)

MERGE

PROBE

SCAN(R3)

BUILD

SCAN(R4)

BUILD

PROBE

SORT

T1T2

T3

T4

T5

T1 T2 T3 T4

T5

(a) (b)

Figure 1: (a) An execution plan tree. (b) The corresponding oper-
ator tree. (c) The corresponding query task tree. The thick edges
in (b) indicate blocking constraints.

The above trees clarify the definitions of the three forms of
intra-query parallelism:

� Partitioned parallelism: A single node of the operator tree
is executed on a set of sites by appropriately partitioning its
input data sets.

� Pipelined parallelism: The operators of a single node of the
task tree are executed on a set of sites in a pipelined manner.

� Independent parallelism: Nodes of the task tree with no path
between them can be executed in parallel on a set of sites

independent of each other. For example, in Figure 1, tasks
T1-T4 may all be executed in parallel, whereas task T5 must
await the completion of T1-T4.

The home of an operator is the set of sites allotted to its exe-
cution. Each operator is either rooted, if its home is fixed by data
placement constraints (e.g., scanning a materialized intermediate
relation or probing a built hash table), or floating, if the resource
scheduler is free to determine its parallelization.

2.2 Overview

A parallel schedule consists of (1) an operator tree and (2) an al-
location of system resources to operators. Given a query execu-
tion plan, our goal is to find a parallel schedule with minimal re-
sponse time. Accounting for both TS and SS resource dimensions,
our scheduling framework gives rise to interesting tradeoffs with
respect to the degree of partitioned parallelism. Coarse grain op-
erator parallelizations [8, 10, 11] are desirable since they typically
result in reduced communication overhead and effective parallel
executions with respect to TS resource use. On the other hand,
fine grain operator parallelizations are desirable since they imply
smaller SS requirements for each clone thus allowing for better
load balancing opportunities and tighter schedulability conditions.
A quantification of these tradeoffs and our resolution for them are
presented in Section 3.1.

We have devised an algorithm for scheduling bushy execution
plan trees that consists of the following steps:

1. Construct the corresponding operator and task trees, and
for each operator, determine its individual resource require-
ments using hardware parameters, DBMS statistics, and con-
ventional optimizer cost models (e.g., [18, 21]).

2. For each floating operator, determine the degree of paral-
lelism based on the TS vs. SS resource tradeoffs discussed
above (partitioned parallelism).

3. Place the tasks corresponding to the leaf nodes of the task
tree in the readylist � of the scheduler. While � is not empty,
perform the following steps:
3.1. Determine a batch of tasks from � that can be exe-

cuted concurrently and schedule them using a prov-
ably near-optimal multi-dimensional list scheduling
heuristic (pipelined and independent parallelism).

3.2. If there are tasks in the tree whose execution is enabled
after Step 3.1, place them in the ready list � .

We prove that our approach is near-optimal for scheduling multi-
ple independentpipelines. Further, it can be readily used to handle
on-line task arrivals (e.g., in a dynamic or multi-query execution
environment).

2.3 Assumptions

Our approach is based on the following set of assumptions:
A1. No Time-Sharing Overhead for TS Resources. Follow-

ing Ganguly et al. [9], slicing a preemptable resource among
multiple operators introduces no additional resource costs.

A2. Uniform TS Resource Usage. Following Ganguly et al. [9],
usage of a preemptable resource by an operator is uniformly
spread over the execution of the operator.

A3. Constant SS Resource Demand. The total SS requirements
of an operator are constant and independent of its degree of
parallelism. For example, the total amount of memory re-
quired by all the clones of a build operator equals the size

of a hash table on the build relation. Further, increasing the
degree of parallelism does not increase the SS demands of
individual clones.

A4. Non-increasing Operator Execution Times. For the range
of parallelism considered, an operator’s execution time is a
non-increasing function of its degree of parallelism, i.e., al-
lotting more sites cannot increase its response time.

A5. Dynamically Repartitioned Pipelined Outputs. The out-
put of an operator in a pipeline is always repartitioned to
serve as input to the next one. This is almost always accu-
rate, e.g., when the join attributes of pipelined joins are dif-
ferent, the degrees of partitioned parallelism differ, or differ-
ent declustering schemes must be used for load balancing.

3 Quantifying Partitioned Parallelism
3.1 A Resource Usage Model

Our treatment of TS resource usage is based on the model of pre-
emptable resources proposed by Ganguly et al. [9], which we
briefly describe here. The usage of a single resource by an op-
erator is modeled by two parameters, � and � , where � is the
elapsed time after which the resource is freed (i.e., the response
time of the operator) and � is the work measured as the effective
time for which the resource is used by the operator. Intuitively, the
resource is kept busy by the operator only ����� of the time. Al-
though this abstraction can model the true utilization of a system
resource, it does not allow us to predict exactly when the busy pe-
riods are. Thus, we make assumption A2 which, in conjunction
with assumption A1, leads to straightforward quantification of the
effects of resource sharing [9].

In our previous work [11], we presented a multi-dimensional
version of the model of Ganguly et al. [9] that can quantify the
effects of sharing sites with TS resources among query operators.
We extend that model and describe the usage by an isolated opera-
tor of a site consisting of

�
TS resources and � SS resources by the

triple �����
	���
 ��
 ��� , where:
� � �
	�� is the (stand-alone) sequential execution time of the op-

erator,
� � is a

�
-dimensional work vector whose componentsdenote

the work done on individual TS resources, i.e., the effective
time [9, 11] for which each resource is used by the operator;
and

� � is an � -dimensional demand vector whose componentsde-
note the SS resource requirements of the operator throughout
its execution. For notational conveniencewe assume that the
dimensions of � are normalized using the corresponding SS

capacities of a single site.

This generalized view of a system site is depicted in Figure 2. Our
model assumes a fixed numbering of system resources for all sites;
for example, dimensions 1, 2, 3, and 4 of � may correspond to
CPU, disk-1, disk-2, and network interface, respectively.

Time ���
	�� is actually a function of the operator’s individual
resource requirements, i.e., its work vector � (sometimes em-
phasized by using � �
	�� � ��� instead of � �
	��), and the amount of
overlap that can be achieved between processing at different re-
sources [11]. This overlap is a system parameter that depends on
the hardware and software architecture of the resource sites (e.g.,
buffering architecture for disk I/O) as well as the algorithm im-
plementing the operator. The operator’s SS resource requirements

d-dimensional s-dimensional
unary capacityopen-ended

V (non-preemptable)

1

W (preemptable)

Figure 2: A site with TS and SS resources (
�

= 3, � = 2)

(�) depend primarily on the size of its inputs and the algorithm
used to implement the operator. On the other hand, the opera-
tor’s work requirements (�) depend on both of these parameters
as well as its SS resource allotment � .

Note that, in this paper, we are adopting a somewhat simplified
view of the SS resource demands, assuming that components of �
have fixed values determined by plan parameters. In most real-life
query execution engines, operator memory requirements are mal-
leable, in the sense that they are typically specified as a range of
possible memory allotments. This flexibility adds an extra level
of difficulty to our scheduling problem. It means that the sched-
uler also has to select specific SS demand vectors � that minimize
query response time over all possible � ��
 ��� combinations. We
plan to address this more general problem in our future work.

3.2 Quantifying the Granularity of Parallel Execution

As is well known, increasing the parallelism of an operator re-
duces its execution time until a saturation point is reached, beyond
which additional parallelism causes a speed-down, due to exces-
sive communication startup and coordination overhead over too
many sites [6]. To avoid operating beyond that point, we want to
ensure that the granules of the parallel execution are sufficiently
coarse [8, 11]. In the presence of SS resources, any scheduling
method is restricted in its mapping of clones to sites by SS capacity
constraints, i.e., it is not possible to concurrently execute a set of
clones at a site if their total SS requirements exceed the site’s ca-
pacity (in any of the � dimensions). Clearly, coarse operator clones
imply that each clone has SS resource requirements that are rela-
tively large. This means that, when restricted to coarse grain op-
erator executions, a scheduling method can be limited in its abil-
ity to balance the total work across sites. Furthermore, coarse SS

requests can cause severe fragmentation that may lead to under-
utilization of system resources. Thus, taking both TS and SS re-
sources into account gives rise to interesting tradeoffs with respect
to the granularity of operator clones. Our analytical results in Sec-
tion 4 clearly demonstrate this effect.

We view the granularity of a parallel operator op as a function
of the ratio ����� op ������ op � � � and �!� op
#"$� , where

� �&%'� op � denotes the total amount of work performed during
the execution of op on a single site, when all its operands
are locally resident (i.e., zero communication cost); it corre-
sponds to the processing area [10] of op and is constant for
all possible executions of op;

� �)(*� op
#"$� denotes the total communication overhead in-
curred when the execution of op is partitioned among "
clones; it corresponds to the communication area of the par-
titioned execution of op and is a non-decreasing function of
" ; and

� � � op
#"$� denotes the maximum (normalized) SS resource
requirement of any clone when the execution of op is parti-
tioned among " clones; it correspondsto the SS grain size of
the partitioned execution of op and is a non-increasing func-
tion of " .

Note that the execution of op with degree of partitioned paral-
lelism equal to " is feasible only if � � op
 "$� � � ; that is, the
partitioning of op must be sufficiently fine-grain for each clone to
be able to maintain its SS working set at a site. We only consider
such “reasonable” parallelizations in the remainder of the paper.

Definition 3.1 A parallel execution of an operator op with de-
gree of partitioned parallelism equal to " is � -granular if
�!� op
#"$� � � , where � � � .
The following quantification of coarse grain parallelism extends
our earlier formulation [11].

Definition 3.2 A parallel execution of an operator opwith degree
of partitioned parallelism equal to " is coarse grain with param-
eter f (referred to as a CG � execution) if the communication area
of the execution is no more than � times the processing area of op,
i.e., � (� op
#"$� � �!� % � op � .
Definition 3.3 A parallel execution of an operator op with de-
gree of partitioned parallelism equal to " is � -granular CG � ,
if the communication area of the execution is no more than ���
times the processing area of op, i.e., ��(*� op
#"$� � � � � %'� op � ,
where � � is the minimum value larger than or equal to � such that
�!� op
#"$� � � .

The intuition behind this definition is that we may sometimes have
to compromise our restrictions on communication overhead to en-
sure that the parallelization is in the � -granular region. This is
graphically demonstrated in Figure 3.

CGf CGf
f’

-granularλ

CGf-granularλ
parallelism

CGf-granularλ
parallelism

N N

(a) (b)

λ-granular

range of degree of

CG

Figure 3: � -granular CG � execution: (a) � ����� , and (b) �
	���� .
3.3 Degree of Partitioned Parallelism

Assuming zero communication costs, the TS and SS resource re-
quirements of an operator are described by a

�
-dimensional work

vector � and an � -dimensional demand vector � whose com-
ponents can be derived from system parameters and traditional
optimizer cost models [21]. By definition, the processing area
of the operator � % � op � is simply the sum of � ’s components,
i.e., � % � op � � ��
��� � ������� . Similarly, the SS grain size
�!� op
#"$� can be estimated using traditional optimizer cost mod-
els and statistics kept in the database catalogs [20]. Finally, we es-
timate the communication area ��(*� op
#"$� using a simple linear
model of communication costs that has been adopted in previous
studies of shared-nothing architectures [11, 26] and validated on

the Gamma research prototype [6]. Specifically, if � is the total
size of the operator’s input and output transferred over the inter-
connect, then �)(*� op
#"$� ��� "������ , where � and � are
architecture-specific parameters [11].

The following proposition is an immediate consequence of
Definition 3.3 and our communication cost model.

Proposition 3.1 The maximum allowable degree of partitioned
parallelism for a � -granular CG � execution of operator op is de-
noted by "! #"%$'� op
&�
&� � and is equal to the expression')(+*-, ��
/. ��� % � op �102�3�� 4
 '!5�6�7 "98'�!�;:=<
#"$� � �?>-@2A
4 The Scheduling Algorithm

4.1 Notation and Definitions

Table 4.1 summarizes the notation used in this section with a brief
description of its semantics. Detailed definitions of some of these
parameters are given below. Additional notation will be intro-
duced when necessary.

Table 1: Notation

Parameter SemanticsB
Number of system sitesC
Number of TS resources per siteD Number of SS resources per siteEGF
System site (i.e., “bin”) H (HJILKNMPO&OPO%M B)E �F Set of TS work vectors scheduled at

EGFE!QF Set of SS demand vectors scheduled at
EGFR � ��S 	UT EGFUV Execution time for all clones at

EGFW
Number of operators to be scheduled

op � Operator, e.g., build (HJILKNM&OPO%O&M W)X � Degree of partitioned parallelism (number
of clones) for op �Y

op Z Work vector for op � (including
communication costs for

X � clones)[
op Z Demand vector for op �R \"%$ T op � M X � V Maximum execution time among the

X �
clones of op � while alone in system]
Set of (floating) clones to be scheduled] � (

]�Q
) Set of work (demand) vectors for all

clones to be scheduled]J^�Q
Set of volume (time _ demand) vectors for
all clones to be scheduled` T a V M ` T]Jb+V Length of a vector a or set of vectors

]Jb
Vector � op Z describes the total (normalized) SS resource re-

quirements of op � . The components of � op Z are computed using
architectural parameters and database statistics. Note that these
components are independent of the degree of partitioned paral-
lelism " � .

Vector � op Z describes the total (i.e., processing and commu-
nication) TS resource requirements of op � , given its degree of par-
allelism " � . Using the notions of communication and processing
area defined in Section 3, the above is expressed as
c d � �

� op Z � ef� � � % � op � �g� � (�� op �
#" � �%A
The individual components of � op Z are computed using archi-
tectural parameters and database statistics, as well as the SS allot-
ment for op � and our model for communication costs.

Given an operator clone with a (stand-alone) execution time of
� and a SS demand of � , we define the volume vector of the clone
as the product ��� � , i.e., the resource-time product

�
for the clone’s

execution [3].
� � ,

� Q
, and

� ^JQ
are used to denote the set of

work, demand, and volume vectors (respectively) for the set
�

of
all the clones to be scheduled. We use the � , � , and ��� super-
scripts in this manner throughout the paper.

The length of a � -dimensional vector � is its maximum
component. The length of a set

� b
of � -dimensional vectors

is the maximum component in the vector sum of all the vec-
tors in

� b
. More formally, � � ��� � ')(* ��� d �
	 7 � � ef� > and� � � b � � ')(+* ��� d �
	 7 � b���
�� � � ef� > .

The performance ratio of a scheduling algorithm is defined as
the ratio of the response time of the schedule it generates over that
of the optimal schedule. All the scheduling problems addressed
in this paper are non-trivial generalizations of traditional multi-
processor scheduling [14] and, thus, they are clearly ��� -hard.
Given the intractability of the problems, we develop polynomial
time heuristics that are provably near-optimal, i.e., with a constant
bound on the performance ratio.

Since the parallelization of rooted operators is pre-determined,
our algorithms are only concerned with the scheduling of floating
operators. Also, for the purposes of this section, the degree of par-
titioned parallelism for all floating operators is determined based
on a granularity condition, as shown in Proposition 3.1. In short,
all algorithms presented in this section assume a pre-processing
step that places rooted clones at their respective sites and computes
the degree of coarse grain parallelism for all floating operators.

4.2 Modeling Parallelism and Resource Sharing

We present a set of extensions to the (one-dimensional) cost model
of a traditional DBMS based on the multi-dimensional resource
model described in Section 3.1. Our extensions account for all
forms of parallelism and quantify the effects of sharing TS and SS

resources on the response time of a parallel execution.

4.2.1 Partitioned and Independent Parallelism

In partitioned parallelism, the work and demand vectors of an
operator are partitioned among a collection of independent op-
erator clones [9]. Each clone executes on a single site and
works on a portion of the operator’s data. The partition-
ing of � op Z and � op Z into work and demand vectors for
operator clones is determined based on statistical information
kept in the DBMS catalogs. Given such a partitioning 	
� � �
 � � ��
 � � �
 � � ��
 A A A*
*� � � Z
 � � Z ��� , where � � Zd � � �

d
�

� op Z and � � Zd � � �

d
� � op Z , a lower bound on the parallel ex-

ecution time for op � is the maximum of the sequential execution
times of its " � clones; that is, the parallel execution time for op �
is greater than or equal to

� #"%$ � op �
#" � � � ')(+*
��� d � � Z 7 � �
	�� � � d

�J> A
By our definitions of the TS and SS resource classes, it is ob-

vious that a set of clones 	 � � �
 � � ��
 A A A*
 � � d

 �

d
��� can be

executed concurrently at some system site only if � � � d
� � � � � � ,�

The volume of an operator is defined as the product of the amount of
resource(s) that the operator reserves during its executionand its execution
time.

i.e., their SS requirements do not exceed the capacity of the site.
We call such clone collections compatible.
Definition 4.1 Given a collection of � independent operators7 op �
&� � �GA A A�� > and their respective degrees of partitioned
parallelism 7 " �
 � ���1A A A�� > , a schedule is a partitioning of the������ � " � operator clones into a collection of compatible subsets�

�
 A A A*
 � 	 followed by a mapping of these subsets to the set of
available sites.
The effects of time-sharing the preemptable resources of a site
among the clones in a compatible subset

� � can be quantified as
follows. Let

� �� denote the set of work vectors for all clones in
� � .

Since all clones are executed concurrently, the execution time for
the clones in

� � is determined by the ability to overlap the process-
ing of TS resource requests by different clones. Specifically, under
our model of preemptable resources described in Section 3.1, the
execution time for all the operator clones in

� � is defined as [11]

��� � � � � ')(* � ')(+*
� ��
��Z 7 � �
	�� � ���P>�

� � � �� ���LA

Thus, if we let
� � � F � denote the collection of compatible subsets

mapped to site � F under a given schedule SCHED, the execution
time for � F is

� � ��S 	 � � F � � c
 Z ��
 �"!$# � ')(+*
� ')(+*
� �%
 �Z 7 � �
	�� � � �P>
&�
� � �� �'�LA

(1)
Clearly, the response time of SCHED is determined by the longest
running site; that is,

� %N")(� *�+',.-�/�
�0 � � ')(+*
��� F �&1 7 � � ��S 	 � � F ��> A

4.2.2 Pipelined Parallelism

Pipelined parallelism introduces a co-scheduling requirement for
query operators, requiring a collection of clones to execute in
producer-consumer pairs using fine-grain/lock-step synchroniza-
tion. The problems with load-balancing a pipelined execution
have been identified in previous work [13]. Compared to our
model of a schedule for partitioned and independent parallelism
(Definition 4.1), pipelined execution constrains the placement and
execution of compatible clone subsets to ensure that all the clones
in a pipe run concurrently – they all start and terminate at the same
time [16]. This means that it is no longer possible to schedule re-
sources at one site independent of the others, as we suggested in
the previous section. Compatible subsets containing clones from
the same pipeline must run concurrently. Furthermore, given that
the scheduler is not allowed to modify the query plan, schedulinga
pipeline is an “all-or-nothing” affair: either all clones will execute
in parallel or none will. The implications of pipelined parallelism
for our scheduling problem will be studied further in Section 4.4
where a near-optimal solution will be developed.

4.3 Scheduling Independent Operators

In this section, we extend our earlier lower bound on the optimal
parallel execution time of independent operators (i.e., operators
not in any pipeline) with a new term that accounts for the effect of
SS resources. We then demonstrate that a heuristic based on Gra-
ham’s LPT (Largest Processing Time) list scheduling method [14]
can guarantee near-optimal schedules for such operators.

Theorem 4.1 Let 7 op �
 � � �
 A A A�� > be independent oper-
ators with respective degrees of partitioned parallelism " �
�
" �
#" �
 A A A
#" � � . Let

�
be the corresponding set of clones

and define � #"%$ � � � � ')(* ��� � � � � � � � 7 � \"%$ � op �
#" � �P> . If
� %U" (� �����
�0 � is the response time of the optimal execution on0 sites then � %N" (� �����
�0 ��� ���!� �
)0 � , where

���!� �
�0 � � ')(* , � #"%$ � � ��
 � � � � �0
 � � � ^JQ �0 @ A
As with all theoretical results presented here, Theorem 4.1 is stated
without proof due to space constraints. The details can be found
in the full version of this paper [12]. Compared to our earlier re-
sults [11], the lower bound in Theorem 4.1 introduces a third term
containing � � � ^�Q � , i.e., the total volume of the parallel execution.
We will see that this new parameter plays an important role in our
analytical and experimental results.

The basic idea of our heuristic scheduling algorithm, termed
OPSCHED, is to construct the partition of clones into compatible
subsets incrementally, using a Next-Fit rule [4, 5]. Specifically,
OPSCHED scans the list of clones in non-increasing order of exe-
cution time. At each step, the clone selected is placed in the site � �
of minimal height � � ��S 	 � � � � (see Equation (1)). This placement
is done as follows. Let

� � � 	 Z denote the topmost compatible sub-
set in � � . If the clone can fit in

� � � 	 Z without violating SS capacity
constraints, then add the clone to

� � � 	 Z and update � � ��S 	 � � � � ac-
cordingly. Otherwise, set � � ��� � � � , place the clone by itself in
a new topmost subset

� � � 	 Z , and set � � ��S 	�� � � � accordingly. The
following theorem establishes an absolute performance bound of� �	� �G�
� for our heuristic.

Theorem 4.2 Given a set of clones
�

, OPSCHED runs in time� �
� � ��������� � � � and produces a schedule *%+', -�/ with response
time � %N")(� *�+',.-�/�
�0 � � � � �	� �G�
� �&� ��� � �
�0 � .
4.4 Scheduling with Pipelining Constraints

The co-scheduling requirement of pipelined operator execution
introduces an extra level of complexity that OPSCHED cannot
address, namely the problem of deciding whether a pipeline is
schedulableon a given number of sites. Given a collection of oper-
ator clones in a pipeline, the schedulability question poses an ��� -
hard decision problem that essentially corresponds to the decision
problem of � -dimensional vector packing [4]. Thus, it is highly
unlikely that efficient (i.e., polynomial time) necessary and suf-
ficient conditions for pipeline schedulability exist. Note that no
such problems were raised in the previous section, since the clones
were executing independently of each other.

In this section, we show that � -granularity with � 	 � for all
operator parallelizations can provide an easily checkablesufficient
condition for pipeline schedulability � . Once schedulability is en-
sured, balancing the work of the pipeline across sites to minimize
its response time still poses an ��� -hard optimization problem.
We present a polynomial time scheduling algorithm that is within
a constant multiplicative factor of the response time lower bound
for schedulable � -granular pipelines. Further, we demonstrate that
using a level-based approach, our methodology can be extended to
provide a provably near-optimal solution for multiple independent
pipelines. Finally, we extend our techniques to handle the data de-
pendencies in a bushy query plan and on-line task arrivals.

� We use the term � -granular pipeline to describe a pipeline in which
all operator parallelizations are � -granular.

4.4.1 Scheduling a Single � -granular Pipeline

We present a near-optimal algorithm for scheduling a pipeline �
consisting of � -granular parallel operators, where � 	 � . Let���

denote the collection of clones in � and define
� �� ,

� Q�
, and

� #"&$ � � � � in the obvious manner. Note that, by our definitions,
the pipeline � will require at least �
� � Q� � sites for its execution
(otherwise, � would have to be greater than 1). The following
lemma provides a sufficient condition for schedulability.

Lemma 4.1 The number of sites required to
schedule a � -granular pipeline � is always less than or equal to� � � Q� � � � � � � 0 � � .
Our heuristic, PIPESCHED, belongs to the family of list schedul-
ing algorithms [14]. PIPESCHED assumesthat it is given a number
of sites 0 �

that is sufficient for the scheduling of � , according to
the condition of Lemma 4.1. The algorithm considers the clones in� �

in non-increasing order of their work density ratio � � � Z �� � Q Z � . At

each step, the clone under consideration is placed in the least filled
(i.e., least work) site that has sufficient SS resources to accommo-
date it; that is, clone � � �
 � � � is packed in bin � such that �
� � � �
is minimal among all sites � F such that �
� � QF
� 7 � � > � � � . The
PIPESCHED algorithm is depicted in Figure 4. The following the-
orem bounds the worst-case performance ratio of our algorithm � .

Theorem 4.3 Given a � -granular pipeline � , PIPESCHED runs in
time

� �
� � � ��������� � � � � and produces a schedule *�+',.-�/ with re-
sponse timeR %N" (T �"!�#%$�& M B � V('*) C T K,+ DK�-.�

V + K0/ 1 2�354 , R \"%$ T] � V M ` T] �� VB � @ O
Algorithm PIPESCHED(6 , 798)
Input: A set of � -granular pipelined operator clones

�:�
and a set

of 0 �
sites, where 0 � � � �
";< �>= ��0?�@ (see Lemma 4.1).

Output: A mapping of the clones to sites that does not violate SS

resource capacity constraints.

1. let � �!	 � � �
 � � ��
 A A A*
*� � �
 � � � � be the list of all

clones in non-increasing order of � � � Z �� � Q Z � .

2. for e � � to " do

2.1. let
� � d � 7 � F 8 � � � QF � 7 � d > � � �N> , i.e, the set of

bins with sufficient SS resources for the e SBA clone.

2.2. let � C � � d be a site such that � � � � � �'-5�6 !$# ��
 !ED
7 � � � �F �P> .

2.3. place clone � � �
 � � � at site � and set� � ��� � 7 � � > , � Q ��� � 7 � � > .
Figure 4: Algorithm PIPESCHED

The bound established in Theorem 4.3 clearly captures the
granularity tradeoffs identified in Section 3. Increasing the de-
gree of partitioned parallelism decreases both � #"%$ � � � � and �

� Note that the volume term does not come into the expression for the
performance bound of PIPESCHED. This is because, by definition, all
the clones in

] �
must execute in parallel, so

` T] Q� VF' B �
. Thus, for

the execution of a single pipeline, � �
5G ;< �1 < ' R #"%$ T] � V 1 � �
 ;< �1 < 'R #"%$ T] � V .

because of “finer” operator clones, but it also increases the total
amount of work � � � �� � because of the overhead of parallelism.
The importance of such work-space tradeoffs for parallel query
processing and optimization has been stressed in recent work [15].

4.4.2 Scheduling Multiple Independent Pipelines

The basic observation here is that the PIPESCHED algorithm pre-
sented in the previous section can be used to schedule any collec-
tion of independent pipelines as long as schedulability is guaran-
teed by Lemma 4.1.

Our algorithm for scheduling multiple independent pipelines
uses a Next-Fit Decreasing Height (NFDH) policy [5] in conjunc-
tion with Lemma 4.1 to identify pipelines that can be scheduled to
execute concurrently on 0 sites (i.e., in one layer of execution).
PIPESCHED is then used for determining the execution schedule
within each layer. The overall algorithm, LEVELSCHED, is for-
mally outlined in Figure 5.

Algorithm LEVELSCHED(� 6������������ 6
	�� , 7)
Input: A set of � -granular operator pipelines 7 � �
 A A A*
 � � > and
a set of 0 sites.
Output: A mapping of clones to sites that does not violate SS re-
source capacity constraints or pipelining dependencies.

1. Sort the pipelines in non-increasing order of � #"&$, i.e., let
� �!	 � �
 A A A*

� � � , where � #"%$ � ���
� � � A A A	�
� #"%$ � ����� � .

2. Partition the list � in e maximal schedulable sublists:
� � �!	 � �
 A A A*
 � � � � , � � �!	 � � ��� �
 A A A*

� ��� � , A A A ,
�

d
�!	
� � D�� � � �
 A A A

� � � based on Lemma 4.1; that is,

�
� � � ��� # � Q� � � 0�� � 0 � �
� and�
��� � � ��� # � Q� � � � Q� Z #�� � � � 0�� �#0 � �

�
 for all � A
3. for � � �
 A A A
Pe do

3.1. call PIPESCHED((
� � ��� # �), 0)

Figure 5: Algorithm LEVELSCHED

The following theorem gives an upper bound on the worst-case
performance ratio of LEVELSCHED. Note that the co-scheduling
requirement for the clones in a pipe implies that the total volume
for all the clones in 7 � �
 A A A*

� � > is �
� � ^JQ � � � �;� �

� � \"%$� Z �� b ��
 ;< Z ��� , since any clone in � � will require its share of ss re-

sources for at least � #"&$� Z time. The lower bound in Theorem 4.1
holds using the above definition of volume.

Theorem 4.4 Given a collection of " independent � -granular
pipelines comprising a set of clones

�
, LEVELSCHED runs in

time
� �
" � � ����� � 0F� � � � and producesa schedule *%+', -�/ with re-

sponse time

� %U" (� *%+', -�/�
�0 � � � � � � � � �
� 0 � �=� � � �

� 0 � � �%� � ���!� �
�0 �%A
It is important to note that, in most cases, the lower bound esti-
mated in Theorem 4.1 will significantly underestimate the optimal
response time since it assumes that 100% utilization of system re-
sources is always possible independentof the given task list. Thus,

the quadratic multiplicative constants in Theorem 4.4 reflect only
a worst case that is rather far from the average, as our experimental
results have verified as well.

4.5 Data Dependencies and On-Line Task Arrivals

Scheduling arbitrary query task trees must ensure that the blocking
constraints specified by the tree’s edges are satisfied. The LEV-
ELSCHED algorithm can be readily extended to handle such con-
straints by ensuring that the (sorted) ready list of tasks � always
contains the collection of query tasks that are ready for execution,
i.e., they are not blocked waiting for the completion of some other
(descendant) task in the task tree. In addition, as mentioned in
Section 2, care must be taken to ensure that whenever there is a
SS resource dependency between parent and children tasks across
blocking edges, the operators of all such children are co-scheduled
and those of the parent are treated as rooted and scheduled in the
immediately following shelf. All this is done by modifying LEV-
ELSCHED as follows (see Figure 5):

1. Any sibling pipelines in the task tree with SS resource depen-
dencies are treated as a unit, i.e., the way individual pipelines
are treated in LEVELSCHED. For the purposes of this algo-
rithm, assume that the term ‘pipeline’ is interpreted as such
a unit.

2. Initially, the input set of pipelines 7 � �
 A A A

� � > contains
exactly the tasks at the leaf nodes of the query task tree.

3. After Step 3.1, determine the set of tasks C that have been
enabled (i.e., are no longer blocked) because of the last in-
vocation of PIPESCHED. If C ���� , then merge the tasks in
C into the ready list � and go to Step 2. Otherwise, continue
with the next invocation of PIPESCHED.

The exact same idea of dynamically updating and partitioning the
ready list � can be used to handle on-line task arrivals in a dynamic
or multi-query environment. Basically, newly arriving query tasks
are immediately merged into � to participate in the partitioning of
� into schedulable sublists right after the completion of the cur-
rent execution layer. Thus, our layer-based approach provides a
uniform scheduling framework for handling intra-query as well as
inter-query parallelism.

As we have already indicated in our earlier work [11], deriv-
ing performance bounds in the presence of data dependencies is
a very difficult problem that continues to elude our efforts. The
difficulty stems from the interdependencies between different ex-
ecution layers: scheduling decisions made at earlier layers can im-
pose data placement and operator execution constraints on the lay-
ers that follow. We leave this problem open for future research.

5 Experimental Performance Evaluation

5.1 Experimental Testbed

We have experimented with the following algorithms:
� TREESCHED : Level-based scheduling of task trees, observ-

ing blocking and data placement constraints (Section 4.5).
� LEVELSCHED : Level-based scheduling of multiple inde-

pendent query tasks (Section 4.4.2).
For both scheduling scenarios (task trees, independent tasks), we
compared the average performance of our scheduling algorithms
with a lower bound on the response time of the optimal execution
schedule for the given degrees of partitioned parallelism (deter-
mined by the granularity parameters � and �). This lower bound

for LEVELSCHED follows directly from Theorem 4.1, whereas,
for TREESCHED, we used the formula:

TREEBOUND � ')(+* 7 � � � � �0
 � � � ^�Q �0
 � � CP �g>

where

�
is the collection of all operator clones in the task tree and

��� CP � is the total response time of the critical (i.e., most time-
consuming) path in the task tree. Due to space constraints, we only
discuss our results for TREESCHED and refer the interested reader
to the full paper [12] for more details.

Some additional assumptions were made to obtain a specific
experimental model from the general parallel execution model de-
scribed in Sections 3 and 4. These are briefly summarized below:
EA1. No Data or Execution Skew: With the exception of startup

cost, the TS work and SS demand vectors of an operator are
distributed perfectly among all sites participating in its exe-
cution. Startup is added to the work components of only one
of these sites, the “coordinator” for the parallel execution.

EA2. Uniform TS Resource Overlapping: The amount of over-
lap achieved between processing at different TS resources
at a site can be characterized by a single system-wide pa-
rameter � C � �
 �%� for all query operators. This parame-
ter allows us to express the response time of a work vec-
tor as a convex combination of the maximum and the sum
of its components, i.e., ���
	�� � ��� ��� ')(+* ��� � �
 7 ������� > �
� �?0��*� �
��� � � � ��� . Small values of � imply limited overlap,
whereas values closer to 1 imply a larger degree of overlap.

EA3. Simple Hash-Join Plan Nodes: The query plan consists
of hash-join nodes, where the memory demand for each join
equals the size of the inner relation times a “fudge factor” ac-
counting for the hash table overhead. Note that although it is
possible to execute a hash-join with less memory [22], such
memory limitations complicate the processing of multi-join
pipelines – since probe operators cannot keep their entire
data sets (i.e., inner hash tables) in memory, it is no longer
possible to execute the probe pipeline in one pass. This
means that intermediate disk I/O has to be performed at one
or more pipeline stages, essentially modifying the original
plan with the addition of extra blocking and data dependen-
cies. As part of our future work, we plan to investigate the ef-
fects of such memory limitations on our scheduling method-
ology and results.

Finally, we should note that our implementations incorporated an
additional optimization to the basic scheme: After the placement
of a schedulable sublist (Lemma 4.1) of ready pipelines, each re-
maining ready pipeline was checked (in non-increasing order of
� #"&$) for possible inclusion in the current level before starting
the next execution level. Although this optimization does not help
improve worst-case performance (since Lemma 4.1 is tight), we
found that it really helped the average-case performance of the
heuristics at the cost of a small increase in running time.

We experimented with tree queries of 10, 20, 30, 40, and 50
joins. For each query size, twenty query graphs (trees) were ran-
domly generated and for each graph an execution plan was se-
lected in a random manner from a bushy plan space. We assumed
simple key join operations in which the size of the result relation is
always equal to the size of the largest of the two join operands. We
used two performance metrics in our study: (1) the average per-
formance ratio defined as the response time of the schedules pro-
duced by our heuristics divided by the corresponding lower bound

and averaged over all queries of the same size; and, (2) the average
response time of the schedules produced by our heuristics over all
queries of the same size. Experiments were conducted with vari-
ous combinations of values for the � , � , and � parameters. Since
the effects of � and � on scheduler performance were also studied
in our prior work [11], the discussion in this paper mostly concen-
trates on the new parameter � . (The results presented in the next
section are indicative of the results obtained for all values of � , � .)

In all experiments, we assumedsystem nodes consisting of
�
��

TS resources (one CPU, one disk unit, and one network inter-
face) and � � � SS resource (memory). The work vector com-
ponents for the CPU and the disk were estimated using the cost
model equations given by Hsiao et al. [18]. The communication
costs were calculated using the model described in Section 3. The
values of the cost model parameters were obtained from the liter-
ature [18, 10, 26] and are summarized in Table 5.1.

Table 2: Experiment Parameter Settings
Configuration/DB Catalog Parameters Value

Number of Sites 10 – 120
CPU Speed 10 MIPS
Memory per Site 16 – 64 MB
Effective Disk Service Time per page 5 msec
Startup Cost per site (�) 15 msec
Network Transfer Cost per byte (�) 0.3 � sec
Fudge Factor (F) 1.4
Tuple Size 128 bytes
Page Size 32 tuples
Relation Size K	� � – K	��
 tuples

CPU Cost Parameters No. Instr.

Read Page from Disk 5000
Write Page to Disk 5000
Extract Tuple 300
Hash Tuple 100
Probe Hash Table 200

5.2 Experimental Results

Figure 6(a) depicts the average performance ratio of TREESCHED

as a function of system size for 40-join queries and 32MB of mem-
ory at each site, assuming a coarse-granularity parameter � � � A �
and a resource overlap of
 ��� (i.e., � � � A
). Note that our algo-
rithm is consistently within a small constant factor (i.e., less than
2) of the lower bound on the optimal schedule length. Although
the distance from the lower bound has certainly increased com-
pared to our results for only TS resources [11], the results clearly
demonstrate that the worst-case multiplicative factors derived in
our analytical bounds are overly pessimistic as far as average per-
formance is concerned.

Observing Figure 6(a), it appears that TREESCHED performs
better for larger values of the memory granularity parameter � .
This is slightly counterintuitive and seems to contradict Sec-
tion 4.4: “finer” memory requirements should allow our sched-
ulers to obtain better load balancing and, consequently, better
schedules. However, although the performance ratio of the algo-
rithms improves with larger values of � , the actual performance
(i.e., the response time) of the schedules (shown in Figure 6(b)),
deteriorates with larger � , as expected. The explanation of this
phenomenon lies in Figure 7, which shows how the three compo-
nents of the TREEBOUND lower bound vary with the number of
sites for our example set of 40-join queries and 16MB of memory
per site. (We chose a smaller value for memory because it better

0.8

1

1.2

1.4

1.6

1.8

2

2.2

20 40 60 80 100 120

A
vg

. P
er

fo
rm

an
ce

 R
at

io

No. of sites

40 Join Queries, 32MB/Site

lambda = 0.2
lambda = 0.5
lambda = 0.8

0

100

200

300

400

500

600

700

800

20 40 60 80 100 120

A
vg

. R
es

po
ns

e
T

im
e

No. of sites

40 Join Queries, 32MB/Site

lambda = 0.8
lambda = 0.5
lambda = 0.2

Figure 6: Effect of � on (a) the average performance ratio of TREESCHED, and (b) the average schedule response times obtained by
TREESCHED. (� � � A � , � � � A
)

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

T
im

e

No. of sites

40 Join Queries, 16MB/Site, Lambda = 0.2

Volume Bound
Work Bound

CP Bound

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

T
im

e

No. of sites

40 Join Queries, 16MB/Site, Lambda = 0.8

Volume Bound
Work Bound

CP Bound

Figure 7: TREEBOUND components for (a) � � � A � , and (b) � � � A � . (� � � A � , � � � A
)
illustrates the effect of the volume term for our system setting.) In
particular, for small values of the number of sites 0 , the dominant

factor in TREEBOUND is the average volume term (� �
 G ; �1). For
larger values of 0 (and, consequently, increased system memory),

TREEBOUND is determined by the average work term (� �
 � �1).
Eventually, as 0 continues to grow, the critical path term (��� CP �)
starts dominating the other two terms in the bound. Also, note
that as the critical path becomes the dominant factor in the query
plan execution, our level-based methods become more accurate
in approximating the lower bound. Intuitively, this is because the
“height” of each execution level as determined by the plan’s criti-
cal path will be sufficient to pack the work in that level and, thus,
the resource loss due to “shelving” is not important. (This also ex-
plains why the average performance ratios for various values of �
all converge to a value close to 1 as the number of sites increases.)
For the parameter settings in our experiments, larger values for
the memory granularity � typically imply lower degrees of par-
allelism for the operators in the plan, which means that the critical
path will start dominating the other two factors in TREEBOUND

much sooner. Furthermore, the aforementioned effect on the per-
formance ratio becomes more pronounced since the critical path
term will be significantly larger for larger � (Figure 7). Conse-
quently, larger values for � imply better performance ratios, al-
though the actual schedule response times are worse.

6 Parallel Query Optimization
Perhaps the major difference between parallel query optimization
and its well-understood centralized counterpart lies in the choice

of response time as a more appropriate optimization metric. This
choice of metric implies that a parallel query optimizer cannot af-
ford to ignore resource scheduling during the optimization pro-
cess. Prior work has demonstrated that a two-phase approach [17]
using the traditional work (i.e., resource consumption) metric dur-
ing the plan generation phase often results in plans that are in-
herently sequential and, consequently, unable to exploit the avail-
able parallelism [1]. On the other hand, using a detailed resource
scheduling model during plan generation (as advocated by the
one-phase approach [19, 23]) can have a tremendous impact on
optimizer complexity and optimization cost. For example, a Dy-
namic Programming (DP) algorithm must use much stricter prun-
ing criteria that account for the use of system resources [9, 19].
This leads to a combinatorial explosion in the state that must be
maintained while building the DP tree, rendering the algorithm
impractical even for small query sizes.

The role of the optimizer cost model is to provide an abstrac-
tion of the underlying execution system. In this respect, the one-
and two-phase approaches lie at the two different ends of a spec-
trum, incorporating either detailed knowledge (one-phase) or no
knowledge (two-phase) of the parallel environment in the opti-
mizer cost metric. The goal is to devise cost metrics that are more
realistic than resource consumption, in the sense that they are cog-
nizant of the available parallelism, and at the same time are suffi-
ciently efficient to keep the optimization process tractable. In re-
cent work, Ganguly et al. [8] suggested the use of a novel scalar
cost metric for parallel query optimization. Their metric was de-
fined as the maximum of two “bulk parameters” of a parallel query
plan, namely the critical path length of the plan tree and the aver-

age work per site. Although the model used in the work of Gan-
guly et al. was one-dimensional, it is clear that the “critical path
length” corresponds to the maximum sum of � #"&$ ’s in the task
tree (over all root-to-leaf paths), whereas the “average work” cor-

responds to � �
 � �1 with
�

being all operator clones in the plan.
Based on our analytical and experimental results, there clearly

exists a third parameter, namely the average volume per site

� �
5G ; �1 that is an essential component of query plan quality. The
importance of this third parameter stems from the fact that it is the
only one capturing the constraints on parallel execution that derive
from SS (i.e., memory) resources.

We believe that the triple (critical path, average work, aver-
age volume) captures all the crucial aspects characterizing the ex-
pected response time of a parallel query execution plan. Conse-
quently, we feel that these three components can provide the basis
for an efficient and accurate cost model for parallel query optimiz-
ers. Finally, note that although Ganguly et al. [8] suggested com-
bining the plan parameters through a ' (* 7 > function to produce a
scalar metric, the way these parameters are used should depend on
the optimization strategy. For example, a DP-based parallel opti-
mizer should use our three “bulk parameters” as a 3-dimensional
vector and use a 3-dimensional “less than” to prune the search
space [9]. Clearly, using only three dimensions turns the Partial
Order DP (PODP) approach of Ganguly et al. [9] into a feasible
and efficient paradigm for DP-based parallel query optimization.

7 Conclusions

The problem of scheduling complex queries in hierarchical par-
allel database systems of multiple time-shared and space-shared
resources has been open for a long time both within the database
field and the deterministic scheduling theory field. Despite the im-
portance of such architectures in practice, the difficulties of the
problem have led researchers in making various assumptions and
simplifications that are not realistic. In this paper, we have pro-
vided what we believe is the first comprehensive formal approach
to the problem. We have established a model of resource usage
that allows the scheduler to explore the possibilities for concur-
rent operations sharing both TS and SS resources and quantify
the effects of this sharing on the parallel execution time. The
inclusion of both types of resources has given rise to interest-
ing tradeoffs with respect to the degree of partitioned parallelism,
which are nicely exposed within our analytical models and re-
sults, and for which we have provided some effective resolutions.
We have provided efficient, near-optimal heuristic algorithms for
query scheduling in such parallel environments, paying special at-
tention to various constraints that arise from the existence of SS

resources, including the co-scheduling requirements of pipelined
operator execution, which has been the most challenging to re-
solve. Our set of results apply to all types of query plans and even
sets of plans that are either provided all at the beginning or arrive
dynamically for scheduling. As a side-effect of our effort, we have
identified an important parameter that captures one aspect of par-
allel query execution cost, which should play an important role in
obtaining realistic cost models for parallel query optimization.

References
[1] C.K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S. Padman-

abhan, G.P. Copeland, and W.G. Wilson. “DB2 Parallel Edition”. IBM

Systems Journal, 34(2):292–322, 1995.
[2] L. Bouganim, D. Florescu, and P. Valduriez. “Dynamic Load Balanc-

ing in Hierarchical Parallel Database Systems”. In Proc. of the 22nd
Intl. VLDB Conf., September 1996.

[3] S. Chakrabarti and S. Muthukrishnan. “Resource Scheduling for Par-
allel Database and Scientific Applications”. In Proc. of the 8th ACM
Symp. on Parallel Algorithms and Architectures, June 1996.

[4] E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson. “Approximation
Algorithms for Bin-Packing – An UpdatedSurvey”. In “Algorithm De-
sign for Computing System Design”, Springer-Verlag, NY, 1984.

[5] E.G. Coffman, Jr., M.R. Garey, D.S. Johnson, and R.E. Tarjan. “Per-
formance Bounds for Level-Oriented Two-Dimensional Packing Algo-
rithms”. SIAM Journal on Computing, 9(4):808–826, 1980.

[6] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I
Hsiao, and R. Rasmussen. “The Gamma Database Machine Project”.
IEEE Trans. on Knowledge and Data Engineering, 2(1):44–62, 1990.

[7] D. J. DeWitt and J. Gray. “Parallel Database Systems: The Future of
High Performance Database Database Systems”. Comm. of the ACM,
35(6):85–98, 1992.

[8] S. Ganguly, A. Goel, and A. Silberschatz. “Efficient and Accurate
Cost Models for Parallel Query Optimization”. In Proc. of the 15th
ACM PODS Symp., June 1996.

[9] S. Ganguly, W. Hasan, and R. Krishnamurthy. “Query Optimization
for Parallel Execution”. In Proc. of the 1992 ACM SIGMOD Intl. Conf.,
June 1992.

[10] S. Gangulyand W. Wang. “Optimizing Queries for Coarse Grain Par-
allelism”. Tech. Report LCSR-TR-218, Dept. of Computer Sciences,
Rutgers University, October 1993.

[11] M. N. Garofalakis and Y. E. Ioannidis. “Multi-dimensionalResource
Scheduling for Parallel Queries”. In Proc. of the 1996 ACM SIGMOD
Intl. Conf., June 1996.

[12] M. N. Garofalakis and Y. E. Ioannidis. “Parallel Query Scheduling
and Optimization with Time- and Space-Shared Resources”. Unpub-
lished manuscript, June 1997.

[13] G. Graefe. “Query Evaluation Techniques for Large Databases”.
ACM Comp. Surveys, 25(2):73–170, 1993.

[14] R.L. Graham. “Bounds on Multiprocessing Timing Anomalies”.
SIAM Journal on Computing, 17(2):416–429, 1969.

[15] W. Hasan, D. Florescu, and P. Valduriez. “Open Issues in Parallel
Query Optimization”. ACM SIGMOD Record, 25(3):28–33, 1996.

[16] W. Hasan and R. Motwani. “Optimization Algorithms for Exploiting
the Parallelism-Communication Tradeoff in Pipelined Parallelism”. In
Proc. of the 20th Intl. VLDB Conf., August 1994.

[17] W. Hong. “Exploiting Inter-Operation Parallelism in XPRS”. In
Proc. of the 1992 ACM SIGMOD Intl. Conf., June 1992.

[18] H.-I Hsiao, M.-S. Chen, and P. S. Yu. “On Parallel Execution of Mul-
tiple Pipelined Hash Joins”. In Proc. of the 1994 ACM SIGMOD Intl.
Conf., May 1994.

[19] R. S.G. Lanzelotte, P. Valduriez, and M. Zaït. “On the Effectiveness
of Optimization Search Strategies for Parallel Execution Spaces”. In
Proc. of the 19th Intl. VLDB Conf., August 1993.

[20] V. Poosala and Y. E. Ioannidis. “Estimation of Query-Result Distri-
bution and its Application in Parallel-Join Load Balancing”. In Proc.
of the 22nd Intl. VLDB Conf., September 1996.

[21] P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G.
Price. “Access Path Selection in a Relational Database Management
System”. In Proc. of the 1979 ACM SIGMOD Intl. Conf., June 1979.

[22] L. D. Shapiro. “Join Processing in Database Systems with Large
Main Memories”. ACM Trans. on Database Systems, 11(3):239–264,
1986.

[23] J. Srivastava and G. Elsesser. “Optimizing Multi-Join Queries in Par-
allel Relational Databases”. In Proc. of the 2nd Intl. Conf. on Parallel
and Distributed Information Systems, January 1993.

[24] J. Turek, J. L. Wolf, K. R. Pattipati, and P. S. Yu. “Scheduling Paral-
lelizable Tasks: Putting it All on the Shelf”. In Proc. of the 1992 ACM
SIGMETRICS Conf., June 1992.

[25] P. Valduriez. “Parallel Database Systems: Open Problems and New
Issues”. Distributed and Parallel Databases, 1:137–165, 1993.

[26] A. N. Wilschut, J. Flokstra, and P. M.G. Apers. “Parallelism in a
Main-Memory DBMS: The Performance of PRISMA/DB”. In Proc.
of the 18th Intl. VLDB Conf., August 1992.

