
Sketch-based Querying of Distributed Sliding-Window
Data Streams

Odysseas Papapetrou, Minos Garofalakis, Antonios Deligiannakis
Technical University of Crete

{papapetrou,minos,adeli}@softnet.tuc.gr

ABSTRACT

While traditional data-management systems focus on evaluating single, ad-

hoc queries over static data sets in a centralized setting, several emerg-

ing applications require (possibly, continuous) answers to queries on dy-

namic data that is widely distributed and constantly updated. Furthermore,

such query answers often need to discount data that is “stale”, and operate

solely on a sliding window of recent data arrivals (e.g., data updates occur-

ring over the last 24 hours). Such distributed data streaming applications

mandate novel algorithmic solutions that are both time- and space-efficient

(to manage high-speed data streams), and also communication-efficient (to

deal with physical data distribution). In this paper, we consider the prob-

lem of complex query answering over distributed, high-dimensional data

streams in the sliding-window model. We introduce a novel sketching tech-

nique (termed ECM-sketch) that allows effective summarization of stream-

ing data over both time-based and count-based sliding windows with prob-

abilistic accuracy guarantees. Our sketch structure enables point as well

as inner-product queries, and can be employed to address a broad range

of problems, such as maintaining frequency statistics, finding heavy hit-

ters, and computing quantiles in the sliding-window model. Focusing on

distributed environments, we demonstrate how ECM-sketches of individ-

ual, local streams can be composed to generate a (low-error) ECM-sketch

summary of the order-preserving aggregation of all streams; furthermore,

we show how ECM-sketches can be exploited for continuous monitoring

of sliding-window queries over distributed streams. Our extensive experi-

mental study with two real-life data sets validates our theoretical claims and

verifies the effectiveness of our techniques. To the best of our knowledge,

ours is the first work to address efficient, guaranteed-error complex query

answering over distributed data streams in the sliding-window model.

1. INTRODUCTION
The ability to process, in real time, continuous high-volume stre-

ams of data is a common requirement in many emerging applica-

tion environments. Examples of such applications include, sensor

networks, financial data trackers, and intrusion-detection systems.

As a result, in recent years, we have seen a flurry of activity in

the area of data-stream processing. Unlike conventional database

query processing that requires several passes over a static, archived

data image, data-stream processing algorithms often rely on build-

ing concise, approximate (yet, accurate) sketch synopses of the in-

put streams in real time (i.e., in one pass over the streaming data).

Such sketch structures typically require small space and update

time (both significantly sublinear in the size of the data), and can be

used to provide approximate query answers with guarantees on the

quality of the approximation. These answers can be more than suf-

ficient for typical exploratory analysis of massive data, where the

goal is to detect interesting statistical behavior and patterns rather

than obtain answers that are precise to the last decimal. Large-scale

stream processing applications are also inherently distributed, with

several remote sites observing their local stream(s) and exchanging

information through a communication network. This distribution

of the data naturally imposes critical communication-efficiency re-

quirements that prohibit naı̈ve solutions that centralize all the data,

due to its massive volume and/or the high cost of communication

(e.g., in sensornets). Communication efficiency is particularly im-

portant for distributed event-monitoring scenarios (e.g., monitoring

sensor or IP networks), where the goal is real-time tracking of dis-

tributed measurements and events, rather than one-shot answers to

sporadic queries [25].

Several query models for streaming data have been explored over

the past decade. Streaming data items naturally carry a notion

of “time”, and, in many applications, it is important to be able

to downgrade the importance (or, weight) of older items; for in-

stance, in the statistical analysis of trends or patterns in financial

data streams, data that is more than a few months old might be

considered “stale” and irrelevant. Various time-decay models for

querying streaming data have been proposed in the literature, mostly

differentiating on the relation of an item’s weight to its age (e.g., ex-

ponential or polynomial decay [6]). The sliding-window model [12]

is one of the most prominent and intuitive time-decay models that

considers only a window of the most recent items seen in the stream

thus far (i.e., items outside the window are “aged out” or given a

weight of zero). The window itself can be either time-based (i.e.,

items seen in the last N time units) or count-based (i.e., the last

N items). Several algorithms have been proposed for maintaining

different types of statistics over sliding-window data streams while

requiring time and space that is significantly sublinear (typically,

poly-logarithmic) in the window size N [12, 15, 24, 26]. Still, the

bulk of existing work on the sliding-window model has focused on

tracking basic counts and other simple aggregates (e.g., sums) over

one-dimensional streams in a centralized setting. Some recent work

has also considered the case of distributed data, however, no exist-

ing techniques can handle flexible, complex aggregate queries over

rapid, high-dimensional distributed data streams, e.g., with each

dimension corresponding to the frequency of a distinct key in the

stream.

Example: Recent work on effective network-monitoring systems

(e.g., for detecting DDoS attacks or network-wide anomalies in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 10
Copyright 2012 VLDB Endowment 2150-8097/12/06... $ 10.00.

992

large-scale IP networks) has stressed the importance of an efficient

distributed-triggering functionality [20, 22, 18, 17]. In their early

work, Jain et al. [20] discuss a generic distributed attack-detection

scheme relying on the ability to maintain frequency statistics for

high-dimensional data over sliding windows. In particular, each

node (e.g., a network router implementing Cisco’s Netflow proto-

col, a wireless access point, or a peer in a P2P network) maintains

a sliding-window count of all observed messages for each target IP

address. If this count exceeds a pre-determined threshold, which is

determined based on the capacity of the target machine (possibly

expressing the fair share of each client to the target machine), an

event is triggered to a central coordinator as a warning of possible

overloading. The coordinator then collects network-wide statistics

to monitor overloaded nodes or abnormal behavior. More recent

efforts have focused on different variants and extensions of this ba-

sic scheme, often requiring more extensive data/statistics collection

and more sophisticated analyses [18, 17]. (Note that such data col-

lection mechanisms are supported by commercial products, such as

the Cisco Netflow Collection Engine solution.)

The ability to efficiently summarize high-dimensional data over

sliding windows is obviously crucial to such network-monitoring

schemes, given the tremendous volume of network-data streams

and their massive domain sizes (e.g., 248 for IPv6 addresses). This

raises a critical need for synopsis data structures that can compactly

capture accurate frequency statistics for a vast domain space over

sliding windows. Furthermore, to enable the coordinator to aggre-

gate data coming from different nodes (a requirement for detecting

DDoS attacks), we need to be able to compose individually con-

structed synopses to a single synopsis which can capture the global

state of the network and help isolate network-wide abnormalities.

Thus, we are faced with the difficult challenge of designing ef-

fective, composable synopses that can support potentially complex

sliding-window analysis queries over massive, distributed network-

data streams.

Note that similar requirements are frequently observed in other

domains, e.g., for identifying misbehaving nodes in large wireless

networks, for training of classifiers with distributed training data

that expires over time, and for ranking products in a cloud-based

e-shop, based on the number of recent visits of each product.

Our Contributions. In this paper, we consider the problem of an-

swering potentially complex queries over distributed, high-dimen-

sional data streams in the sliding-window model. Our contribu-

tions can be summarized as follows.

• ECM-Sketches for Sliding-Window Streams. We introduce a

novel sketch synopsis (termed ECM-sketch) that allows effective

summarization of streaming data over both time-based and count-

based sliding windows with probabilistic accuracy guarantees. In

a nutshell, our ECM-sketch combines the well-known Count-Min

sketch structure [10] for conventional streams with state-of-the-art

tools for sliding-window statistics. The end result is a sliding-

window sketch synopsis that can provide provable, guaranteed-

error performance for point, as well as inner-product, queries, and

can be employed to address a broad range of problems, such as

maintaining frequency statistics, finding heavy hitters, and com-

puting quantiles in the sliding-window model.

• Time-based Sliding Windows over Distributed Streams. Fo-

cusing on distributed environments, we demonstrate how ECM-

sketches summarizing time-based sliding windows of individual,

local streams can be composed to generate a guaranteed-error ECM-

sketch synopsis of the order-preserving aggregation of all streams.

While conventional Count-Min sketches are trivially composable,

composing ECM-sketches is more challenging, since it requires

the composition of the sliding-window statistics maintained in the

sketch. Compared to earlier work on composable, randomized sli-

ding-window statistics [27, 15], our sliding window approximation

technique is completely deterministic and is much more space ef-

ficient (with a linear rather than a quadratic dependence on the ap-

proximation error). This increased efficiency comes at the cost of

a slight inflation of the worst-case error guarantee due to composi-

tion. Furthermore, we demonstrate how our ECM-sketches can be

exploited in the context of the geometric framework of Sharfman et

al. [25] for continuous monitoring of sliding-window queries over

distributed streams.

• Experimental Study and Validation. We perform a thorough

experimental evaluation of our techniques using two real-life data

sets, in both centralized and distributed settings. The results of our

study verify the efficiency and effectiveness of our ECM-sketch

synopses in a variety of applications, and expose interesting func-

tional trade-offs. When compared to algorithms based on random-

ized sliding window synopses – which are the only ones that were

considered for composition up to now – ECM-sketches reduce the

memory and computational requirements by at least one order of

magnitude with a very small loss in accuracy. Similar savings ap-

ply to the network requirements.

2. RELATED WORK
Centralized and Distributed Data Streams. Most prior work on

data-stream processing has focused on developing space-efficient,

one-pass algorithms for performing a wide range of centralized,

one-shot computations on massive data streams; examples include

computing quantiles [16], estimating distinct values [14], count-

ing frequent elements (i.e., “heavy hitters”) [5, 9], and estimating

join sizes and stream norms [1, 10]. Out of these efforts, flexi-

ble, general-purpose sketch summaries, such as the AMS [1] and

the Count-Min [10] sketch have found wide applicability in a broad

range of stream-processing scenarios. More recent efforts have also

concentrated on distributed-stream processing, proposing commu-

nication-efficient streaming tools for handling a number of query

tasks, including distributed tracking of simple aggregates [23], quan-

tiles [8], and join aggregates [7], as well as monitoring distributed

threshold conditions [25]. All the above-referenced works assume

a traditional, “full-history” data stream and do not address the is-

sues specific to the sliding-window model.

Sliding-Window Stream Queries. As mentioned earlier, the bulk

of existing work on the sliding-window model has focused on al-

gorithms for maintaining simple statistics, such as basic counts and

sums, in space and time that is significantly sub-linear (typically,

poly-logarithmic) in the sliding-window size N . Exponential his-

tograms [12] are a state-of-the-art deterministic technique for main-

taining ǫ-approximate counts and sums over sliding windows, using

O(1
ǫ
log2 N) space. Deterministic waves [15] solve the same ba-

sic counting/summation problem with the same space complexity

as exponential histograms, but improve the worst-case update time

complexity to O(1); on the other hand, randomized waves [15] rely

on randomization through hashing to track duplicate-insensitive

counts (i.e., COUNT-DISTINCT aggregates) over sliding windows.

While randomized waves can be easily composed (in distributed

settings), they also come with an increased space requirement of

O(log(1/δ)
ǫ2

log2 N), where δ is a small probability of failure. Xu

et al. [27] describe a randomized, sampling-based synopsis, very

similar to randomized waves, for tracking sliding-window counts

and sums with out-of-order arrivals (e.g., due to network delays)

in a distributed setting. As with randomized waves, their space re-

quirements are also quadratic in the inverse approximation error;

993

furthermore, their approach requires knowledge of the maximum

number of elements in any sliding window (to set up the synopsis

data structure), which could be problematic in dynamic, widely-

distributed environments. Cormode et al. [11] also propose ran-

domized techniques for handling out-of-order arrivals for tracking

duplicate-insensitive sliding-window aggregates. To address the

high cost associated with randomized data structures, Busch and

Tirthapura propose a deterministic structure for handling out-of-

order arrivals in sliding windows [3]. Similar to the other deter-

ministic structures, this structure also does not allow composition

and focuses only on basic counts and sums. Finally, Chan et al. [4]

investigate continuous monitoring of exponential-histogram aggre-

gates over distributed sliding windows. The main contribution of

their work lies in the efficient scheduling of the propagation of the

local exponential-histogram summaries to a coordinator, without

violating prescribed accuracy guarantees.

Going beyond counts, sums, and simple aggregates, there is sur-

prisingly little work in the more general problem of maintaining

general, frequency-distribution synopses over high-dimensional

streaming data in the sliding-window model. Hung and Ting [19]

and Dimitropoulos et al. [13] propose synopses based on Count-

Min sketches for tracking heavy hitters and frequency counts over

sliding windows; still, their techniques rely on keeping simple equi-

width counters within the sketch, and, thus, cannot provide any

meaningful error guarantees, especially for small query ranges. Sim-

ilarly, the hybrid histograms of Qiao et al. [24] combine exponen-

tial histograms with simplistic equi-width histograms for answer-

ing sliding-window range queries; again, these structures cannot

give meaningful bounds on the approximation error and cannot be

composed in a distributed setting.

3. PRELIMINARIES
ECM-sketches combine the functionalities of Count-Min

sketches [10] and exponential histograms [12]. We now describe

the two structures, focusing on the aspect related to our work.

Count-Min Sketches. Count-Min sketches are a widely applied

sketching technique for data streams. A Count-Min sketch is com-

posed of a set of d hash functions, h1(·), h2(·), . . ., hd(·), and a 2-

dimensional array of counters of width w and depth d. Hash func-

tion hj corresponds to row j of the array, mapping stream items to

the range of [1 . . . w]. Let CM [i, j] denote the counter at position

(i, j) in the array. To add an item x of value vx in the Count-Min

sketch, we increase the counters located at CM [hj(x), j] by vx,

for j ∈ [1 . . . d]. A point query for an item q is answered by hash-

ing the item in each of the d rows and getting the minimum value

of the corresponding cells, i.e., mind
j=1 CM [hj(q), j]. Note that

hash collisions may cause estimation inaccuracies – only overesti-

mations. By setting d = ⌈ln(1/δ)⌉ and w = ⌈e/ǫ⌉, where e is the

base of the natural logarithm, the structure enables point queries to

be answered with an error of less than ǫ||a||1, with a probability of

at least 1− δ, where ||a||1 denotes the number of items seen in the

stream. Similar results hold for range and inner product queries.

Exponential Histograms. Exponential histograms [12] are a de-

terministic structure, proposed to address the basic counting prob-

lem, i.e., for counting the number of true bits in the last N stream

arrivals. They belong to the family of methods that break the slid-

ing window range into smaller windows, called buckets or basic

windows, to enable efficient maintenance of the statistics. Each

bucket contains the aggregate statistics, i.e., number of arrivals and

bucket bounds, for the corresponding sub-range. Buckets that no

longer overlap with the sliding window are expired and discarded

from the structure. To compute an aggregate over the whole (or

Notation Description

N Length of the sliding window, in time units or # arrivals

hi(·) Hash function i of the Count-Min sketch

ar , br Substream of stream a, b, within the query range r

fa(x, r) Frequency of item x in stream a, within the query range r

Ea(i, j, r) Estimated value of the ECM-sketch counter for stream a in

position (i, j) for query range r

ar ⊙ br, ̂ar ⊙ br Real and estimated inner product of ar and br
u(N,S) Upper bound of number of arrivals on stream S within the

sliding window of length N

Table 1: Frequently used notation.

a part of) sliding window, the statistics from all buckets overlap-

ping with the query range are aggregated. For example, for basic

counting, aggregation is a summation of the number of true bits in

the buckets. A possible estimation error can be introduced due to

the oldest bucket inside the query range, which usually has only a

partial overlap with the query. Therefore, the maximum possible

estimation error is bounded by the size of the last bucket.

To reduce the space requirements, exponential histograms main-

tain buckets of exponentially increasing sizes. Bucket boundaries

are chosen such that the ratio of the size of each bucket b with the

sum of the sizes of all buckets more recent than b is upper bounded.

In particular, the following invariant (invariant 1) is maintained for

all buckets j: Cj/(2(1+
∑j−1

i=1 Ci)) ≤ ǫ where ǫ denotes the max-

imum acceptable relative error and Cj denotes the size of bucket j
(number of true bits arrived in the bucket range), with bucket 1

being the most recent bucket. Queries are answered by summing

the sizes of all buckets that fully overlap the query range, and half

of the size of the oldest bucket, if it partially overlaps the query.

The estimation error is solely contained in the oldest bucket, and is

therefore bounded by this invariant, resulting to a maximum rela-

tive error of ǫ.

4. ECM­SKETCHES
We now describe ECM-sketches (short for Exponential Count-

Min sketches), a composable sketch for maintaining data stream

statistics over sliding windows in distributed environments. ECM-

sketches combine the functionality of Count-Min sketches and slid-

ing windows, and support both time-based and count-based sliding

windows under the cash register model. Therefore, they can be

used for compactly summarizing high-dimensional streams over

sliding windows, i.e., to maintain the observed frequencies of the

stream items within the sliding window range.

The core of the structure is a modified Count-Min sketch. Count-

Min sketches alone cannot handle the sliding window requirement.

To address this limitation, ECM-sketches replace the Count-Min

counters with sliding window structures. Each counter is main-

tained as a sliding window, covering the last N time units, or the

last N arrivals, depending on whether we need time-based or count-

based sliding windows.

As discussed in Section 2, there have been several algorithms

proposed for sliding window maintenance. Due to the large ex-

pected number of sliding window counters in ECM-sketches, we

require an algorithm with a small memory footprint. Randomized

sliding window synopses are therefore not a good choice. Instead,

we employ exponential histograms [12], a compact and efficient

deterministic synopsis. Each of the Count-Min counters is imple-

mented as an exponential histogram, configured to provide an ǫ
approximation for any query within a sliding window of length N ,

i.e., the estimation x̂ of the counter for any query range within the

sliding window length is in the range of (1 ± ǫ)x of the true value

x of the counter. We will be discussing our choice for exponential

histograms again in more detail in the following section, where we

will consider alternative deterministic and randomized algorithms.

994

Figure 1: Adding an element to the ECM-sketch.

Adding an item x to the structure is similar to the case of the

standard Count-Min sketches. The process for time-based sliding

windows is depicted in Figure 1. First, the counters CM [hj(x), j],
where j ∈ {1 . . . d}, corresponding to the d hash functions are

detected. For each of the counters, we register the arrival of the item

at time t, and remove all expired information, i.e., the buckets of the

exponential histogram that have no overlap with the sliding window

range. The process for count-based sliding windows is similar, but

instead of registering each arrival with system time t, we register it

with the count of arrivals since the beginning of the stream.

The challenges that need to be addressed for the integration of

exponential histograms with Count-Min sketches are: (a) to take

into account the additional error introduced by the sliding window

counters for deriving the accuracy guarantees for ECM-sketches

(presented in the remainder of this section), and, (b) to enable com-

position of a set of ECM-sketches to a single ECM-sketch repre-

senting the order-preserving aggregation of the corresponding indi-

vidual streams (Section 5).

4.1 Query Answering
We now explain how ECM-sketches support point queries, inner

product queries, and self-join queries, and we derive probabilistic

guarantees for the accuracy of the estimation. Our analysis covers

both sliding window models, i.e., time-based and count-based.

Point Queries. A point query (x, r) is a combination of an item

identifier x, and the query range r defined either as number of time

units or number of arrivals. Point queries are executed as follows.

The query item is hashed to the d counters CM [hj(x), j] where

(j ∈ {1 . . . d}), and the estimate of each counter E(hj(x), j, r) for

the query range is computed. The estimate value for the frequency

of x is f̂(x, r) = minj=1...d E(hj(x), j, r).
Let δcm and ǫcm denote the configuration parameters of the Count-

Min sketch, whereas ǫsw denotes the configuration parameter of

the exponential histogram. With ||ar||1 we denote the number of

arrivals within the query range. The following theorem provides

probabilistic guarantees for the approximation quality.
THEOREM 1. |f̂(x, r)− f(x, r)| ≥ (ǫsw + ǫcm + ǫswǫcm)||ar||1

with probability at most δ = δcm.

PROOF. Special case of Theorem 3, proved in the appendix.

As is typical for small-space sketches, the error guarantees are rel-

ative to the stream characteristics, i.e., the L1 norm. For all pairs of

ǫsw and ǫcm satisfying ǫsw + ǫcm + ǫswǫcm = ǫ, the maximum es-

timation error will be ǫ||ar||1. (Note that ǫ ≈ ǫcm+ǫsw, since typi-

cally ǫsw, ǫcm < 0.5, and thus the product ǫswǫcm is much smaller

than the two linear terms.) The optimal pair of ǫcm and ǫsw is the

one that minimizes memory utilization. The worst-case memory re-

quirements of the structure are minimized as follows. The required

memory per sliding window counter is O(1
ǫsw

log2 Z), where Z
denotes the maximum possible count of each item in the sliding

window. Therefore, the maximum required memory is mem =
c

ǫsw
log2 Z × w × d, with c denoting a constant, w = ⌈e/ǫcm⌉,

and d = ⌈ln(1/δcm)⌉. By derivation we find that the memory

bound is minimized for ǫsw = ǫcm =
√
ǫ+ 1 − 1, and becomes

O(ln
2 Z ln(1/δcm)

ǫswǫcm
) = O(ln

2 Z ln(1/δcm)
ǫ

).

Inner Product and Self-Join Queries. Another frequent query

type is the cardinality of the inner product. Given two streams a

and b, the inner product is defined as a ⊙ b =
∑

x∈D fa(x) ×
fb(x), where D denotes the input domain, i.e., the distinct input

elements, and fa(x) (resp. fb(x)) denotes the frequency of element

x in stream a (resp. stream b). Self-join queries, also called the

second frequency moment F2, are a special case of inner product

queries defined over a single stream: F2(a) =
∑

x∈D (fa(x))
2
.

Both inner product queries and self-join queries are very important

for databases, e.g., for building query execution plans, and they

can be efficiently and accurately computed for streams with the

cash register and turnstile model. However, similar to point queries,

computing these queries over sliding windows is challenging.

ECM-sketches can be used to address this type of queries as well.

Let ar (resp. br) denote the substream of stream a (resp. b) within

the query range. With CMa we denote the corresponding ECM-

sketch for stream ar , and with Ea(i, j, r) we denote the estimated

value of the counter of CMa in position (i, j), for query range r.

Also, fa(x, r) and f̂a(x, r) denote the real and estimated frequency

of x in stream ar .

The inner product of two streams a and b in a range r is defined

as ar ⊙ br =
∑

x∈D fa(x, r)fb(x, r). Using the ECM-sketches

of a and b, we estimate it as follows: âr ⊙ br = minj(âr ⊙ br)j ,

where (âr ⊙ br)j =
∑w

i=1 Ea(i, j, r)×Eb(i, j, r). The following

theorem bounds the approximation error of this estimation.

THEOREM 2. |âr ⊙ br − ar ⊙ br| ≥ (ǫ2sw + 2ǫsw + ǫcm(1 +
ǫsw)

2)||ar||1||br||1 with probability at most δ = δcm.

PROOF. In the appendix.

The error is therefore ≈ (2ǫsw+ǫcm)||ar||1||br||1, since the higher-

order components are dominated by ǫsw and ǫcm. Similar to the

analysis for point queries, we can find the optimal pair of ǫsw
and ǫcm guaranteeing a maximum error of ǫ||ar||1||br||1 by us-

ing derivation on the total memory requirements: ǫsw = −1 −

3+3ǫ

3
4

3

(

9+9ǫ+
√
3
√

28+57ǫ+30ǫ2+ǫ3
) 1

3

+

(

9+9ǫ+
√

3
√

28+57ǫ+30ǫ2+ǫ3
) 1

3

3
2

3

and ǫcm =
ǫ−ǫ2sw−2ǫsw
(1+ǫsw)2

.

4.2 Extensions

4.2.1 Time­based Vs Count­based ECM­Sketches

Exponential histograms were originally developed for count-ba-

sed sliding windows. They can be easily extended for time-based

sliding windows as follows. First, each entry in the data structure is

identified using its arrival time, instead of using its position in the

stream. To reduce memory, arrival times are stored in wraparound

counters of O(log(N)) bits, where N is the length of the sliding

window, e.g., in milliseconds. Second, entries expire based on their

arrival time, and not on their position in the stream. Finally, we re-

quire an upper bound of the number of arrivals within the sliding

window time range for each stream S, denoted as u(N,S). Note

that this is required only for computing the maximum memory re-

quirements of the structure a priori; it does not have an impact on

the actual required memory or quality of ECM-sketches. Further-

more, the bound can be very loose without a noticeable change

on the estimated space requirements, because space complexity in-

creases only logarithmically with u(N,S).

Complexity. We use N to denote the length of the sliding window,

either in number of arrivals or in time, depending on the desired

sliding window model. With u(N,S) we denote the upper bound

of the number of arrivals in stream S within a sliding window of

length N . Also, g(N,S) = max(u(N,S), N).
To get an ǫsw-approximation of the number of one-bits in the

sliding window, exponential histograms require O(log(N)+

995

Exponential Histogram Deterministic Wave Randomized Wave

Memory O
(

1
ǫ
ln(1

δ
) ln2(g(N,S))

)

O
(

1
ǫ
ln(1

δ
) ln2(g(N,S))

)

O
(

1
ǫ2

ln2(δ) ln2(u(N,S))
)

Amort. update O(ln(1/δ)) O(ln(1/δ)) O(ln2(δ))
Worst update O(ln(1/δ) ln(u(N,S))) O(ln(1/δ)) O(ln2(δ) ln(u(N,S)))

Query O(ln(1/δ) ln(u(N,S))/
√
ǫ) O(ln(1/δ) ln(u(N,S))/

√
ǫ) O(ln2(δ)(ln(u(N,S)) + 1/ǫ2))

Table 2: Computational and space complexity of ECM-sketches. Function g(N,S) is used as a shortcut for max(u(N,S), N).

log log(u(N,S))) memory per bucket, to store the bucket size and

bucket boundaries. The number of buckets is O(log(u(N,S))/ǫsw),
yielding a total memory of O(log2(g(N,S))/ǫsw). With respect to

computational cost, the update cost per element is O(log(u(N,S)))
worst-case, and O(1) amortized time. Queries covering the whole

sliding window are executed in constant time. For queries with

range N ′ < N , the required time is O(log(u(N,S)/ǫsw)). The

extra time is required for finding the oldest bucket overlapping with

the query, assuming sequential access. If the storage model of the

buckets supports random access, e.g., a fixed-length array, then this

time can be further reduced to O(log(log(u(N,S)/ǫsw))), by em-

ploying binary search.

The space complexity of ECM-sketches is as follows. For the

Count-Min array, we require an array of width w = ⌈e/ǫcm⌉ and

depth d = ⌈ln(1/δ)⌉. Each cell in the array stores an exponential

histogram, requiring O(log2(g(N,S))/ǫsw) bits. Therefore, the

total memory requirements are O(1
ǫswǫcm

log2(g(N,S)) log(1/δ)).
With respect to the time complexity, adding an element requires

computing d hash functions, and updating d separate exponential

histograms. The amortized complexity for each arrival is there-

fore O(d) = O(log(1/δ)), whereas the worst-case complexity is

O(d log(u(N,S))) = O(log(u(N,S)) log(1/δ)). Finally, query

execution takes O(log(1/δ)) time for a query of range N ′ equal to

N . For N ′ < N , the execution cost is O(d log(u(N,S))/ǫsw) =
O(log(1/δ) log(u(N,S))/

√
ǫ) with sequential access to buckets,

e.g., using a linked list. With random access support, binary search

can be used for finding the last relevant bucket for each query, re-

ducing the query cost to O(log(1/δ) log(log(u(N,S))/
√
ǫ)).

4.2.2 ECM­Sketches based on Waves

The sliding window counters can also be materialized using other

sliding window algorithms. In the literature, two such algorithms

are particularly well-known: (a) deterministic waves, and, (b) ran-

domized waves [15]. We now show how ECM-sketches can in-

corporate these algorithms, and discuss the positive and negative

aspects of each variant.

Deterministic Waves. Deterministic waves [15] have identical

memory requirements with exponential histograms, and they out-

perform exponential histograms with respect to worst-case com-

plexity for updates, requiring always constant time. As such, the

space and computational complexity of ECM-sketches based on

deterministic waves is the same to the one of sketches based on

exponential histograms, with the only difference being the worst-

case update complexity, which is O(log(1/δ)).
A downside of deterministic waves is that they require knowl-

edge of the upper bound of the number of arrivals u(N,S) during

the initialization of the data structures, to decide on the required

number of queues/levels. Any overestimation of u(N,S) is there-

fore translated to an increase on the space requirements – logarith-

mic with u(N,S). It is important to note that this constraint is

substantially less limiting compared to the constraints of previous

algorithms, e.g., [27], which required an upper bound for the total

number of items in all streams, and therefore could not be applied

to dynamic networks, with an unknown number of participating

nodes and streams.

Randomized Waves. Randomized waves [15] provide an (ǫ, δ)

approximation for the basic counting problem, i.e., Pr[|x̂ − x| ≤
ǫswx] ≥ 1 − δsw, where x̂ and x denote the estimated and real

number of true bits in the sliding window range respectively. This

structure has substantially higher space complexity compared to the

deterministic counterparts – O(1/ǫ2sw) instead of O(1/ǫsw). How-

ever, randomized waves are important for distributed applications,

as they enable lossless aggregation of individual summaries to a

single summary corresponding to the aggregated data. Therefore,

we also consider randomized waves for integration with the ECM-

sketch.

The space complexity of ECM-sketches based on randomized

waves is derived by multiplying the space complexity of the two ba-

sic structures: O (log(δcm) log(δsw) log2(f(N,S))/(ǫcmǫ2sw)
)

.

Inserting a new element requires O(log(δcm) log(δsw)) amortized

time, and O(log(δcm) log(δsw) log(f(N,S))) worst-case time. Fi-

nally, query execution takes O(log(δcm) log(δsw) (log(f(N,S))+
1/ǫ2sw)) with sequential access to buckets and O(log(δcm) log(δsw)
(log log(f(N,S)) + log(1/ǫ2sw))) time with random access.

THEOREM 3. |f̂(x, r)− f(x, r)| ≥ (ǫsw + ǫcm + ǫswǫcm)||ar||1
with probability at most δ = δsw + δcm.

PROOF. In the appendix.

By derivation on the total memory usage, we can find the combi-

nation of ǫsw and ǫcm that minimizes the memory bound: ǫsw =√
ǫ2+10ǫ+9+ǫ−3

4
and ǫcm =

3ǫ−
√

ǫ2+10ǫ+9+3

ǫ+
√

ǫ2+10ǫ+9+1
. The optimal space

complexity becomes O
(

log(δcm) log(δsw) log2(f(N,S))/ǫ2
)

, and

for δcm = δsw = δ/2 it becomes O
(

log2(δ) log2(f(N,S))/ǫ2
)

.

Table 2 summarizes the main results for the combination of ECM-

sketches and the three sliding window structures. The results cor-

respond to both time-based and count-based sliding windows.

5. ORDER­PRESERVING AGGREGATION
For many distributed applications, such as the network monitoring

application described in the introduction, we require aggregating

individual ECM-sketches CM1, CM2, . . . , CMn, each one cor-

responding to stream S1, S2, . . . , Sn, to get a single ECM-sketch

CM⊕ that corresponds to the logical stream S⊕ = S1 ⊕ S2 ⊕
. . . ⊕ Sn. The ⊕ operator is defined as an aggregation that pre-

serves the ordering and arrival time of the events. Standard Count-

Min sketches allow this aggregation, as long as all sketches are

constructed with identical dimensions and hash functions. For this,

they rely on the linearity of the Count-Min counters, which are sim-

ple integers in the general case. However, this does not trivially

hold for ECM-sketches, where the counters are not simple num-

bers but complex sliding window structures, since the analysis of

exponential histograms (as well as all other deterministic sliding

window structures), does not cover linearity. Although random-

ized structures cover linearity by default, these are substantially

more expensive, and not preferable for ECM-sketches. Therefore,

we now consider the order-preserving aggregation of deterministic

sliding window structures. Note that this problem is interesting by

itself, since these data structures are widely used in the literature

for maintaining statistics over sliding windows. We then extend

our results to cover aggregation of the ECM-sketches.

996

5.1 Aggregation of Exponential Histograms
Consider a set of exponential histograms EH1, EH2, . . . , EHn,

summarizing time-based sliding windows. All are configured to

cover a sliding window of N time units. The aggregation opera-

tion is denoted with ⊕, i.e., EH⊕ = EH1 ⊕ EH2 ⊕ . . .⊕ EHn.

With EHj
i we denote bucket j of EHi, and |EHj

i | denotes the

bucket size (number of true bits). By convention, buckets are num-

bered such that bucket 1 is the most recent. The ending time of the

bucket is denoted as e(EHj
i). To ease exposition, we use s(EHj

i)
to denote the starting time of the bucket, even though this is not

explicitly stored in the buckets. By construction, the starting time

of a bucket is equal to the ending time of the previous bucket, i.e.,

s(EHj
i) = e(EHj−1

i).
To construct EH⊕ our methodology considers the individual ex-

ponential histograms as logs. The general idea is to reconstruct

EH⊕ by assuming that half of the elements arrive at the start-

ing time of each bucket, and the other half at the ending time of

the bucket. Precisely, let B denote the list containing all buckets

of all sliding windows. We initialize an empty time-based expo-

nential histogram with error ǫ′, configured to keep the last N time

units, and a maximum of
∑n

i=1 |EHi| elements. For each bucket

B[i] ∈ B, we simulate the insertion in EH⊕ of |B[i]| true bits. Half

of the bits are inserted with timestamp s(B[i]), and the other half at

time e(B[i]). The insertions are simulated in the order defined by

the starting and ending timestamps of the buckets.

THEOREM 4. Consider n time-based exponential histograms

EH1, EH2, . . ., EHn, initialized with error parameter ǫ, and cov-

ering the same time range. The exponential histogram EH⊕ ini-

tialized with error parameter ǫ′, and constructed with the proposed

aggregation algorithm answers any query within its time range for

the stream S⊕ with a maximum relative error of (ǫ+ ǫ′ + ǫǫ′).

We will now give the intuition of the proof. The formal proof

is presented in the appendix. Each exponential histogram EH of

stream S configured with error parameter ǫ can be used to recon-

struct an approximate stream S′, as follows: For each bucket b in

EH , add |b|/2 true bits in time s(b), and |b|/2 true bits in time

e(b). We argue that answering any query with starting time sq
within the range of EH using the reconstructed stream S′ will

result to a maximum relative error ǫ. Let bj be the bucket s.t.

s(bj) < sq ≤ e(bj). Therefore, the accurate answer x of the

query for stream S is bounded by x ≥
∑j−1

i=1 |bi| + 1 and x ≤
∑j−1

i=1 |bi| + |bj |. By construction, the reconstructed stream will

contain a total of
∑j−1

i=1 |bi|+ |bj |/2 items with timestamp greater

than or equal to sq . Therefore, answering the query by counting

the number of true bits in the reconstructed stream with times-

tamp after sq will have a maximum error of max(h−
∑j−1

i=0 |bi|+
|bj |/2,

∑j−1
i=0 |bi| + |bj |/2 − l) = |bj |/2. By invariant 1 of expo-

nential histograms, |bj |/2 ≤ ǫ(1 +
∑j−1

i=1 |bi|) ≤ ǫx. Therefore,

the maximum difference between the answer estimated by stream

S′ and the correct answer x will be less than or equal to ǫx.

Our aggregation algorithm is equivalent to reconstructing each

stream S′
i from exponential histogram EHi, and using these to

recreate an exponential histogram EH⊕. The reconstruction of

stream S′ introduces a maximum relative error ǫ, as explained above.

Summarizing S′ with a new exponential histogram we get an ad-

ditional error ǫ′. However, ǫ′ is relative on the answer provided

by stream S′, and not by S. Therefore, the absolute error due

to the exponential histogram summarization will be ǫ′x′, where

x′ ∈ (1 ± ǫ)x and x denoting the accurate answer on Si. Sum-

ming both errors, we get a total relative error of ǫ+ ǫ′ + ǫǫ′.
For the special case when ǫ′ = ǫ, the maximum relative error

becomes 2ǫ+ǫ2. Concerning space and computational complexity,

EH⊕ behaves as a standard exponential histogram, and therefore

has the same complexity as presented in [12].

Multi-level Aggregation. It is frequently desired to aggregate slid-

ing windows in more than one levels. For example, consider a

hierarchical P2P network, where each peer maintains its own ex-

ponential histogram, and pushes it to its parent for aggregation at

regular intervals. Since the aggregated exponential histograms have

the same properties as the individual exponential histograms (albeit

with a higher ǫ), the above analysis also supports iterative aggrega-

tion of exponential histograms.

There are two types of approximation error that influence the

estimation of an aggregated exponential histogram. A possible ap-

proximation error, denoted as err1, is introduced due to halving of

the size of the last bucket of the aggregated exponential histogram.

This error occurs only at query time, and is independent of the num-

ber of performed aggregations. Therefore, at a multi-level aggre-

gation scenario this error does not need to be propagated at the in-

termediary exponential histograms. A second type of error, termed

as err2, occurs due to the inclusion (exclusion) of data that arrived

before (after) the query starting time in buckets that are accounted

(not accounted) in the query result.

It turns out that the error err2 is additive at the worst case (in

absolute value). For instance, in the lowest level (Level 0) of the

hierarchy, aggregating two exponential histograms (all with relative

error ǫ), having a true number of bits (in a given query range) equal

to i1 and i2, will result at a maximum value for err2 ≤ ǫ(i1 + i2).
In Level 1, in addition to the previous possible errors, ǫ(i1 + i2) +
ǫ(i3 + i4) stream items may be incorrectly registered at the wrong

side of the query start time. A recursive repetition for h levels

results to err2 ≤ hǫi, where i =
∑

j ij . The total absolute error

(including err1) then becomes err = err2+err1 ≤ hǫi+ǫ(i+hǫi),
resulting to a maximum relative error of hǫ(1 + ǫ) + ǫ.

In many applications, the number of aggregation levels can be

predicted, or even controlled when constructing the network topol-

ogy. For example, consider DHT-based or hierarchical P2P topolo-

gies, which typically enable a balanced-tree access to the peers of

height h = log(N), where N is the number of nodes. In such sys-

tems, initializing the individual exponential histograms with error√
1+2h+h2+4hǫ−1−h

2h
yields an aggregated exponential histogram

of relative error ǫ. Naturally, this causes a slight inflation of the

size of the sliding window, by O(log(N)). However, even with this

inflation, exponential histograms are – even for extremely large net-

works – substantially smaller and more efficient than randomized

data structures that enable error-free aggregation in the expense of

memory proportional to O(1/ǫ2) (see also Section 5.2).

Deterministic Waves. The aggregation technique trivially extends

for deterministic waves. Recall that each wave is composed of l
levels, each covering a different range. To perform the aggregation,

we start from the lowest level l − 1, and switch to a higher level

every (1/ǫ+ 1)/2 bits, i.e., when the first entry in the higher level

has arrived before the next entry in the current level. Repeating the

calculation of the error bounds for the aggregation of deterministic

waves becomes straightforward when we notice that invariant 1 of

the exponential histograms is also true for deterministic waves.

Count-based Exponential Histograms. Although exponential his-

tograms cover both time-based and count-based sliding windows,

aggregation of exponential histograms is specific for time-based

sliding windows. Count-based sliding windows do not contain suf-

ficient information for allowing order-preserving aggregation. Even

storing the system-wide time of the buckets would not be sufficient

to allow such an aggregation. To illustrate this limitation, consider

997

the two count-based exponential histograms depicted in Fig. 2. For

each bucket we store the bucket id, the size of the bucket, the bucket

completion time and the total number of arrivals until that time. An

arrival in count-based sliding windows might be a true or a false

bit. An example query can then be: how many true bits arrived in

the last 100 system-wide arrivals. If these 100 system-wide arrivals

were read between time 19 and 20, then the correct answer would

be 1. However, it is also possible that the last 100 system-wide ar-

rivals have arrived between time 3 and time 20, in which case the

correct answer could be anything between 2 and 9. The information

contained in the two exponential histograms is not sufficient to es-

timate this type of queries, as it only allows us to preserve the order

of the true bits, but looses the order of the false bits, which is also

important. Therefore, given only the exponential histograms, it is

not possible to aggregate them in a way that preserves the ordering

of both true and false bits. Deterministic and randomized waves

also have the same limitation when it comes to order-preserving

aggregation of count-based sliding windows.

5.2 Aggregation of Randomized Waves
Randomized waves were proposed in [15] to address the prob-

lem of distributed union counting: counting the number of 1’s in

the position-wise union of t distributed data streams, over a slid-

ing window. However, the existing algorithm for utilizing more

than one randomized waves does not consider aggregation of sev-

eral waves, to generate a single wave. It assumes that the individual

randomized waves can be stored and accessed any time, which is

inconvenient for large networks. To eliminate this assumption we

now propose a slight variation of their algorithm that can produce

a single randomized wave out of a set of individual waves, with the

same probabilistic accuracy guarantees as the individual waves.

Our algorithm simulates the construction of the aggregate ran-

domized wave RW⊕ by using only the information included in

the individual randomized waves. Consider a set R of randomized

waves RW1, RW2, . . . , RWn, configured to store a sliding win-

dow of N time units, with error parameters ǫ and δ. The aggregate

randomized wave RW⊕ is initialized with the same ǫ and δ pa-

rameters, for storing a maximum of
∑n

i=1 |RWi| events over N
time units. Each level l of RW⊕ is then constructed by concatenat-

ing the corresponding level l from all individual randomized waves,

sorting all events based on the timestamp, and keeping the last c/ǫ2

events. Recall that the number of levels of individual randomized

waves is determined based on the maximum number of events in

the sliding window. Therefore, it may happen that RW⊕ has more

levels than individual randomized waves. To populate the lower

levels of RW⊕, we rehash the events populating the last level of

each individual randomized wave, as proposed in [15] when merg-

ing different levels from randomized waves.

The process of query execution and the accuracy guarantees re-

main the same as for the standard randomized waves.

5.3 Composability of ECM­Sketches
Consider a set of ECM-sketches CM1, CM2, . . ., CMn with

identical dimensions and hash functions. The ECM-sketch CM⊕
with each counter set to the sum of all corresponding counters from

the individual sketches (as defined by the ⊕ operator), summarizes

the information found in the individual sketches:

CM⊕[j, k] = CM1[j, k]⊕ CM2[j, k]⊕ . . .⊕ CMn[j, k]

To bound the estimation error, we consider the two sources of

error in the aggregated ECM-sketch. The error due to the Count-

Min sketch ǫcm does not change, since it only depends on the di-

mensionality of the Count-Min array, which is fixed. However,

EH1 EH2

Bucket id 2 1 5 4 3 2 1
Size 1 1 8 4 2 1 1

Completion time 3 20 3 5 10 15 19
Arrivals 500 1000 900 950 980 990 1000

Figure 2: An example why aggregating count-based exponen-

tial histograms is not possible.

the error due to sliding window estimations at each counter might

change with each aggregation. Let ǫ′sw denote the error produced

by the aggregation of the corresponding Count-Min counters, as

discussed in Sections 5.1 and 5.2. Recall that this error depends on

the data structure used for maintaining the sliding window. Simi-

lar to the case of individual ECM-sketches, the total error is ǫ =
ǫcm + ǫ′sw + ǫcmǫ′sw, with probability 1− δsw − δcm.

6. OTHER APPLICATIONS
In addition to point and inner product queries, ECM-sketches can

also address more complex requirements. We now briefly discuss

two such cases: (a) finding the frequent items, and, (b) continu-

ous monitoring of the value of inner joins or point queries over

distributed streams. Additional problems, such as computing quan-

tiles or answering range queries over sliding windows, can also be

addressed, e.g., by adapting the algorithms proposed for Count-Min

sketches [10] to employ ECM-sketches instead.

6.1 Finding the Frequent Items
Consider a stream S containing items from the universe U. The

straightforward solution for finding the frequent items in the slid-

ing window is to execute |U| point queries on the ECM-sketch, one

for each item in the universe, and retain only the items above the

desired frequency threshold. However, this approach carries a com-

putational complexity of O(|U|×ln(1/δ)) for executing all queries

and detecting the frequent items, which is clearly prohibitive for

streaming algorithms.

A more efficient algorithm based on range sums is proposed by

Cormode et al. [10], and can be adapted to ECM-sketches for ad-

dressing the sliding-window requirements. The algorithm relies on

group testing, for progressively reducing the domain of candidate

frequent items, until only the truly frequent items remain. The basic

idea is to create log(|U|) ECM-sketches, denoted as CM0, CM1,

. . .CMlog(|U|)−1, to keep the number of occurrences of ranges of

items. The i’th ECM sketch is used to maintain the range sum of the

necessary dyadic ranges of length 2i for covering U. A new arrival

x ∈ U is handled by adding ⌊x/2i⌋ to CMi, for 0 ≤ i < log(|U|).
To detect the frequent items, we start with CMlog(|U|)−1, estimat-

ing the number of occurrences of the contained dyadic ranges. If

any of the dyadic ranges has an estimated frequency less than the

frequency threshold φ, the whole dyadic range is ignored, as it can-

not contain a frequent item. For all ranges with frequency surpass-

ing φ, the test continues recursively by breaking the range in two,

and using the ECM-sketch of the lower level.

There are some interesting variants of the above problem, mostly

relating to the way the threshold φ is expressed by the user. If φ is

given as a minimum number of occurrences of each item, then no

further computation is needed to determine which dyadic ranges

are frequent and which are infrequent. However, it is often useful

to express φ as the ratio of the number of occurrences of each item

to the total number of arrivals within the sliding window. For time-

based sliding windows, we can estimate the total number of arrivals

by maintaining an additional sliding window, e.g., a deterministic

wave, and using its lower bound. A better alternative that does

not require additional memory is to use ECM-sketch CM0 to esti-

mate the total number of arrivals, by summing all counters in each

998

3

u 4

u 2

u
1

Drift Vector u

Global Estimate Vector e

Global Statistics Vector v

v
e

A
re

a
 w

h
e
re

 f
(v

)
>

 T

u

Figure 3: Local constraints using the Geometric Approach.

Each node constructs a sphere with diameter the drift vector

u of the node and the estimate vector e. The global statistics

vector v is guaranteed to lie in the convex hull of e, u1, u2,

u3, u4. The union of the local spheres covers the convex hull.

row, and getting the average value. Although this approach has the

same error bounds, in practice it offers better estimation accuracy

than maintaining a single additional sliding window, since the er-

rors coming from all counters in each row are usually canceled out.

This estimation based on ECM-sketches may result to false pos-

itives and false negatives. Theorem 5 allows us to bound this error.

THEOREM 5. The proposed algorithm uses

O((log |U|/ǫ) log(2 log |U|/(δφ)) log2(g(N,S))) memory and

amortized time O(log(2 log |U|/δ) log |U|) per update, for detect-

ing every item with frequency at least (φ+ǫ)||a||1. With probability

1− δ, no item with frequency less than φ||a||1 is output.

The same algorithm for approximating range sums can also be

used for range queries, by noticing that all valid ranges within

U can be expressed by a sum of dyadic ranges [10]. The error

guarantees in this case are identical to the ones for Count-Min

sketches, as described in [10], whereas the memory requirements

are O((1/ǫ) log(1/δ) log2(g(N,S)) log |U|) bytes, for maintain-

ing the log |U| ECM-sketches.

6.2 Continuous Monitoring of Functions for
Threshold Crossing

In many application domains, continuous monitoring of func-

tions is required. ECM-sketches can also be used in these scenar-

ios to reduce the memory and network requirements. We give the

main intuition on how this can be done using self-join queries over

sliding windows as an example.

We combine ECM-sketches with the geometric method [25]. The

geometric method allows the distributed monitoring of complex

(non-linear) functions defined over the average of local vectors

(termed as local statistics vectors) maintained at sites. The goal

is to to drastically reduce the required coordination for monitoring

threshold crossing of such complex functions in a distributed net-

work. The main idea is to distributively monitor the domain space

where the average vector may lie. Each site monitors a portion

of the corresponding subset of the domain space, with the corre-

sponding monitoring zone often being expressed as a hypersphere.

A common reference point of all such hyperspheres is the global

estimate vector, which is the average vector computed during the

last global communication (often called as a synchronization step)

among all sites. Figure 3 depicts this process.

In this context, ECM-sketches are used to represent:

• The local statistics vectors at each site. The ECM-sketches are

denoted as −→sv1(t),
−→sv2(t), . . . ,

−→svn(t), where n is the number

of sites. All sketches have an identical configuration.

• The global statistics vector. This vector is the current average

over all local statistics vectors. The value of this vector is un-

known to all sites, unless a synchronization takes place. The

global statistics sketch is denoted as −→sv(t), and is computed by

a linear aggregation of the local statistics sketches. We also

use −→se(t) to denote the global estimate vector, which is the last

known value of the global statistics vector.

Out of these two ECM-sketches, we can also compute the fol-

lowing two vectors, required by the geometric method:

• The statistics delta vectors, denoted using ∆−→sv(t). This vec-

tor is equal to the difference between the local statistics vector

and the corresponding vector that was transmitted in the last

synchronization.

• The drift vectors, denoted as −→sui(t), where −→sui(t) = −→se(t) +
∆−→svi(t). The global statistics vector is guaranteed to lie in the

convex hull of the drift vectors, while this convex hull is cov-

ered by the union of hyperspheres monitored by the sites. Each

hypersphere of a site is constructed with diameter the global es-

timate vector and the corresponding drift vector of the site [25].

To initialize the monitoring process, all nodes send their local

statistics vectors −→sv1(t),
−→sv2(t), . . . ,

−→svn(t) to a coordinator. The

coordinator aggregates all vectors using the algorithm for order-

preserving aggregation of ECM-sketches, and computes a single

global statistics vector −→sv(t). This global statistics vector is called

the global estimate vector, and it is propagated to all network nodes,

e.g., by using a hierarchy, or a broadcasting technique. This es-

timate vector is used by each participating node to extract a set

of Count-Min sketches, one for each query range. Without loss

of generality, assume that we have only a single query range, and−→se(t) denotes the corresponding extracted Count-Min sketch.

After each new arrival at time t′, node pi updates its local statis-

tics vector −→svi, and checks for a local constraint violation. For this

check, pi extracts the statistics delta vector ∆−→sv(t′) from −→svi(t
′)

as a Count-Min sketch, by querying each counter of −→svi(t
′) for its

value within the time range (t, t′]. By summing ∆−→sv(t′) with −→se(t)
the node can compute the drift vector −→sui(t

′), again as a Count-

Min sketch, and construct the sphere of the geometric method. The

sphere is formed with a center κ = (−→se(t)+−→sui(t
′))/2, and radius

α = ||(−→se(t) − −→sui(t
′))||/2. The geometric method guarantees

that if the maximum and minimum value of the function within the

sphere are at the same side of the threshold, then there can be no

threshold crossing caused by this update. For computing the max-

imum and minimum value of the function efficiently, we currently

have closed form equations for simple functions, like self-joins.

Sharfman et al. [25] propose using numerical analysis algorithms,

to compute these extrema, e.g., with Matlab. We are still work-

ing on this problem, to achieve efficient analytic solutions for more

function types.

7. EXPERIMENTAL EVALUATION
Our experiments focused on evaluating ECM-sketches with re-

spect to their scalability, effectiveness, and efficiency, as well as

their suitability for distributed setups. The experiments were con-

ducted using two frequently used real-life data sets, the world-

cup’98 [2] (wc’98) and the Crawdad SNMP Fall 03/04 data set [21]

(snmp). The wc’98 data set consists of all HTTP requests that

were directed within a period of 92 days to the web-servers host-

ing the official world-cup 1998 website. It contains a total of 1.089

billion valid requests, served by 33 server mirrors. Each request

was indexed using the web-page url as a key, i.e., the ECM-sketch

could be used for estimating the popularity of each web-page. The

snmp data set contains a total of 134 million records collected

from the wireless network of Dartmouth college during the fall

of 2003/2003. For this data set, we have used the (anonymised)

999

MAC addresses of the clients as keys for indexing. Therefore,

the ECM-sketch enabled estimating the traffic volume generated

by each user.

We have compared three sketch variants, differentiating on the

employed sliding window algorithm: (a) the default variant de-

scribed earlier which is based on exponential histograms, denoted

as ECM-EH, (b) a variant using deterministic waves (ECM-DW),

and, (c) a variant based on randomized waves (ECM-RW). The

comparison between the variants was performed to demonstrate the

influence of the sliding window algorithm to the performance of

ECM-sketches.

7.1 Implementation Details
ECM-sketches were implemented in Java 1.7 using 32-bit ad-

dressing, and executed on a single idle core of an Intel Xeon 1.6

GHz machine. Deterministic and randomized waves were imple-

mented as described in [15], including all optimizations. The queues

were implemented as fixed-size deques. The waves were initialized

using one event per millisecond as an upper bound for the num-

ber of arrivals within the sliding window. In practice, it is rarely

possible to predict the maximum number of events per sliding win-

dow, and therefore conservative estimates, like this one, are often

the only option. Concerning exponential histograms, [12] does not

provide sufficient details for the implementation of the list of buck-

ets. We therefore considered different possibilities for maintaining

the buckets, including fixed arrays, deques, doubly-linked lists, and

tree lists, and their combinations. The most efficient implementa-

tion was a combination of fixed arrays with deques, which enabled

random access to buckets and constant-time bucket merges. Specif-

ically, the bucket list was divided to different levels L0, L1, . . . , Ll.

Each level Li was initialized as a fixed-length deque, for storing

only the buckets of size 2i. Furthermore, to save memory, all levels

were initially set to null, and initialized on request. The space and

computational complexity of our implementation is as described in

Section 6, for the random-access model.

Unless otherwise noted, all ECM-sketches were set to monitor a

sliding window of 1 million seconds (11.5 days). Queries were gen-

erated with an exponentially increasing range, i.e., query qi covered

the range [t−10i, t], with t denoting the time of the last arrival. For

each range, a self-join query, as well as a set of point queries were

constructed and executed. For thorough evaluation, we constructed

one point query for each distinct item in the query range (i.e., es-

timating the popularity of each web-page in the wc’98 dataset, or

the number of snmp messages generated by each MAC address in

the snmp dataset).

7.2 Centralized Setup
In the centralized scenario, a single node monitors the whole

stream and maintains an ECM-sketch, which is subsequently used

for answering the queries. We first consider the tradeoff between

memory requirements and estimation error. For this, we vary ǫ
within the range of [0.05, 0.25], keeping δ = 0.1. For each ǫ value,

we use the analysis presented in Section 4 to configure the ECM-

sketch such that the required memory for the targeted query type is

minimized – hence the difference in the cost of point queries and

self-join queries for the same ǫ values.

Figures 4(a)-(d) plot the average and maximum observed error

in correlation to the required memory for the two data sets. The

figures are annotated with indicative ǫ values. The displayed error

at the Y axis is relative to the number of events arriving within the

query range, i.e., for point queries, err = |f̂(x, r)−f(x, r)|/||ar||1
and for self-joins, err = | ̂ar ⊙ ar − ar ⊙ ar|/(||ar||1)2. Recall

that the ECM-RW structure does not allow probabilistic guarantees

for self-join queries, and is therefore not considered for this type

of queries. Table 3 presents sample update rates for the considered

variants, for ǫ = 0.1.

Our first observation is that, for all variants, both the average and

maximum observed errors are lower than the user-selected value ǫ.
However, the memory requirements of ECM-RW are at least an or-

der of magnitude higher than the requirements of ECM-sketches

based on the two deterministic structures for offering the same ac-

curacy guarantees. As an example, for the wc’98 experiment with

a moderate value of ǫ = 0.1, the cost of maintaining the ECM-RW

sketch is already 400 Mbytes, whereas the ECM-sketches based on

exponential histograms and deterministic waves require less than

a megabyte for satisfying the same guarantees (the simulation of

ECM-RW configured with ǫ = 0.05 could not be completed due

to insufficient main memory). This happens because the memory

requirements of randomized waves grow quadratically with 1/ǫ,
whereas the two deterministic sliding window algorithms scale lin-

early. Note that this negative result applies to all known random-

ized sliding window algorithms, e.g., [27, 11], since they all scale

quadratically with 1/ǫ. As such, ECM-sketches based on determin-

istic structures are more applicable for scenarios with non-specia-

lized hardware, or hardware with less memory, like sensor net-

works and network devices. Comparing the two deterministic meth-

ods, we see that ECM-EH sketches are faster and more compact,

requiring approximately half the space compared to the ones based

on deterministic waves. All results are consistent for both data sets.

Summarizing, these results demonstrate that ECM-EH sketches

are more efficient and compact compared to the other two variants,

and that ECM-RW sketches require at least an order of magnitude

more memory to satisfy the accuracy guarantees compared to the

two variants based on deterministic sliding window structures.

7.3 Distributed Setup
The second series of experiments focused on evaluating the ap-

plicability of ECM-sketches for distributed setups. For this, we

conducted simulations of distributed networks using the real-world

distributions obtained from the two data sets. In particular, wc’98

contains the server identification for each of the 33 official world-

cup servers answering the HTTP requests, whereas the records in

the snmp data set contain the identification for each of the 535 mon-

itored APs. For our simulations, these servers were organized in an

architecture resembling a balanced binary tree of height ⌈log2(n)⌉,

where n is the number of servers. All servers resided at the leaf

nodes of the tree. Some of these servers were also randomly cho-

sen to occupy the internal tree nodes, responsible for aggregation of

the ECM-sketches coming from the children nodes. At the end of

the aggregation process, the root node of the hierarchy was holding

a single ECM-sketch, representing the order-preserving aggrega-

tion of the n streams generated in ⌈log2(n)⌉ − 1 steps. ECM-DW

sketches are not considered in this set of experiments, since they do

not offer any advantages compared to ECM-EH sketches.

Figures 5(a)-(b) plot the average observed error for point and

self-join queries in correlation to the network requirements for the

whole aggregation to be completed. The results correspond

to ǫ ∈ [0.05, 0.25] and δ = 0.1. Note that the simulation with

ECM-RW sketches did not complete for all ǫ values, due to insuffi-

cient memory resources at the machine simulating the n nodes. To

illustrate the accuracy loss due to this aggregation, Table 4 presents

a comparison between the observed error of the centralized and the

distributed ECM-sketches.

As expected, the process of iterative aggregations causes an in-

crease of the observed error for ECM-EH sketches. This error how-

ever is still substantially lower than the upper bound derived by

1000

0.00

0.01

0.02

0.03

0.04

0.05

 0.01 0.1 1 10 100 1000

O
b
s
e
rv

e
d
 e

rr
o
r

Memory (Mbytes)

ε=0.25

ε=0.05

ε=0.25

ε=0.1
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 0.01 0.1 1 10 100 1000

O
b
s
e
rv

e
d
 m

a
x
im

u
m

 e
rr

o
r

Memory (Mbytes)

ε=0.25

ε=0.05

ε=0.25

ε=0.1

0.00

0.01

0.02

0.03

0.04

0.05

 0.01 0.1 1 10 100 1000 10000

O
b
s
e
rv

e
d
 e

rr
o
r

Memory (Mbytes)

ε=0.25

ε=0.25

ε=0.05

ε=0.25

ε=0.05

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 0.01 0.1 1 10 100 1000 10000

O
b
s
e
rv

e
d
 m

a
x
im

u
m

 e
rr

o
r

Memory (Mbytes)

ε=0.25

ε=0.05

ε=0.25

ε=0.05

Self-join queries:Point queries: EH: DW:RW: EH:DW:

Figure 4: Average and maximum observed error in correlation to memory requirements for a centralized setup: (a)-(b) wc’98 data

set, (c)-(d) snmp data set. The plots are annotated with indicative ǫ values.

ECM-EH ECM-DW ECM-RW

wc’98 1486314 1167704 177149

snmp 736595 667036 105825

Table 3: Update rate (updates per sec-

ond) for the centralized setup (ǫ = 0.1).

Point queries ECM-EH Self join ECM-EH Point queries ECM-RW

ǫ Data set Centr.:Distr. Ratio Centr.:Distr. Ratio Centr.:Distr. Ratio

0.1 wc’98 0.012:0.015 1.234 0.012:0.015 1.231 0.007:N/A N/A

0.2 wc’98 0.027:0.031 1.164 0.026:0.029 1.131 0.016:0.016 1.008

0.1 snmp 0.011:0.011 1.042 0.010:0.011 1.021 0.006:0.006 1.031

0.2 snmp 0.025:0.026 1.037 0.025:0.025 1.016 0.014:0.014 0.986

Table 4: Observed error – loss is due to the iterative aggregation.

0.00

0.01

0.02

0.03

0.04

0.05

 1 10 100 1000 10000

O
b
s
e
rv

e
d
 e

rr
o
r

Transfer volume (Mbytes)

ε=0.25

ε=0.25

ε=0.05

ε=0.15

0.00

0.01

0.02

0.03

0.04

0.05

 1 10 100 1000 10000

O
b
s
e
rv

e
d
 e

rr
o
r

Transfer volume (Mbytes)

ε=0.25

ε=0.25

ε=0.25

ε=0.05
ε=0.05

Self-join queries:Point queries: EH: RW: EH:

Figure 5: Observed error in correlation to the network cost, for

varying ǫ: (a) wc’98 data set, (b) snmp data set.

the analysis. For example, for the case of the wc’98 data set with

ǫ = 0.1, the error bound is 0.3, whereas the average observed er-

ror after aggregation is less than 0.015, i.e., the increase due to the

aggregation is less than 1/4 of the experimentally derived error of

the centralized sketch. Concerning ECM-RW sketches, there is no

systemic variation of the error, since randomized waves enable a

lossless aggregation at the expense of a larger memory footprint.

However, the network required for performing this aggregation us-

ing ECM-RW is higher by at least an order of magnitude compared

to the transfer volume for the variant with exponential histograms.

This requirement is prohibitive for a large set of application sce-

narios, like sensor and mobile networks, where high network usage

causes battery drainage.

To further explore the influence of the network size on the esti-

mation accuracy and network cost, we have also simulated an arti-

ficial network of i servers, with i = {1, 2, 4, . . . , 256}. The nodes

were again placed as leaf nodes on a balanced binary tree, and the

requests were divided uniformly across them. Figure 6(a) and (c)

plot the average observed error in correlation to the network size,

for ǫ = δ = 0.1. As expected, for ECM-EH sketches, increasing

the number of nodes leads to a small increase on the observed esti-

mation error. On the other hand, the aggregation process does not

affect the accuracy of ECM-RW sketches, due to the lossless aggre-

gation of randomized waves. However, the network cost for aggre-

gating the sketches based on randomized waves (Figure 6(b) and

(d)) is at least an order of magnitude higher compared to ECM-EH.

This limits the applicability of ECM-sketches based on randomized

waves to cases where a fast, fixed network is available, and makes

the ability to merge deterministic sliding windows, e.g., based on

exponential histograms, a very important contribution of this work.

Summarizing, this set of experiments showed that ECM-sketches

based on exponential histograms can be aggregated with very small

information loss. Compared to the lossless aggregation of ECM-

sketches based on randomized waves, the sketches based on expo-

nential histograms are substantially more compact, and are there-

fore applicable for a wider range of application scenarios, where

network cost and memory is of the essence, such as P2P networks,

sensor networks, and communication between network routers.

8. CONCLUSIONS
In this work we considered the problem of answering complex

queries over distributed and high dimensional data streams, in the

sliding window model. Our proposal, ECM-sketches, is a com-

pact structure combining the state-of-the-art sketching technique

for data stream summarization with deterministic sliding window

synopses. The structure provides probabilistic accuracy guaran-

tees for the quality of the estimation, for point queries and self-join

queries, and can enable a broad range of problems, such as finding

heavy hitters, computing quantiles, and answering range queries

over sliding windows.

Focusing on distributed applications, we also showed how a set

of ECM-sketches, each one representing an individual stream, can

be aggregated to generate a single ECM-sketch that summarizes

the stream produced by the order-sensitive aggregation of all indi-

vidual streams. Interestingly, this is the first result in the literature

enabling such aggregation for sketches that use deterministic slid-

ing window synopses, and it is of high importance since determin-

istic synopses are generally a factor of O(1/ǫ) more compact than

the best-known randomized synopsis for delivering an ǫ-accurate

approximation. In the same context, we demonstrated how ECM-

sketches can be exploited for detecting frequent items, as well as

within the geometric method for answering continuous queries.

ECM-sketches were thoroughly evaluated with a set of extensive

experiments, using two large real-world datasets, and considering

both centralized and distributed setups. The results verified the

high performance of the structure. Compared to structures based

on randomized sliding window synopses, ECM-sketches improve

the memory and computational complexity by at least one order of

magnitude. The same magnitude of improvement is observed with

respect to the network requirements.

Our future work includes further investigation on employing

ECM-sketches for the geometric method, for handling additional

types of continuous queries over distributed sliding window streams.

Acknowledgments. This work was supported by the European
Commission under ICT-FP7- LIFT-255951 (Local Inference in
Massively Distributed Systems).

1001

0.004

0.008

0.012

0.016

0.020

 1 2 4 8 16 32 64 128 256

O
b
s
e
rv

e
d
 e

rr
o
r

Number of nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 4 8 16 32 64 128 256

T
ra

n
s
fe

r
v
o
lu

m
e
 (

M
b
y
te

s
)

Number of nodes

0.004

0.008

0.012

0.016

0.020

 1 2 4 8 16 32 64 128 256

O
b
s
e
rv

e
d
 e

rr
o
r

Number of nodes

 0

 100

 200

 300

 400

 500

 1 2 4 8 16 32 64 128 256

T
ra

n
s
fe

r
v
o
lu

m
e
 (

M
b
y
te

s
)

Number of nodes

Self-join queries:Point queries: EH: RW: EH:

Figure 6: Observed error and network cost for different network sizes: (a)-(b) wc’98, (c)-(d) snmp.

9. REFERENCES

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. J. Comput. Syst. Sci.,
58(1):137–147, 1999.

[2] M. Arlitt and T. Jin. A workload characterization study of the 1998
world cup web site. Network, 14(3):30 –37, 2000.

[3] C. Busch and S. Tirthapura. A deterministic algorithm for
summarizing asynchronous streams over a sliding window. In
STACS, pages 465–476, 2007.

[4] H.-L. Chan, T.-W. Lam, L.-K. Lee, and H.-F. Ting. Continuous
monitoring of distributed data streams over a time-based sliding
window. Algorithmica, 62(3-4):1088–1111, 2012.

[5] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. In ICALP, pages 693–703, 2002.

[6] E. Cohen and M. J. Strauss. Maintaining time-decaying stream
aggregates. J. Algorithms, 59(1):19–36, 2006.

[7] G. Cormode and M. Garofalakis. Approximate continuous querying
over distributed streams. ACM Trans. Database Syst., 33(2), 2008.

[8] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi.
Holistic aggregates in a networked world: Distributed tracking of
approximate quantiles. In SIGMOD, pages 25–36, 2005.

[9] G. Cormode and S. Muthukrishnan. What’s hot and what’s not:
Tracking most frequent items dynamically. In PODS, pages 296–306,
2003.

[10] G. Cormode and S. Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. J. Algorithms,
55(1):58–75, 2005.

[11] G. Cormode, S. Tirthapura, and B. Xu. Time-decaying sketches for
robust aggregation of sensor data. SIAM J. Comput.,
39(4):1309–1339, 2009.

[12] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813,
2002.

[13] X. A. Dimitropoulos, M. P. Stoecklin, P. Hurley, and A. Kind. The
eternal sunshine of the sketch data structure. Computer Networks,
52(17):3248–3257, 2008.

[14] P. B. Gibbons. Distinct sampling for highly-accurate answers to
distinct values queries and event reports. In VLDB, pages 541–550,
2001.

[15] P. B. Gibbons and S. Tirthapura. Distributed streams algorithms for
sliding windows. In SPAA, pages 63–72, 2002.

[16] M. B. Greenwald and S. Khanna. Space-efficient online computation
of quantile summaries. In SIGMOD, pages 58–66, 2001.

[17] L. Huang, M. Garofalakis, A. Joseph, and N. Taft. Communication
efficient tracking of distributed cumulative triggers. In ICDCS, 2007.

[18] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan,
A. Joseph, and N. Taft. Communication-efficient online detection of
network-wide anomalies. In INFOCOM, pages 134–142, 2007.

[19] R. Y. S. Hung and H.-F. Ting. Finding heavy hitters over the sliding
window of a weighted data stream. In LATIN, pages 699–710, 2008.

[20] A. Jain, J. M. Hellerstein, S. Ratnasamy, and D. Wetherall. A wakeup
call for internet monitoring systems: The case for distributed triggers.
In SIGCOMM Workshop on Hot Topics in Networks (HotNets), 2004.

[21] D. Kotz, T. Henderson, I. Abyzov, and J. Yeo. CRAWDAD trace set
dartmouth/campus/snmp (v. 2004-11-09).
http://crawdad.cs.dartmouth.edu/dartmouth/campus/snmp.

[22] J. Mirkovic, G. Prier, and P. L. Reiher. Attacking DDoS at the source.
In ICNP, pages 312–321, 2002.

[23] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous
queries over distributed data streams. In SIGMOD, pages 563–574,
2003.

[24] L. Qiao, D. Agrawal, and A. El Abbadi. Supporting sliding window
queries for continuous data streams. In SSDBM, pages 85–96, 2003.

[25] I. Sharfman, A. Schuster, and D. Keren. A geometric approach to
monitoring threshold functions over distributed data streams. In
SIGMOD, pages 301–312, 2006.

[26] S. Tirthapura, B. Xu, and C. Busch. Sketching asynchronous streams
over a sliding window. In PODC, pages 82–91, 2006.

[27] B. Xu, S. Tirthapura, and C. Busch. Sketching asynchronous data
streams over sliding windows. Distributed Computing,
20(5):359–374, 2008.

APPENDIX

PROOF OF THEOREM 2. We consider the estimation derived by

any single row j of the ECM-sketch. We first check the case of

E((âr ⊙ br)j) > ar ⊙ br:

E((âr ⊙ br)j − ar ⊙ br) =
∑

x∈D
f̂a(x, r)f̂b(x, r)+

∑

p,q∈D,p 6=q
hj(p)=hj(q)

f̂a(p, r)f̂b(q, r)−
∑

x∈D
fa(x, r)fb(x, r)

≤
∑

x∈D
fa(x, r)fb(x, r)(1 + ǫsw)

2+

∑

p,q∈D,p 6=q
hj(p)=hj(q)

fa(p, r)fb(q, r)(1 + ǫsw)
2 −

∑

x∈D
fa(x, r)fb(x, r) =

(ǫ2sw + 2ǫsw)ar ⊙ br +
∑

p,q∈D,p 6=q
hj(p)=hj(q)

fa(p, r)fb(q, r)(1 + ǫsw)
2

(1)

From [10], we know that E(
∑

p,q∈D,p 6=q
hj(p)=hj(q)

fa(p, r)fb(q, r)) ≤

ǫcm||ar||1||br||1/e. Furthermore, by Markov inequality,

Pr[∀j :
∑

p,q∈D,p 6=q
hj(p)=hj(q)

fa(p, r)fb(q, r) ≥ ǫcm||ar||1||br||1/e] ≤ e−d ≤ δ

Combining this with Eqn. 1, we get that with probability at least

1− δ,

âr ⊙ br − ar ⊙ br ≤ (ǫ2sw + 2ǫsw)ar ⊙ br + ǫcm(1 + ǫsw)
2||ar||1||br||1

Repeating the analysis for the case of E((âr ⊙ br)j) < ar ⊙ br
we get the following probabilistic guarantees:

ar ⊙ br − âr ⊙ br ≤ (ǫ2sw + 2ǫsw)ar ⊙ br

The bounds follow directly by noticing that

ar ⊙ br ≤ ||ar||1||br||1.

PROOF OF THEOREM 3. By the estimation algorithm we know

that there exists at least one row j, for which

1002

E(hj(x), j, r) = f̂(x, r). Let us focus now on this row. We ini-

tially assume that we have an accurate algorithm to maintain the

sliding window counters, i.e., errors are only due to hashing colli-

sions. With R(hj(x), j, r) we denote the accurate number of bits

that were added in the counter (hj(x), j), within the query range r.

Note that, because of hashing collisions, the value of R(hj(x), j, r)
might be greater than the real frequency of x, denoted as f(x, r).
In fact, since the counters are assumed to be accurate, the standard

analysis introduced for count-min sketches may be applied. There-

fore, Pr[R(hj(x), j, r) − f(x, r) ≤ ǫcm||ar||1] ≥ 1 − δcm ⇒
Pr[R(hj(x), j, r) ≤ f(x, r) + ǫcm||ar||1] ≥ 1− δcm.

However, in practice, the sliding window algorithm may intro-

duce errors to the computation of R(hj(x), j, r). Since all consid-

ered algorithms are (ǫ, δ)-approximate, we know that their estima-

tion E(hj(x), j, r) has the following property: Pr[|E(hj(x), j, r)−
R(hj(x), j, r) ≤ ǫswR(hj(x), j, r)] ≥ 1− δsw.

For the case that E(hj(x), j, r) > R(hj(x), j, r), we have

Pr[E(hj(x), j, r) ≤ (1 + ǫsw)R(hj(x), j, r)] ≥ 1 − δsw. Con-

sidering the two results together, we get:

Pr[E(hj(x), j, r) ≤ (1 + ǫsw)R(hj(x), j, r)] ≥ 1− δsw ⇒
Pr[E(hj(x), j, r) ≤ (1 + ǫsw)(f(x, r) + ǫcm||ar||1)]

≥ 1− δsw − δcm ⇒
Pr[f̂(x, r)− f(x, r) ≤ ǫswf(x, r) + ǫcm||ar||1+

ǫcmǫsw||ar||1] ≥ 1− δ

Note that ǫswf(x, r) + ǫcm||ar||1 + ǫcmǫsw||ar||1 ≤ (ǫsw +
ǫcm + ǫcmǫsw)||ar||1. Therefore,

Pr[f̂(x, r)− f(x, r) ≤ (ǫsw + ǫcm + ǫcmǫsw)||ar||1] ≥ 1− δ (2)

With a similar analysis, the case of E(hj(x), j, r) <
R(hj(x), j, r) gives a much tighter constraint:

Pr[f(x, r)− f̂(x, r) ≤ ǫswf(x, r)] ≥ 1− δsw (3)

Note that the events considered by equations 2 and 3 are mutu-

ally exclusive. The proof is completed by taking the minimum of

Pr[f(x, r)− f̂(x, r) ≤ ǫswf(x, r)] and Pr[f̂(x, r)− f(x, r) ≤
(ǫsw + ǫcm + ǫcmǫsw)||ar||1].

PROOF OF THEOREM 4. We argue that EH⊕ approximates the ex-

ponential histogram of the logical stream, with a maximum relative

error of (1 + ǫ)ǫ′ + ǫ, where ǫ is the error parameter of the initial

exponential histograms. Consider a query for the last q time units.

With sq = t − q we denote the query starting time. Let Q denote

the index of the bucket of EH⊕ which contains sq in its range, i.e.,

s(EHQ
⊕) ≤ sq ≤ e(EHQ

⊕). With i and î we denote the accurate

and estimated number of true bits in the query range. According to

the estimation algorithm, the estimation for the number of true bits

in the stream will be î = 1/2|EHQ
⊕ |+

∑

1≤Y <Q |EHY
⊕ |. This es-

timation may be influenced by two types of approximation errors:

(a) a possible approximation error of the overlap of bucket EHQ
⊕

with the query range, denoted as err1, and, (b) a possible approxi-

mation error of i, denoted as err2, because of the inclusion of data

that arrived before sq in buckets Y ≤ Q, or data that arrived after

sq in buckets Y > Q. Let us now look into these two errors in

more details.

With respect to err2, recall that the contents of individual buckets

are inserted to EH⊕ using the starting time and the ending time of

the buckets. Therefore, it may happen that some bits arrive before

sq but are inserted to EH⊕ with a timestamp after sq , creating

‘false positives’. The opposite is also possible. These bits are called

out-of-order bits with respect to sq . Clearly, out-of-order bits may
lead to underestimation or overestimation of the query answer. The

following lemma allows us to upper bound the number of out-of-

order bits, and thereby control the maximum error err2.

LEMMA 1. Consider an (individual) exponential histogram

EHz of stream Z, configured with error parameter ǫ. The out-

of-order bits with respect to the query starting time sq that EHz

can generate are at most ǫiz , with iz denoting the number of true

bits arriving after sq in Z.

PROOF. Due to the non-decreasing nature of bucket timestamps,

there can be only one bucket with a start time less than sq and end

time greater than or equal to sq . Let this bucket be EHj
z . All other

buckets have both starting and ending time at the same side of sq ,

and therefore their contents are always inserted with a timestamp

at the correct side of sq and do not create out-of-order bits.

Since the ending time of EHj
z is at or after sq , its most recent

true bit has arrived at or after sq , and should be included in the

query range. Therefore, the number of true bits arriving at or after

sq in stream Z is iz ≥ 1 +
∑j−1

b=1 |EHb
z |. Furthermore, since

half of the bits of EHj
z are inserted using the ending time and half

using the starting time of the bucket, the maximum number of out-

of-order bits is |EHj
z |/2. By construction (invariant 1):

|EHj
z |

2(1 +

j−1
∑

b=1

|EHb
z |)

≤ ǫ ⇒ |EHj
z |

2
≤ ǫ(1+

j−1
∑

b=1

|EHb
z |) ≤ ǫiz

The following lemma extends this result to all exponential his-

tograms constituting EH⊕, for computing the total value of err2:

LEMMA 2. Consider the exponential histogram EH⊕, con-

structed by aggregating exponential histograms EH1, EH2, . . .,
EHn. The maximum value of err2 is ǫi, with i =

∑n
x=1 ix de-

noting the number of true bits that arrived in all streams during or

after sq .

PROOF. Let err2(x) denote the number of out-of-order bits of

stream x with respect to sq . Furthermore, jx = max{b|e(EHb
x) ≥

sq}.

Notice that err2(x) is upper-bounded by Lemma 1. Due to the

aggregation algorithm, err2 =
∑n

x=1 err2(x). Observing that ǫ
is the same across all EH, we have: err2 =

∑n
x=1 err2(x) ≤

ǫ
∑n

x=1 ix ≤ ǫi.

Underestimation or overestimation of the overlap may also hap-

pen because of the halving of the size of bucket EHQ
⊕ during query

time (err1). As shown in [12], this process may introduce a max-

imum relative error of ǫr, where r is the sum of the sizes of all

buckets in EH⊕ with an index lower than Q (i.e., with a starting

time at least equal to sq). Recall that r may also include bits that ar-

rived before sq , which can however be upper bounded by Lemma 2.

Therefore, the maximum underestimation or overestimation error is

err1 = ǫ′r ≤ ǫ′(i+ ǫi) = ǫ′i+ ǫǫ′i, with i =
∑n

x=1 ix.

Summing err1 and err2, we get a maximum relative error of (ǫ+
ǫ′ + ǫǫ′). Theorem 4 follows directly.

1003

