Resour ce Scheduling in Enhanced Pay-Per-View
Continuous M edia Databases

Minos N. Garofalakis*
University of Wisconsin-Madison
minos@cs.wisc.edu

Abstract

The enhanced pay-per-view (EPPV) model for provid-
ing continuous-media-on-demand (CMOD) services asso-
ciateswith each continuousmediaclip adisplay frequency
that dependson the clip’s popularity. Theaimisto increase
the number of clients that can be serviced concurrently be-
yond the capacity limitations of available resources, while
guaranteeing a constraint on the response time. This is
achieved by sharing periodic continuous media streams
among multiple clients. In this paper, we provide a com-
prehensive study of the resource scheduling problems as-
sociated with supporting EPPV for continuousmediaclips
with (possibly) different display rates, frequencies, and
lengths. Our main objective is to maximize the amount
of disk bandwidth that is effectively scheduled under the
given datalayout and storage constraints. Thisformulation
gives rise to N'P-hard combinatorial optimization prob-
lemsthat fall within the realm of hard real-time scheduling
theory. Given the intractability of the problems, we pro-
pose novel heuristic solutions with polynomial-time com-
plexity. Preliminary results from an experimental evalua-
tion of the proposed schemes are also presented.

1 Introduction

With all the euphoria surrounding the potential benefits of the
coming multimedia revolution, database researchers are faced
with challenges that are pushing the current hardware and soft-
ware technology to its limits. The fundamental problem in de-
veloping high-performance multimedia serversis that images, au-
dio, and other similar forms of data differ from numeric data
and text in their characteristics, and hence require different tech-
niques for their organization and management. The most critical
of these characteristicsis that digital audio and video streamscon-
sist of a sequence of media quanta which convey meaning only
when presented continuously in time. Hence, in contrast to tradi-
tional storage managers, a multimedia server needs to ensure that

*Work performed while visiting Bell Laboratories.

Permission to copy without fee all or part of this material is granted pro-
vided that the copiesare not madeor distributed for direct commercial ad-
vantage, the VLDB copyright notice and the itle of the publicationand its
date appear, and notice is given that copying is by permission of the \Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedingsof the 23rd VL DB Conference
Athens, Greece, 1997

Banu Ozden
Bell Laboratories
ozden@research.bell-labs.com

Avi Silberschatz
Bell Laboratories
avi @research.bell-labs.com

the retrieval and storage of such continuous media (CM) streams
proceed at their pre-specified real-time rates. Given the limited
amount of resources(e.g., memory, disk bandwidth, and disk stor-
age), it isachallenging problemto design effective resource man-
agement algorithms that can provide on-demand support for a
large number of concurrent continuous media clients. The ser-
vice models supported by such Continuous-Media-On-Demand
(CMOD) serverscan be classified into two broad categories: ran-
dom access and enhanced pay-per-view.

e TheRandom Accessservicemodel places resource reserva-
tionsto allocate independent physical channelsto each individual
client. Under Random Access service, the maximum number of
concurrent clients that can be supported is limited by the avail-
ableresources. Suchlevelsof concurrency may not be sufficient to
provide cost-effective servicesin environments like Movies-On-
Demand, where the client population far exceeds the maximum
number of concurrent streams[10].

e The Enhanced Pay-Per-View (EPPV) servicemodel aims to
increase the number of clients that can be serviced concurrently
beyondthe limitations of availableresourceswhile guaranteeinga
constraint ontheresponsetime. Thisisachievedby assigningwith
each CM clip (referred to as aclip in the remainder of the paper)
a display frequency, typically determined by the clip’s popular-
ity, and sharing streams among multiple clients. Under the EPPV
service model, the response time for transmission of a clip to a
client is bounded by the reciprocal of the clip’s display frequency
(i.e., itsretrieval period). From the client’s perspective, perhaps
the most attractive feature of EPPV service is that the client can
be informed exactly when the transmission will start. Thus, even
when resources are scarce the EPPV service model can guaran-
tee predictable response times for all incoming requests. From
the service provider’s perspective, the most attractive feature of
EPPV serviceisthat the number of concurrent clientsis not upper-
bounded by resource availability.

The EPPV model for continuous media servicesis becoming
more and more popular with the telecom, cable, broadcast, and
content companiessinceit offers the potential to provide scalable,
cost-effective CMOD offerings [16]. Realizing this potential,
however, requires schemesfor effectively schedulingtheavailable
disk bandwidth and storage capacity so that high levelsof concur-
rency and system utilization can be sustained. Two phenomena
make this a challenging problem — the periodic nature of EPPV
service and the relatively high latencies of magnetic disk storage.
Theperiodicity of clip retrievalsin EPPV servers generatesa host
of difficult periodic task scheduling problems that fall within the
realm of hard real-time scheduling theory [9]. The high disk la-
tenciescomplicate effective utilization of disk bandwidth and stor-
age with reasonable amounts of buffer space, which is an impor-

tant cost factor in CMOD server design. The use of multiple disks
to handle the high storage volume and bandwidth requirements of
CM data exacerbates the problem. Thus, the need for intelligent
scheduling mechanismsbecomes more pronounced as the scal e of
the system increases.

A number of schemesfor organizing CM dataon multiple disks
hasbeen proposedin theliterature [2, 3, 21, 23]. However, the ap-
plicability of these data layout schemesto EPPV service remains
an open problem. The matrix-based scheme was designed to sup-
port periodic video retrieval for a given period while minimizing
video buffering requirements[10]. Extensionsto the base scheme
that deal with the varying transfer rates of commonly used SCSI
disks and different video display rateswere presentedin [12, 13].
However, the issue of videos with different retrieval periods was
not addressed in any of these papers. Only in very recent work,
Ozden et al. [14] presented schemes for the periodic retrieval of
videos from disk arrays using striping. Their work, however, ad-
dressed only a restricted form of the EPPV resource scheduling
problems that assumes all clips to have identical display rates.
Furthermore, they assume specific conditionson the video lengths
that limit the usefulness of their results.

In this paper, we addressthe resource scheduling problems as-
sociated with supporting EPPV servicein their most general form.
We present a scheduling framework that handles continuous me-
dia data with (possibly) different display rates, different periods,
and arbitrary lengths. Given a hardware configuration and a col-
lection of clipsto be scheduled, we present schemesfor determin-
ing aschedulablesubset of clipsunder different assumptionsabout
data layout:

e Clustering. Each disk is viewed as an independent storage
unit; that is, the data of each clip is stored on a single disk
and multiple clips can be clustered on each disk.

e Striping. Each clip is declustered over all available disks.

In eachcase, our objectiveisto maximizethe amount of disk band-
width that is effectively scheduled. This is typically the situa-
tion facing large-scale CMOD servers that occasionally need to
re-schedule their offerings to adapt to a changing audience, con-
tent, and popularity profile [8, 16]. For the clustering scheme,
we formulate these optimization problems as generalized vari-
ants of the 0/1 knapsack problem [7, 18]. Since the problems
areclearly A'P-hard, we present provably near-optimal heuristics
with low polynomial-time complexity. We then present two al-
ternative striping schemes. Vertical Sriping (VS) viewsthe entire
disk array asasinglelarge disk inamanner similar to fine-grained
striping [11]. Despite its conceptual simplicity, VS suffers from
increased disk latency overheadsthat render it impractical, espe-
cially for large disk arrays. Horizontal Sriping (HS) isbasedona
round-robin distribution of clip data across the disks and has the
potential of offering much better scalability and disk utilization
than VS. This, however, comes at the cost of the more sophisti-
cated scheduling methods required to support periodic stream re-
trieval. Specifically, we demonstratethat the scheduling problems
involved in supporting EPPV service under HS are non-trivial
generalizations of the Periodic Maintenance Scheduling Problem
(PMSP) [22]. Given that PMSP is known to be A/P-complete
in the strong sense[1], we propose novel heuristic algorithms for
scheduling the periodic retrieval of horizontally striped clips. We
follow a two-step approach. First, we introduce the novel con-
cept of a scheduling tree structure and demonstrate its use in ob-
taining collision-free schedules for Periodic Maintenance. Next,

we extend our methods to handle the more complex problems
introduced by periodic retrieval under HS. Thus, our work also
contributes to hard real-time scheduling theory by proposing the
scheduling tree structure and algorithms as a new approach to Pe-
riodic Maintenance. Finally, we present preliminary experimental
results that confirm the superiority of our HS-based scheme.

All theoretical resultsin this paper are stated without proof due
to space constraints. The full proofs, as well as some interesting
extensionsto the ideas and results presented here, can be found in
the full version of the paper [5].

2 Notation and System Model

Table 2 summarizesthe notation used in this paper with abrief de-
scription of its semantics. Additional notation will be introduced
when necessary. To avoid introducing data layout issuesfor mul-
tiple disks, we assume a single-disk server for the purposes of
this section. Theextensionto multi-disk serversis straightforward
oncethe datalayout strategy (clustering, VS, HS) is specified.

Table 1: Clip and Disk Parameters

[Param. | Semantics [
C; | Continuousmediaclip(z =1,...,N)
(also, task of retrieving C';)

r; | Display ratefor clip C; (in Mbps)

T; | Retrieva periodfor clip C; (in sec)

T | Timeunit of clip retrieval (round length)
{; | Lengthof clip C; (insec)

n; | Retrieva period of C'; in rounds

¢; | Number of columnsin the matrix of C;
d; | Maximum column size (in bits)

ngisk | Number of disksin CMOD server
raisk | Disk transfer rate

caisk | Disk storage capacity

teeer | Disk seektime

t1q¢ | Disk latency

2.1 Retrieving ContinuousMedia Data

We assumethat the disk has a transfer rate of rq;.x, a storage ca-
pacity of cq;sx, a(worst case) seek time of £ ..., and a(worst case)
latency of ¢;,: (which consistsof rotational delay and settle time).
A clip C; is characterized by a display rate r; (the rate at which
datafor C; must be transmitted to clients) and alength Z; (in units
of time). We refer to the transmission of aclip starting at agiven
time as a stream. Data for streams is retrieved from the disk in
rounds of length T". For a stream displaying clip C; (denoted by
stream(Cy;)), acircular buffer of size2 - T - r; isreserved in the
server’s buffer cache. In each round, while the stream is consum-
ing T - r; bitsof datafromitsbuffer, the T - r; bits that the stream
will consume in the next round are retrieved from the disk.
During a round, for streams stream(C1),. .., stream(Cy)
for which dataisto beretrieved fromdisk, 7'-r1, ..., T - ry bitsare
read using the C-SCAN disk head scheduling algorithm [19]. C-
SCAN ensuresthat the disk heads movein asingledirection when
servicing streams during a round. As aresult, random seeks are
eliminated and the total seek overhead during around is bounded
by 2 - t.eer. Furthermore, retrieval of each non-contiguously
stored piece of data can incur a disk latency overhead of at most
t1q: during a round. To ensure that no stream starves during a
round, the sum of the total disk transfer time for all dataretrieved

and the overall latency and seek time overhead cannot exceed the
length 7" of the round [11, 17]. More formally, we require the fol-
lowing inequality to hold:

T.
Z (+ tlat) + 2 -tseek < T. (1)

Tdisk
{stream(C;)}

2.2 Matrix-Based Allocation

EPPV serviceassociateswith eachclip C; aretrieval period T that
isthereciprocal of its display frequency. We assumethat retrieval
periods are multiples of the round length 7". Thisis areasonable
assumption, since retrieval periods will typically be multiples of
minutes or even hours and the length of a round (usually bounded
by buffering constraints) will not exceed afew seconds. Matrix-
based allocation [10, 13], increasesthe number of clientsthat can
be serviced under EPPV by laying out data based on the knowl-
edge of retrieval periods'. The ideais to distribute, for each clip
C;, the starting points for the { =] concurrent display phases of
C; uniformly acrossitslength. Each phasecorrespondsto adiffer-
ent stream servicing multiple clients. Conceptually, C; is viewed
asamatrix consisting of elements of length 7" (Figure 1(a)).

coll col2 col3 col4 col5

g:f,g:sy col 1 ‘ col 2 ‘
T
period Ti
@ (b)
Figure 1: (a) A clip matrix. (b) Its layout on disk.
We define n; = TF (i.e.,, the length of the retrieval pe-

riod of C; in rounds). The matrix for C; consists of ¢; =
min{n;, [#]} columns and [4+] rows (corresponding to the
clip’sdisplay phases). Notethat we canhavec; < n; whenthere-
trieval period of the clip exceedsits length (i.e., I; < T;). Finaly,
we let d; denote the amount of datain a column of C;’s matrix,
thatis’ d; = [4] - T - rs.

To support perlodlc retrieval, a clip matrix is stored in column-
major form and its retrieval is performed in columns(i.e., one col-
umn per round) with each element handed to a different display
phase (Figure 1(b)). Matrix-based allocation reducesthe overhead
of disk latency per stream since, in each round, it incurs a total
overheadof only ¢;,; for [] streamsof Cz,ratherthan[] tas
(using Formula(1)). Thismeansthat the matrix-based schemecan
support the periodic retrieval of C1, . . ., C provided that thefol-
lowing inequality holds:

E d;

(+ tlat) + 2. teeek < T. (2)
Tdisk

{Ci}

The disk bandwidth effectively utilized by a clip during around is
the amount of raw disk bandwidth consumed by the clip without
accounting for the latency overhead. For C;, thisis exactly %, or.

equivalently, [7] - r:.

1 The scheduling algorithms presented in this paper can also be used
with other datalayout schemes. Theinterested reader isreferred to the full
version of the paper [5].

2 Although some columns may actually contain less data than d; [13],
in this paper, we are ignoring possible optimizations for smaller columns.

3 Clustering

Clustering views each disk as an autonomous unit — entire clips
are stored on and retrieved from a single disk and multiple clips
can be clustered on each disk. In this scenario, the EPPV re-
source scheduling problem reduces to effectively mapping clip
matrices onto the server’s disks so that the bandwidth and storage
requirements of each matrix are satisfied. That is, the inequalities
E (cri < Cdisk need
to hola for each disk, where the s summatlon is taken over al clips
C; stored onthat disk. We addressthis scheduling problem in two
stages. First, we present a solution that considers only the band-
width requirementsof clips. Next, we extend our approachto han-
dle disk storage limitations. We present the first case separately
since our results for this case will prove useful later in the paper,
when striping is introduced.

3.1 Bandwidth Constraint
We associate two key parameters with each clip:

d’L
o A size: size(C;) = % that captures the normal-
ized contribution of C; to the]fength of around, or, equiv-
alently, its (normalized) disk bandwidth consumption (see

Formula (2)); and,

o Avalue value(C;) = [#] - ry, that corresponds to the
bandwidth effectively utilized by C; during around.

Using these definitions, the problem of maximizing the effec-
tively scheduled disk bandwidth can beformally stated asfollows:
Givena collection of clipsC = {C1,...,Cn}, determine a sub-
set C' of C and a packing of {size(C;) : C; € C'}inngisk
unit capacity bins such that the total value ZCIGC, value(C5)
is maximized. This problem is a generalization of the traditional
0/1 knapsack optimization problem (which can be seen as a spe-
cial case with ng;sx = 1) [7, 18]. Thus, it is clearly A'P-hard.
Given theintractability of the problem, we present afast heuristic
algorithm (termed PAck CLIPS) that combines the value density
heuristic rule for the classical knapsack problem [4] with a First-
Fit packlng rule We definethe valuedensity of clip C; astheratio
i = “:'Z“:(. Algorithm Pack CLIPsis depicted in Figure 2.
The followir ng lemma provides an upper bound on the worst-case
performance ratio of our heuristic.

Lemma3.1 Algorithm PAckCLIPSrunsintime O(N(log N +
naisk)) and is 1/2-approximate; that is, if Vo pr is the value of
the optimal schedulable subset and V' is the value of the subset

returned by PACK CLIPSthen VH —> 1. |

3.2 Bandwidth and Storage Constraints

We now extend the PACKCLIPS algorithm to handle the stor-
age capacity constraints imposed by disks. The idea is to de-
fine the size of a clip C; as a 2-dimensional size vector s; =
[size; (C5), sizez(C;)], where the first component is the normal-
ized bandwidth consumption of the clip (as defined in the previ-
ous section) and the second component is the normalized storage
capacity requirement of the clip. More formally, size, (C;) =

o ttiat .)
'"dzsk H N — T
andsizex(C;) = .
T—2tseek 2(i) Cdisk

Algorithm PACKCLIPS(C, n4;5%)

Input: A collectionof CM clipsC = {C4, ...,
ber of disks r4;sx-

Output: ¢’ C C and a packing of C’ in ng;sx UNit capacity
bins.(Goal: Maximize)~ . ., value(Ci).)

Cn} andanum-

1. Sort the clipsin C in non-increasing order of value density
toobtainalist L =< C1,...,Cnx > wherep; > pit1.
Initialize load(B;) = value(B;) = 0, B; = 0, for each bin
(i.e,disk)B;,7=1,...,N.

2. Foreachclip C; in L (in that order)

21 Let B; be the first bin (i.e,
load(B;) + size(C;) < 1.

disk) such that

naisk largest value’s in the final packing. Return ¢’ =
Uldisk B (Thepackingof C’ isdefinedby the B« 's.)

2.2. Setload(B;) = load(Bj) + size(C;), value(B;) =
value(Bj;) + value(C;), B; = B; U{C;},and L =
L—{C:}.

3. Let Beis, 1 = 1,...,nq4s be the bins with the

Figure 2: Algorithm PAck CLIPS

Let I(v) denote the maximum component of a vector v (i.e,
its length). The 2-dimensional extension of the PACK CLIPS al-
gorithm is based on defining the value density of aclip asthera-
tio p; = Va'l“z(c . The load of adisk is also a 2-dimensional
vector equal to "the vector sum of sizes of all clips clustered on
that disk, and the condition in step 2.1 of PAcCk CLIPS becomes:
l(load(Bj) + s;) < 1. Thatis, we require that both the band-
width and storage load on each disk do not exceed the disk’s ca-
pacities. For our worst-case analysis of the 2-dimensional PACK -
CL1ps algorithm we also assume that the storage requirements of
a clip never exceed one half of a disk’s storage capacity, that is,
size2(C;) < L. Thisisareasonableassumptionsincecurrent disk
storage capacities are in the order of several gigabytes. The fol-
lowing lemma showsthat the extradimension degradesthe worst-
case performance guarantee of our heuristic by a factor of two.

Lemma 3.2 Assuming that the storage requirements of any clip
are always lessthan or equal to one half of a disk’s storage capac-
ity, the 2-dimensional PACK CLIPS heuristic is 1/4-approximate;
that is, if Vopr is the value of the optimal schedulable subset
and Vz is the value of the subset returned by PAck CLIPS then

V—(‘)’E_ L]
4 Disk Striping

A major deficiency of clustered data layout for large-scale EPPV
service is that it can lead to severe disk storage and bandwidth
fragmentation, and, consequently, underutilization of server re-
sources. This problem is demonstrated in the rather discouraging
worst-case bound of Lemma 3.2 —for “bad” lists of clips, PACK-
CLIps may be ableto utilize only aslittle as onefourth of the raw
server capacity. Striping schemeseliminate storage fragmentation
by declustering aclip’s data across all availabledisks. In this sec-
tion, we consider EPPV service under two distinct striping strate-
giestermed Vertical and Horizontal Sriping. Since storage frag-
mentation is no longer an issue, we can effectively ignore storage

constraints by assumingthat the aggregate storage requirements of
the clips to be scheduled do not exceed the storage capacity of the
server; that is, we assume that 21 li - ri < Ngisk - Cdisk-

4.1 Vertical Striping (VS)

In the Vertical Striping scheme, each column of the clip matrix is
declustered acrossall n 4; .5 disksof the server (Figure 3(a)). This
schemeis similar to fine-grained striping [11] or RAID-3 dataor-
ganization [15], since each column of the clip hasto be retrieved
in parallel from al disks (asa unit) Using theVS Iayout for clip

of acllp s column in each round. Thus, the following condltlon
must be satisfied on each disk:

N
ZL + Notigy < T—=2 tecer. (3

Tdisk * Ndisk
e=1

coll col2 col3 col4 col5

Y Y Y
: :3; """ col ol ool 3}
1 o3 | oo 4 5

@3 plas] |
~~ ~— 7 >
disk 0 disk 1 disk 2 disk 0 disk 1 disk 2
w1l col2 5| col1 Load on disk 0
'3 | s | | | 3]3] | col 1 ol 4 ool 1
0 1 2 3 4 5 Round No. 0 1 > 3 4 5

first transmission first transmission

@ (b)
Figure 3: () Vertical Striping. (b) Horizontal Striping.

To ensure continuous retrieval under VS, all disksin the sys-
tem must satisfy the same condition (namely, Formula (3)). Con-
sequently, the problem of maximizing the effectively scheduled
bandwidth clips under the VS scheme correspondsto atraditional,
single-bin, 0/1 knapsack problem with clip sizes size(C;) =

d’L
rdzsk "dzsk

tiat

(from Ineq. (3)), and valuesvalue(C;) = [|-
r; (asm Sectlon 3). Thus, PAck CLIPs (with number of bi ns/disks
equal to 1) readily provides a near-optimal heuristic for resource
scheduling under VS.

Despite its conceptual and algorithmic simplicity, VS can lead
to underutilization of available disk bandwidth due to increased
latency overheads. Thisis because, during each round, all disks
incur a penalty of ¢;,: for each clip stored in the entire server.
These latency penalties obviously limit the scalability of a VS-
based EPPV server.

4.2 Horizontal Striping (HS)

Inthe Horizontal Striping scheme, the columnsof aclip matrix are
mapped to individual disksin around-robin manner (Figure 3(b)).
Consequently, the retrieval of data for a transmission of C; pro-
ceedsin around-robin fashion along the disk array. During each
round asingle disk is used to read acolumn of C; and consecutive
rounds employ consecutive disks®.

Consider theretrieval of aclip matrix C; from aparticular disk
in the array. By virtue of the round-robin placement, during each

3We assumethat adisk hassufficient bandwidthto support the retrieval
of one or more clip columns. If this does not hold, one or more disks can
be viewed as a single composite disk.

transmission of C;, a column of C; must be retrieved from that
disk periodically, at intervals of n 4., rounds. From Formula (2),
dl
each such retrieval requires a fraction ?;7:“: of the disk’'s
bandwidth. Furthermore, to support EPPV service, the transmis-
sionsof C; arethemselves periodic with aperiod 7; = n; - 7.
Thus, the retrieval of a clip matrix C; from a specific disk in
the array can be seen asa collection of periodic real-time tasks[9]
with period 7; (i.e., the clip's transmissions), where each task
consists of a collection of subtasksthat are ng;sr - T' time units
apart (i e, column retrievalswithinatransmission). Moreover, the
. An exam-
ple of suchatask is shownin Figure 3(b). Notethat the maximum

ng sk—‘. (cs

is the number of columnsin C;.) This number may actually be
smaller for some disksin the array. However, in order to provide
deterministic service guarantees for all disks, we consider only
this worst-case number of subtasksin our scheduling formulation.

We say that two (or more) clip retrievals collide during around
if they areall reading data off the same disk. Collisionsplay acru-
cial rolein our scheduling problem. Our algorithms need to ensure
that whenever multiple retrievals collide during a round, their to-
tal bandwidth requirementsdo not exceed the capacity of the disk.
For the simple case of two clips, we can use the Generalized Chi-
nese Remainder Theorem[6] to prove the following lemma.

number of subtasks mapped to a disk by C; equals [

Lemma4.1 Consider two clips C; and C», and let o; =
min{ L:J , —sdlmuna) 3y — 1 2. The retrieval

gcd(n1,n2,n4i5k)
of C; and C> can be scheduled without collisions if and only if
a1+ az < ged(ng, n2). O

Lemma 4.1 identifies a necessary and sufficient condition for the
collision-free scheduling (or, mergeability [23]) of two clip re-
trieval patterns. Our result extends the result of Yu et al. [23] on
merging two simple periodic patterns to the case of periodic tasks
consisting of equidistant subtasks. Furthermore, Lemma4.1 can
be generalized to any number of clips if their periods can be ex-
pressed asn; = k - m; for al i, where m; and m; are relatively
primefor al : # 3. (For two clips, thiscondition is obviously true
with & = ged(ni, n2).)

Lemma4.2 Consider acollection of clipsC = {C1,...,Cn},
withretrieval periodsn; = k~m¢,forall i,Wheregcd(mg, my) =
1fori # j. Leta; = min{ s gcd(k o) }. The
retrieval of C' can be scheduled without collisions if and only if
SV ai <k o

=1

Unfortunately, Lemma4.1 cannot be extended to the general case
of multiple clips with arbitrary periods. In fact, in Section 5, we
will show that deciding the existence of a collision-free schedule
for the general case is \P-complete in the strong sense. Thus,
no efficient necessary and sufficient conditions are likely to exist.
The condition described in Lemma 4.1 can easily be shown to be
sufficient for no collisionsin the general case. However, it is not
necessary, as the following exampleindicates.

Example 1: Consider three clips with periodsn, = 4, no = 6,
ns = 8 and let ngisx,. = 4. This set can be scheduled with no
collisions, by initiating the retrieval of C1, C», Cs at roundso, 1,
and 2, respectively. However, the inequality in Lemma 4.1 (ex-
tended for three clips) fails to hold, sinceged(ni1,n2, ns) = 2 <

Z?:l a; = 3.

5 TheScheduling Tree Structure

In this section, we address the problem of scheduling EPPV ser-
vice under HS. We first consider a model of simple periodic real-
time tasks and show that deciding the existence of acollision-free
scheduleis equivalent to Periodic Maintenance[1, 22], aproblem
known to be intractable. Motivated from this result, we definethe
novel concept of a scheduling tree and discussits applicationin a
heuristic algorithm for Periodic Maintenance. We then show how
the scheduling tree structure can handle the more complex model
of periodic tasksidentified in Section 4.2.

5.1 Periodic Maintenance Scheduling

The k-server Periodic Maintenance Scheduling Problem (k-
PMSP) [1] is a special case of the problem of scheduling sim-
ple periodic tasks in a hard real-time environment. Briefly, the
k-PMSP decision problem can be stated as follows: Let C =
{C4,...,Cn} beaset of periodic tasks with corresponding pe-
riods P = {n1,...,nny}, whereeach n; is a positive integer. Is
therea mapping of the the tasksin C' to positive integer time slots
such that successive occurrencesof C; are exactly n; time slots
apart and no morethan & tasks ever collide in a slot? Note that
if u; istheindex of thefirst occurrence of C; in aschedulefor P
then the (multi)set of starting time slots {u1, ..., un} uniquely
determines the schedule, since C; occursat al slotsu; + 7 - n;,
720

Baruah et al. [1] have shown that for any fixed valuek > 1, k-
PMSP is A"P-complete in the strong sense. Consequently, given
a collection of simple periodic tasks with periods P, determining
the existence of a collision-free scheduleis intractable (i.e., it is
equivalent to 1-PM SP). The existence of a scheduling tree struc-
ture (as described below) that contains all the periodsin P, guar-
anteesthe existence of acollision-free schedule. Furthermore, the
starting time slot for eachtask can be determined from the schedul -
ing tree’.

Definition 5.1 A scheduling tree is a tree structure consisting of
nodes and edgeswith integer weights, where:

1. Each internal node of weight w can have at most w
outgoing edges, each of which has a distinct weight in
{0,1,...,w — 1}; and,

2. Eachleaf noderepresentsaperiod n; suchthat n; isequal to
the product of weights of the leaf’s ancestor nodes.

We definethelevel of a node (or, edge) asthe number of its proper
ancestor nodes. Thusthe level of the tree’sroot is 0 and the level
of all edgesemanatingfromtherootis1. For any noden, let w(n)
and e(n) denotethe weight and the number of edgesof n, respec-
tively. Also, letancestor_node;(n) representtheweight of thean-
cestor node of n at level 7, and let ancestor edge; (n) denotethe
weight of the ancestor edge of n at level 7, where 5 < level(n).
Finally, define 7;(n) = [[/_, ancestor_node;(n) for0 < j <
level(n).

Consider aleaf node for period n; located at level I. Thefirst
slot u; in which the corresponding task is scheduled is defined

4To the best of our knowledge, no similar notion of tree structure for
periodic task scheduling has been proposed in thereal-time scheduling lit-
erature[20].

from the scheduling tree structure as follows:

1
u; = ancestor_edge, (n;) + Z ancestor edge; (ni) - mj—2(ni).

=2

4)
Someintuition for the scheduling tree structure and the above for-
mulais provided in Figure 4. The basic ideais that all tasksin a
subtreerooted at some edge emanating from noden at level I will
utilize time slot numbers that are congruentto : (mod m;(n)),
where 7 is a unique number between 0 and m;(n) — 1. Satisfying
thisinvariant recursively at every internal node ensuresthe avoid-
ance of collisions.

0
slots congruent to €0 (mod w0)

(@ (b)

Figure 4: (a) The scheduling tree structure. (b) An exampletree.

slots congruent to
(e0 + el w0) (mod (wOw1))

Notethat the existence of a scheduling tree for a set of periods
P isonly asufficient condition for the existenceof a collision-free
schedule. For example, the periods 6, 10, and 15 are schedulable
using start times of 0, 1, and 2, respectively, although no schedul-
ing tree can be built (since ged({6,10,15}) = 1). However,
using the Generalized Chinese Remainder Theorem it is straight-
forward to show that the existence of a scheduling forest, as de-
fined below, is both necessary and sufficient for the existence a
collision-free schedule.

Definition 5.2 Let I'; denote a scheduling tree for P;. Thetrees
I'; and I'; are consistent if and only if for each n,, € P; and
n; € Pywehaveu,, Z u; (mod ged(nm,,n;)). A schedul-
ing forest for P is a collection of pairwise consistent scheduling
trees for some partitioning P, . . ., Py of P.

Lemmab5.1 Determining whether there existsa schedulingforest
for P isequivalentto 1-PMSP, and, thus, it is A/P-completein the
strong sense. |

Given the above intractability result, we present a heuristic algo-
rithm for constructing scheduling trees for a given (multi)set of
periods. Our algorithm is based on identifying and incrementally
maintaining candidate nodesfor scheduling incoming periods.

Definition 5.3 An internal node n at
level [is candidate for period n; if and only if 7;—; (n)|n; and

ged(w(n), =imy) 2 w(:;(—ncz(n)'

A period n; can be scheduled under any candidate noder in a
scheduling tree. There are two possible cases:

o If m;(n)|n; then Definition 5.3 guaranteesthat n hasat least
one free edge at which n; can be placed (Figure 5(a)).

@ (b)

Figure5: (a) Placing aperiod p under ascheduling tree nodewith-
out splitting. (b) Period placement when the nodeis split.

o If m(n) n; then, in order to accommodaten; under node
n, n must be split so that the defining properties of the
scheduling tree structure are kept intact. Thisis doneasfol-
lows. Letd = ged(w(n), m“—(n)) Node r is split into a

-1
parent node with weight 4 and child nodeswith weight #,
with the original children of n divided among the new child
nodes, asshownin Figure5(b); that is, the first batch of %
children of . are placed under thefirst child node, and so on.
It iseasy to seethat this splitting maintains the properties of
thestructure. Furthermore, Definition 5.3 guaranteesthat the
new parent node has at |east onefree edgefor schedulingr:;.

The set of candidate nodesfor each period to be scheduled can
be maintained efficiently, in anincremental manner. The observa-
tion hereisthat when anew period n; is scheduled, all remaining
periods only haveto check amaximum of three nodes, namely the
two closest ancestors of the leaf for n; and, if asplit occurred, the
last child node created in the split, for possibleinclusion or exclu-
sion from their candidate sets.

Asin Section 3, we assumeeach task is associated with avalue
and we aim to maximize the cumulative value of a schedule. The
basic idea of our heuristic (termed BuILDTREE) is to build the
scheduling tree incrementally in a greedy fashion, scanning the
tasksin non-increasing order of value and placing each period rn;
in that candidate node M that implies the minimum value loss
among all possible candidates. This loss is calculated as the to-
tal value of all periods whose candidate sets become empty after
the placement of n; under M. Tiesare always broken in favor of
those candidate nodesthat are located at higher levels (i.e., closer
totheleaves), whileties at the samelevel are broken usingthe pos-
torder node numbers (i.e., left-to-right order). When a period is
scheduled in T", the candidate node sets for all remaining periods
are updated (in an incremental fashion) and the algorithm contin-
ues with the next task/period (with at least one candidate in T").
Algorithm BUILDTREE is depicted in Figure 6.

Let N be the number of tasksin C. The number of internal
nodesin aschedulingtreeisalwaysgoingto be O(N). Toseethis,
note that an internal node will always have at least two children,
with the only possible exception being the rightmost one or two
new nodescreated during the insertion of anew period (depending
on whether splitting was used, see Figure 5). Since the number of
insertionsisat most /V, it follows that the number of internal nodes
is O(N). Based on this fact, it is easy to show that BUILDTREE
runsintime O(N?).

Example 2: Consider the list of periods < n; = 2, ny = 12,
ns = 30 > (sorted in non-increasing order of value). Figure 7

Algorithm BUILDTREE(C, value)

Input: A set of simple periodic tasks C = {C4,...,Cn} with
corresponding periods P = {ni,...,nn}, and avalue()
function assigning a valueto each C;.

Output: A schedulingtree T for asubset C’ of C. (Goal: Maxi-

mize) .., value(Ci))

1. Sort the tasksin C' in non-increasing order of value to ob-
tanalist L =< Cy,Cs,...,Cx >, wherevalue(C;) >

weight equal to n; .
2. For each periodic task C; in L (in that order)

2.1. Letcand(n;,I") bethe set of candidate nodes for n;
inT". (Note that this set is maintained incrementally
asthetreeisbuilt.)

tree that results when n; is placed under noden inT".
Letloss(n) = {C; € L—{C;}|cand(T'U{n;}n) =
0} andvalue(loss(n)) = cheloss(n) value(C}).

23. Place n; under the candidate A such that
value(loss(M)) = mincanan; ry{value(loss(n))}.
(Ties are broken in favor of nodesat higher levels.) If
necessary, node M is split.

24. setI'=TU{n;}m,L =L — loss(M).

2.5. For eachtask C; € L, update the candidate node set
cand(n;,T").

value(Ci41). Initidly, T' consists of a root node with a

2.2. Foreachn € cand(n;,I'),letT" U {n;}, denotethe

Figure 6: Algorithm BuILDTREE

illustrates the step-by-step construction of the scheduling tree us-
ing BUILDTREE. Note that period ns splits the node with weight
6 into two nodeswith weights 3 and 2.

S

@ (b) ©
Figure 7: Construction of a scheduling tree.

5.2 Scheduling Equidistant Subtasks

In Section 4.2, weidentified aclip retrieval under Horizontal Strip-
ing asaperiodicreal-time task C; with periodn; = TT (inrounds)

1 subtasks that need to be

scheduled nq4; .1 rounds apart. The basic observation here is that
all the subtasks of C; are themselves periodic with period n;, so
the techniques of the previous section can be used for each indi-
vidual subtask. However, the scheduling algorithm also needsto
ensurethat all the subtasksare scheduledtogether, using time slots
(i.e., rounds) placed regularly at intervals of n 4. Inthissection,
we propose heuristic methodsfor building aschedulingtreein this
generalized setting.

An important requirement of this more general task model is

that consists of a collection of [Ca -

nq

that the insertion of new periods cannot be allowed to distort the
relative placement of subtasks already in the tree. The splitting
mechanism described in the previous section for simple periodic
tasks does not satisfy this requirement, since it can alter the start-
ing time slots for all subtasks located under the split node. We
describe a new rule for splitting nodes without modifying the re-
trieval schedulefor subtasksalready in thetree. Theideaisto use
a different method for “batching” the children of the node being
split, so that the starting time slots for al leaf nodes (as specified
by Equation (4)) remain unchanged. This new splitting rule is as
follows: If thenoden issplit to givea new parentnodewith weight
d, then place at edge: of thenewnode (z = 0,...,d — 1) all
the children of the old node n whose parent edge weight was con-
gruentto: (mod d). Our claim that retrieval schedulesare kept
intact under thisrule is a direct consequence of Equation (4).
Example3: Figure8(a) illustrates aschedulingtreewith two tasks
with periodsn; = 6, n, = 6 assignedto slots0 and 1. Figure 8(b)
depictsthe schedulingtree after athird task with periodns; = 15is
inserted. Although there is enough capacity for both n; and n, in
the subtree connected to the root with edge 0, the new split forces
ny to be placed in the subtree connected to the root with edge 1.

0 1
e] 6]
ul=0 uz=1
€Y (b)

Figure 8: lllustration of the new splitting rule

In this setting, candidate nodes are defined as follows.

Definition 5.4 An internal node n at level ! is candidate for
period n; if and only if m_;(n)|n; and there exists an 1 €
{0,...,d — 1} such that al edges of n with weights congruent
toi (mod d) arefree, whered = ged(w(n), 7=)-

However, under our generalized model of periodic tasks, a candi-
date node for n; can only accommodate a subtask of C;. Thisis
clearly not sufficient for the entire task. Thetemporal dependency
among the subtasks of C; meansthat our scheduling tree scheme
must make surethat all the subtasksof C; are placedin the tree at
distances of ng;sk.

One way to deal with this situation is to maintain candidate
nodesfor subtasksbased on Definition 5.4, and use asimple predi-
cate based on Equation (4), for checkingthe availability of specific
time slotsin the schedulingtree. The scheduling of C; canthen be
handled asfollows. Select acandidate node for n; and atime slot
u; for n; under this candidate. Place the first subtask of C; in u;
and call the predicate repeatedly to check if n; can be scheduled

inslot u; + 5 - naisk, forg = 1,..., n:kl If the predicate
succeedsfor al 7, then C; is scheduled starting at ;. Otherwise,
the algorithm can try another potential starting slot «;. In the full
version of the paper [5], we describe a predicate for checking slot
availability that can be usedin this scheme.

A problem with the approach outline aboveis that evenif the
number of starting slots tried for C; is restricted to a constant,
scheduling each subtask individually yields pseudo-polynomial

time complexity. This is because the number of scheduling oper-
ationsin atrial will be O(—=—), wherec; = min{n;, L} ispart
of the problem input.

We proposea polynomial time heuristic algorithm for the prob-
lem. To simplify the presentation, we assumethat every period n;
isamultiple of n4;.x. Althoughit is possibleto extend our heuris-
tic to handlegeneral periods, we believethat this assumptionisnot
very restrictive in practice. This is because we typically expect
round lengths 7" to be in the area of afew secondsand periods T;
to be multiples of some number of minutes (e.g., 5, 10, 30, or 60
minutes). Therefore, it isrealistic to assumethe smallest periodin
the system can be selected to be a multiple of n 4. Our goal is
to deviseamethod that ensuresthat if thefirst subtask of atask C';
doesnot collide with the first subtask of any other task in the tree,
then no other combination of subtaskscan cause a collision to oc-
cur. This meansthat once the first subtask of C; is placed in the
scheduling tree there is no need to check the rest of C;’s subtasks
individually.

Our algorithm setsthe weight of the root of the scheduling tree
to nqisk. (Thisis possible since the n;’s are multiples of n4;sx.)
By Equation (4), this implies that consecutive subtasks of a task
will require consecutive edges emanating from nodes at the first
level (i.e., the direct descendants of the root). The basic idea of
our method is to make sure that when the first subtask of atask is
placed at aleaf node, a number of consecutive edges of the first-
level ancestor node of that leaf are disabled, so that the slots un-
der those edges cannot be used by the first subtask of any future
task. By our previous observation, s; — 1 = C—l] — 1 con-
secutive edges of the first-level ancestor of theleafd tor n; must be
disabled, starting with the right neighbor of the edge under which
that leaf resides. (s; isthe number of subtasksof C;.) This“edge
disabling” is implemented by maintaining an integer distance for
each edge e emanating from a first-level node that is equal to the
number of consecutive neighbors of e that have been disabled.
Our placement algorithm has to maintain two invariants. First,
the distance of an edge e of afirst-level node is always equal to
maxc; {s: } — 1, wherethemaximum istaken over all tasksplaced
under e in the tree. Second, the sum of the weight of an edge e of
afirst-level noder. and its distanceis always less than the weight
of n (so that the defining properties of the tree are maintained).
Theformal definition of our algorithm is omitted dueto spacecon-
straints. Thefull details can be found in [5].

5.3 Handling Slotswith Multi-Task Capacities

The scheduling tree formulation can easily be extended to handle
time dlots that can fit more than one subtask (i.e., can allow for
some tasks to collide). Aswe saw in Section 4.2, this is exactly
the casefor the rounds of EPPV retrieval under HS. Using the no-
tation of Section 3, we can think of the subtasksof C; asitems of
sizesize(C;) < 1 (i.e, thefraction of disk bandwidth required for
retrieving one column of clip C;) that are placed in unit capacity
time slots. In this more general setting, a time slot can accommo-
date multiple tasks aslong as their total size doesnot exceed one.
Notethat this problem is a generalization of the k-server Periodic
Maintenance Scheduling Problem (k-PMSP), where all items are
assumed to be of the same size (i.e,, %th of the capacity).

The problem can be visualized as a collection of unit capac-
ity bins (i.e., time slots) located at the leaves of a scheduling tree,
whose structure determines the eligible bins for each task’s sub-

tasks (based on their period). With respect to our previous model
of tasks, the main difference is that since slots can now accommo-
date multiple retrievalsit is possible for aleaf nodethat is already
occupied to be a candidate for a period. Hence, the basic ideafor
extending our schemesto this caseisto keeptrack of theavailable
slot space at each leaf node and allow leaf hodes to be shared by
tasks. Thus, our notion of candidate nodescan simply be extended
asfollows.

Definition 5.5 Letn bealeaf nodefor of aschedulingtreeI” cor-
responding to period p. Also, let S(n) denote the collection of
tasks (with period p) mapped to n. The load of leaf n is defined
as: load(n) =) . s S12e(Ci)-

Definition 5.6 A noden at level [is candidate for a task of C;
(with period n;) if and only if:

1. nisinternal, conditionsin Definition 5.4 hold, or

2. nisexternal (leaf node) corresponding to n; (i.e., m(n) =

n;), and load(n) + size(C;) < 1.

With these extensions, it is easy to see that the methods of Sec-
tion 5.2 can be used without modification to produce a scheduling
tree for the multi-task capacity case.

6 Combining Multiple Scheduling Trees

To construct forests of multiple non-colliding scheduling trees,
trees already built can be used to restrict task placement in
the tree under construction. By the Generalized Chinese Re-
mainder Theorem, the scheduling algorithm needs to ensure
that each subtask of task C; is assigned a slot u; such that
u; Zu; (mod ged(ni,nj)) forany subtask of any task C; that
is scheduled in slot »; in a previous tree within the same forest.
This obviously isavery expensive method and efficient heuristics
for constructing scheduling forests still elude our efforts. In this
section, however, we provideageneral packing-basedschemethat
can be used for combining independently built scheduling forests.
Of course, for our purposes, aforest can always consist of asingle
tree. Our goal isto improvethe utilization of scheduling slots that
can accommodate multiple tasks.

Given a collection of tasks, scheduling forests are constructed
until each task is assigned a time slot. We know that no pair
of tasks within a forest will collide at any slot except for tasks
with the same period that are assigned to the same leaf node as
described in Section 5.3. A simple conservative approach is to
assume a worst-case collision across forests. That is, we define
the size of a forest assize(F;) = maxn,er,{load(n;)} where
n; is any leaf nodein F;, and the load of a leaf node is as in
Definition 5.5. Further, a forest F; has a value: value(F;) =
cheF, value(C}). Thus, under the assumption of a worst-case
collision, the problem of maximizing thetotal scheduled valuefor
a collection of forests is a traditional 0/1 knapsack optimization
problem. A packing-based heuristic like PAck CL1PS can be used
to provide an approximate solution.

In some cases, the worst-case collision assumption across
forests may be unnecessarily restrictive. For example, consider
two schedulingtreesT'; and I'; that are constructedindependently.
Let e; be an edge emanating from the root node n; of I'; and e»
be an edge emanating from the root node n, of I'z. If e; mod

(ged(n1,n2)) # ez mod (ged(n1, n2)) holds, then the tasks
scheduledin the subtreesrooted ate; ande, cannever collide. Us-
ing such observations, we can devise more clever packing-based
schemesfor combining forests [5].

7 Experimental Performance Evaluation
7.1 Experimental Testbed

For our experiments, we used two basic workload components,
modeling typical scenarios encountered in today’s pay-per-view
video servers.

e Workload #1 consisted of relatively long MPEG-1 com-
pressed videos with a duration between 90 and 120 minutes
(e.g., movie features). The display rate for all these videos
was equal to r; = 1.5 Mbps. To model differencesin video
popularity, our workload comprised two distinct regions. a
“hot region” with retrieval periods selected randomly be-
tween 40 and 60 minutes and a “cold region” with periods
between 150 and 180 minutes. Different type#1 workloads
were generated by varying the size of the hot region between
5% and 50% of the total number of clips.

o Workload #2 consisted of small video clipswith lengthsbe-
tween 2 and 10 minutes (e.g., commercials or music video
clips). The display rates for these videos varied between 2
and 4 Mbps (i.e., MPEG-1 and 2 compression). Again, clips
were divided between a “hot region” with periods selected
randomly between 20 and 30 minutes and a “cold region”
with periods between 40 and 60 minutes. Different type #2
workloads were generated by varying the size of the hot re-
gion between 5% and 50% of the total number of clips.

We experimented with each component executing in isolation
and with mixed workloads consisting of mixtures of type #1 and
type #2 workloads. We concentrated on scaleup experiments in
whichthetotal expected storage requirements of the offered work-
load were approximately equal to the total storage capacity of the
server. Thisallowed usto effectively ignore the storage capacity
constraint for the striping-based schemes. For clustering, storage
capacitieswere accounted for by using the 2-dimensional version
of PACKCLIPS (Section 3.2). Our basic performance metric was
the effectively scheduled disk bandwidth (in Mbps) for each of the
resource scheduling schemes presented in this paper. (The graphs
presented in the next section are indicative of the results obtained
over the ranges of the workload parameters.)

The results discussed in this paper were obtained assuming a
bandwidth capacity of rq;.x =80 Mbps and a storage capacity of
caisk =4 GBytesfor each disk in the server. The (worst-case) disk
seek time and latency wereset at £.ce, = 24msand £;4: = 9.3 S,
respectively, and the round length was 7" = 1 sec. As part of our
future work, we plan to examine the effect of these parameters on
the performance of our scheduling schemes.

7.2 Experimental Results

The results of our experiments with type #1 workloads with hot
regions of 30% and 10% are shown in Figures 9(a) and 9(b), re-
spectively. Clearly, the HS-based scheme outperforms both clus-
tering and VS over the entire range of values for the number of
disks. Observethat for type#1 workloadsand for the disk param-
eter values used in our study, the maximum number of clips that
can be scheduledis limited by the aggregate disk storage. Specif-
ically, it is easy to see that the maximum number of clips that can
fitin adisk is 3.95 and the average number of concurrent streams
foraclipis(0.3-3+ 0.7 - 1) = 1.6. Thusthe maximum band-
width that can be utilized on a single disk for this mix of accesses
is1.6-3.95 - 1.5 = 9.48Mbps. This explainsthe low scheduled

bandwidth output shown in Figure 9. We should note that in most
cases our scheduling tree heuristics were able to schedule the en-
tire offered workload of clips. On the other hand, the performance
of VS schemes quickly deteriorates as the size of the disk array
increases. This confirms our remarks on the limited scalability of
VSin Section 4.1. The performance of our clustering scheme un-
der Workload #1 suffers from the disk storage fragmentation due
to the large clip sizes. We also observe a deterioration in the per-
formance of clustering as the access skew increases (i.e., the size
of the hot region becomes smaller). This can be explained as fol-
lows: Pack CLIpsfirst tries to pack the clips that give the high-
est profit (i.e., the hot clips). Thus when the hot region becomes
smaller the relative value of the scheduled subset (as compared to
the total workload value) decreases.

The relative performance of the three schemes for a type #2
workload with a 50% hot region is depicted in Figure 10(a).
Again, the HS-based scheme outperforms both clustering and VS
over the entire range of ng;.x. Note that, compared to type #1
workloads, the rel ative performance of clustering and V S schemes
under this workload of short clips is significantly worse. Thisis
because both these schemes, being unaware of the periodic nature
of clip retrieval, reserve a specific amount of bandwidth for every
clip C; during every round of length 7". However, for clips whose
length is relatively small compared to their period this bandwidth
will actually be needed only for small fraction of rounds. Fig-
ure 10(a) clearly demonstratesthe devastating effects of thisband-
width wastage and the need for periodic scheduling algorithms.

Finally, Figure 10(b) depicts the results obtained for a mixed
workload consisting of 30% type #1 clips and 70% type #2 clips.
HS s once again consistently better than VS and clustering over
theentirerange of disk array sizes. Compared to puretype#1 or #2
workloads, the clustering-based schemeis able to exploit the non-
uniformities in the mixed workload to produce much better pack-
ings. Thisgivesclustering aclear win over VS. Still, its wasteful-
ness of disk bandwidth for short clips does not allow it to perform
at the level of HS.

8 Conclusions

In this paper we have addressed the resource scheduling and data
organization problems associated with supporting EPPV service
in their most general form; that is, for clips with possibly differ-
ent display rates, periods, lengths. We studied three different ap-
proaches to utilizing multiple disks: clustering, vertical striping
(VS) and horizontal striping (HS). In each case, the periodic na-
ture of the EPPV servicemodel raisesahost of interesting resource
scheduling problems. For clustering and V'S, we presented aknap-
sack formulation that allowed usto obtain aprovably near-optimal
heuristic with low polynomial time complexity. However, both
these datalayout schemeshave seriousdrawbacks: Clustering can
suffer from severe storage and bandwidth fragmentation, and VS
incurs high disk latency overheadsthat limit its scalability. HS, on
the other hand, avoids these problems but requires sophisticated
hard real-time scheduling methods to support periodic retrieval.
Specifically, we showed the EPPV scheduling problem for HS to
be ageneralization of the Periodic Maintenance Scheduling Prob-
lem [22] and developed a number of novel concepts and algorith-
mic solutionsto addressthe issuesinvolved. Finally, we presented
apreliminary set of experimental resultsthat verified our expecta-
tions about the average performance of the three schemes: Clus-

Workload #1, Hot Region: 30%
450 T T T

T

Horizontal Striping (Scheduling Tge€s) -»—
Clustering (PackClips) ~+-

a00 b Verticat Striping 8- _|

350 [
300
250

200

Scheduled Disk Bandwidth (Mbps)

150

10 20 30 40 50
No of disks

Workload #1, Hot Region: 10%
350 T T T

T
Horizontal Striping (Scheduling Trées) -—
Clustering (PgekClips) ~+-

Vertigdl Striping -8-

300

250

150

Scheduled Disk Bandwidth (Mbps)

100

30 50
No of disks

Figure 9: (a) Workload #1, 30% hot. (b) Workload #1, 10% hot.

Workload #2, Hot Region: 50%
T T T
Horizontal Striping (Scheduling Trees) -—
teringp(PackClips) -+~
rtical Striping 8-

200

150 -

100

Scheduled Disk Bandwidth (Mbps)

a

o L L L
1 2 3 4 5 6
No of disks

Mixed Workload (30% large clips), 10% hot
T T

T

500 |- Horizontal Striping (Schedutifig Trees) +— _|
1ip (PackClips) -+~

ertical Striping -8-

~ 1

350

300

Scheduled Disk Bandwidth (Mbps)

200 e 1

150 L L L L L L

10 12
No of disks

Figure 10: (a) Workload #2, 50% hot. (b) Mixed Workload (30%-70%), 10% hot.

tering can lead to fragmentation and underutilization of resources
and the performance of V S doesnot scalelinearly in the number of
disks due to increased latencies. Our novel tree-based algorithm
for HS emerged as the clear winner under a variety of randomly
generated workloads.

References

[1] S. Baruah, L. Rosier, I. Tulchinsky, and D. Varvel. “The Complexity
of Periodic Maintenance”. In Proc. of the 1990 Intl. Computer Symp.,
Taiwan, 1990.

[2] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. *“Staggered
Striping in Multimedia Information Systems’. In Proc. of the 1994
ACM SIGMOD Intl. Conf., May 1994.

[3] M.-S. Chen, D. D. Kandlur, and P S. Yu. “Optimization of the
Grouped Sweeping Scheduling (GSS) with HeterogeneousMultimedia
Streams”. In Proc. of ACM Multimedia ' 93, August 1993.

[4] M.R. Garey and D.S. Johnson. *“ Computers and Intractability: A
Guideto the Theory of NP-Completeness’ . W.H. Freeman, 1979.

[5] M. N. Garofalakis, B. Ozden, and A. Silberschatz. “Resource
Scheduling in Enhanced Pay-Per-View ContinuousMediaDatabases”’ .
Tech. Memorandum BL0112330-970107-01, Bell Laboratories, 1997.

[6] D.E. Knuth. “The Art of Computer Programming (Vol. 2 / Seminu-
merical Algorithms)”. Addison-Wesley, 1981.

[7]1 E. L. Lawler. “Fast Approximation Algorithms for Knapsack Prob-
lems’. Math. of Operations Research, 4(4):339-356, 1979.

[8] T.D.C. Little and D. Venkatesh. “Popularity-Based Assignment of
Moviesto Storage DevicesinaVideo-on-Demand System”. ACM Mul-
timedia Systems, 2:280-287, 1995.

[9] C.L.LiuandJ W. Layland. “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment”. Journal of the ACM,
20(1):46-61,1973.

[10] B. Ozden, A. Biliris, R. Rastogi, and A. Silberschatz. “A Low-Cost
Storage Server for Movie on Demand Databases”. In Proc. of the 20th
Intl. VLDB Conf., September 1994.

[11] B. Ozden, R. Rastogi, and A. Silberschatz. “Disk Striping in Video
Server Environments’. |EEE Data Engineering Bulletin, 18(4):4-16,
1995.

[12] B.Ozden,R. Rastogi, and A. Silberschatz. “On the Design of aLow-
Cost Video-on-Demand Storage System”. ACM Multimedia Systems,
4:40-54, 1996.

[13] B. Ozden, R. Rastogi, and A. Silberschatz. “The Storage and Re-
trieval of ContinuousMediaData”. In“ Multimedia Database Systems:
Issues and Research Directions’, V.S. Subrahmanian and S. Jajodia
(Eds.). Springer-Verlag, 1996.

[14] B. Ozden, R. Rastogi, and A. Silberschatz. “Periodic Retrieval of
Videosfrom Disk Arrays’. In Proc. of the 13th Intl. Conf. on Data En-
gineering, April 1997.

[15] D. A. Patterson, G. A. Gibson, and R. H. Katz. “A Case for Redun-
dant Arrays of Inexpensive Disks (RAID)”. In Proc. of the 1988 ACM
SIGMOD Intl. Conf., June 1988.

[16] PRECEPT Software, Inc. IPITV Datasheets. (http://
www. pr ecept . conl dat asheet s/ htm /i ptvdsl. ht m.
[17] P V.Ranganand H. M. Vin. “Efficient Storage Techniquesfor Digi-
tal ContinuousMultimedia’. |EEE Trans. on Knowledgeand Data En-

gineering, 5(4):564-573,1993.

[18] S. Sahni. “ Approximate Algorithmsfor the 0/1 Knapsack Problem”.
Journal of the ACM, 22(1):115-124, 1975.

[19] A. Silberschatz and P. Galvin. “ Operating System Concepts’ .
Addison-Wesley, 1994.

[20] J. A. Stankovic and K. Ramamritham, eds. “ Advancesin Real-Time
Systems” . |EEE Computer Society Press, 1993.

[21] F A. Tobagi, J. Pang, R. Baird, and M. Gang. “Streaming RAID:
A Disk Storage System for Video and Audio Files’. In Proc. of ACM
Multimedia’ 93, August 1993.

[22] W.D.Wei and C.L. Liu. “On aPeriodic Maintenance Problem”. Op-
erations Research Letters, 2(2):90-93, 1983.

[23] C. Yu, W. Sun, D. Bitton, Q. Yang, R. Bruno, and J. Tullis. “Effi-
cient Placement of Audio Data on Optical Disks for Real-Time Appli-
cations”. Comm. of the ACM, 32(7):862-871, 1989.

