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Abstract—Knowledge of the up-to-date physical topology
of an IP network is crucial to a number of critical network
management tasks, including reactive and proactive resource
management, event correlation, and root-cause analysis. Given
the dynamic nature of today’s IP networks, keeping track of
topology information manually is a daunting (if not impossible)
task. Thus, effective algorithms for automatically discovering
physical network topology are necessary. Earlier work has typi-
cally concentrated on either 1) discovering logical (i.e., layer-3)
topology, which implies that the connectivity of all layer-2 ele-
ments (e.g., switches and bridges) is ignored, or 2) proprietary
solutions targeting specific product families. In this paper, we
present novel algorithms for discovering physical topology in
heterogeneous (i.e., multi-vendor) IP networks. Our algorithms
rely on standard SNMP MIB information that is widely supported
by modern IP network elements and require no modifications
to the operating system software running on elements or hosts.
We have implemented the algorithms presented in this paper in
the context of the NetInventory topology-discovery tool that has
been tested on Lucent’s own research network. The experimental
results clearly validate our approach, demonstrating that our tool
can consistently discover the accurate physical network topology
with reasonably small running-time requirements even for fairly
large network configurations.

Index Terms—IP network management, physical network
topology, SNMP MIBs, switched Ethernet.

1. INTRODUCTION

HYSICAL NETWORK TOPOLOGY refers to the charac-

terization of the physical connectivity relationships that
exist among entities in a communication network. Discovering
the physical layout and interconnections of network elements
is a prerequisite to many critical network management tasks,
including reactive and proactive resource management, server
siting, event correlation, and root-cause analysis. For example,
consider a fault monitoring and analysis application running on
a central IP network management platform. Typically, a single
fault in the network may cause a flood of alarm signals ema-
nating from different interrelated network elements. Knowledge
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of element interconnections is essential to filter out secondary
alarm signals and correlate primary alarms to pinpoint the orig-
inal source of failure in the network [14], [29]. Furthermore, a
full physical map of the network enables a proactive analysis
of the impact of link and device failures. Early identification
of critical failure points allows the network manager to improve
the survivability of the network (e.g., by adding alternate routing
paths) before outages occur.

Despite the critical role of topology information in enhancing
the manageability of modern IP networks, none of the network
management platforms available on the market today offers a
general-purpose tool for automatic discovery of physical IP
network connectivity. Most systems (including HP’s OpenView
Network Node Manager and IBM’s Tivoli for AIX) either fea-
ture an IP mapping functionality for automatically discovering
routers and IP subnets and generating a network layer (i.e., ISO
layer-3) topology showing the router-to-router interconnections
and router interface-to-subnet relationships, or require that
switches from different IP subnets are not directly connected.
Discovering a layer-3 topology is relatively easy provided
that standard routing information is available, because routers
must be explicitly aware of their layer-3 neighbors in order to
perform their basic function. Unfortunately, layer-3 topology
covers only a small fraction of the interrelationships in an IP
network, since it fails to capture the complex interconnections
of layer-2 network elements (e.g., switches and bridges) be-
longing to different IP subnets. As more switches are deployed
to provide more bandwidth through subnet microsegmentation,
the portions of the network infrastructure that are invisible to a
layer-3 mapping will continue to grow. Under such conditions,
it is obvious that the network manager’s ability to troubleshoot
end-to-end connectivity or assess the potential impact of link or
device failures in switched networks will be severely impaired.

The lack of automated solutions for capturing physical (i.e.,
layer-2) topology information means that network managers are
routinely forced to manually input such information for each
management tool that they use. Given the dynamic nature and
the ever-increasing complexity of today’s IP networks, keeping
track of topology information manually is a daunting (if not im-
possible) task. This situation clearly mandates the development
of effective, general-purpose algorithmic solutions for automat-
ically discovering the up-to-date physical topology of an IP net-
work. An additional challenge in the design of such algorithms
is dealing with the lack of established, industry-wide standards
on the topology information maintained locally by each network
element, and the diversity of elements and protocols present in
today’s multi-vendor IP networks. This essentially means that
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the actual connectivity information maintained by different el-
ements can vary widely; further, different elements may store
such information in different (e.g., proprietary) parts of their
internal database. The combination of the aforementioned fac-
tors implies that any practical solution to the problem of dis-
covering physical IP topology needs to deal with three funda-
mental difficulties.

1) Limited local information. The algorithm should make
only minimal assumptions about the availability of infor-
mation at the elements; that is, it should only utilize in-
formation that most managed elements are most likely to
maintain locally. Furthermore, since layer-2 elements are
not explicitly aware of their immediate physical neigh-
bors, inferring physical interconnections at layer-2 is def-
initely not straightforward.

2) Transparency of elements across protocol layers. The al-
gorithm should correctly establish interconnections be-
tween network elements operating at different layers of
the ISO protocol stack. This is not trivial, since layer-2 el-
ements in switched IP subnets are completely transparent
to the layer-3 router(s) directing traffic in and out of the
subnets.

3) Heterogeneity of network elements. The discovery algo-
rithm should be able to gather topology information from
heterogeneous network elements, making sure that the
relevant data collected in the elements of different ven-
dors are accessed and interpreted correctly.

Related Work: Discovering the topology of the Internet is a
problem that has attracted the attention of many networking re-
searchers. A major motivation behind mapping out the Internet
is the ability to use the Internet topology in order to study impor-
tant performance bottlenecks, and find the optimal placement
for various network-measurement tools and network servers.
As a consequence, the bulk of the Internet-mapping work has
concentrated on the automated discovery of wide-area network
(WAN) topologies and, more specifically, the topology of router
interconnections (i.e., layer-3 topology).

Siamwalla et al. [23] propose heuristics for inferring layer-3
topology that employ basic ICMP commands, like ping and
traceroute [15]. A similar approach, based on ICMP
primitives, for discover routers and their layer-3 connections
has also been proposed by Burch and Cheswick [4]. The
hop-by-hop feedback provided by the ICMP traceroute
command is employed in the context of the Mercator project
[13], whose goal is to discover adjacency between routers.
More specifically, Mercator discovers adjacent router con-
nections by sending traceroute and ping commands from a
single network location and using only hop-limited probes; it
also employs several clever heuristics to discover the layer-3
network map. The Rocketfuel project [28] uses results from
294 public traceroute servers to build router-level ISP
topologies; it also employs techniques that can reduce the
amount of probing and resolve address aliasing. A related
problem is that of inferring the (layer-3) topology of IP
multicast trees; proposed solutions to this problem rely on
either correlating end-to-end multicast measurements (e.g.,
packet-loss characteristics) [10], or using some specialized
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mechanism that requires router cooperation [16]. Tutschku
and Baier [26] use round-trip-time measures obtained through
ICMP packets to define a metric that characterizes the per-
formance (e.g., effective bandwidth usage) in the underlying
network; however, they do not explicitly address the problem
of discovering element interconnections.

Since finding a complete layer-3 topology of the Internet may
be infeasible due to its enormous size, several researchers have
turned to the design of network models that attempt to accu-
rately capture the Internet topology. In [27], Waxman has intro-
duced what appears to be one of the most popular early network
models. Waxman graphs are generated probabilistically consid-
ering the nodes as points in a Euclidean space. Calvert et al.
[5] discuss different graph-based models for representing the
topology of large networks, focusing particularly on aspects of
locality and hierarchy present in the Internet. Zegura et al. [30]
introduce a comprehensive graph model that includes several
earlier models, and combines simpler topologies (e.g., Waxman
graphs and trees) in a hierarchical structure. In more recent
work, Faloutsos et al. [11] propose several empirical power laws
that characterize the Internet inter-domain topology, and can be
used to estimate important topology parameters (such as the av-
erage neighborhood size).

SNMP-based [6] algorithms for automatically discovering
layer-3 network map are featured in many common network
management tools. For instance, HP’s OpenView Network
Node Manager (www.openview.hp.com) and IBM’s Tivoli
for AIX (www.tivoli.com) both offer an IP-network man-
agement functionality for automatically discovering routers
and IP subnets and generating a layer-3 topology. Other
commercially available tools for inferring layer-3 network
topology using SNMP include Actualit’s Optimal Surveyor
(www.actualit.com) and the Dartmouth Intermapper (in-
termapper.dartmouth.edu).

On the other hand, there has been comparatively very little
work on the automated discovery of layer-2 topology for large
local-area networks (LANs). Nevertheless, it is well known
that the most interesting portions of LAN topology are formed
by layer-2 devices (e.g., switches/bridges) which, essentially,
renders them transparent to tools that only infer IP-router inter-
connections. Furthermore, several studies have demonstrated
the impact that layer-2 topology can have on the performance
of distributed and parallel tasks in LAN architectures [7],
[12], [17]. Recognizing the importance of layer-2 topology
discovery, a number of vendors have recently developed pro-
prietary tools and protocols for inferring layer-2 connectivity
between different network elements. Examples of such systems
include Cisco’s Discovery Protocol (www.cisco.com) and
Bay Networks’ Optivity Enterprise (www.baynetworks.com).
Such tools, however, are typically based on vendor-specific
extensions to SNMP Management Information Bases (MIBs)
[6], [24] and are not useful on a heterogeneous network com-
prising elements from multiple vendors. Peregrine’s Infratools
software (www.peregrine.com), Riversoft’s NMOS product
(www.riversoft.com), and Micromuse’s Netcool/Precision
application (www.micromuse.com) claim to support layer-2
topology discovery, but these tools are based on proprietary
technology to which we do not have access. In an effort to
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come up with some standards for physical-topology discovery,
IETF has recently published an RFC proposing a standard for a
physical network topology MIB (originally proposed by Cisco)
[2]. Unfortunately, Cisco is, to the best of our knowledge, the
only vendor to implement the proposed physical MIB design.

Loran Network Systems has recently released a software tool
for discovering layer-2 topology in heterogeneous networks.
Briefly, their approach is based on trying to statistically map
(i.e., correlate) the traffic patterns observed at the ports of dif-
ferent elements in the underlying network, and probabilistically
inferring connections for ports with similar traffic characteris-
tics [21], [8]. Their approach relies on statistical correlation, so
it can only infer element connections with some (high) proba-
bility; furthermore, it is not at all clear if or how their proposed
method would work in the presence of interconnections between
network elements belonging to different IP subnets. Shao et al.
[22] also propose correlating benchmark measurements to de-
termine the functional differences between a central server and a
collection of machines across a LAN (referred to as effective net-
work views); however, for network-management purposes, such
an application-level view of the underlying network structure is
often insufficient.

In the earlier, conference version of this paper [3], we have
proposed the first algorithm that relies solely on standard SNMP
information to discover the layer-2 topology of a heterogeneous,
multi-subnet network. In a nutshell, our algorithm employs a set
of sufficient conditions that guarantee the existence of physical
connections between elements organized in multiple different
subnets. In a follow-up paper, Lowekamp et al. [18] have ex-
tended the methodology proposed in [3] by proposing new tech-
niques to deal with incomplete information as well as “dumb”
network elements that cannot provide SNMP information (e.g.,
hubs). Their algorithms, however, are designed to work only in
the much simpler case of a single subnet and can easily be shown
to fail when multiple subnets are present [1].

Our Contributions: We develop novel, practical algorithmic
solutions for the problem of discovering physical topology in
heterogeneous IP networks comprising multiple IP subnets and
different types of network elements. The practicality of our al-
gorithms stems from the fact that they rely solely on standard
information routinely collected in the SNMP MIBs [6], [24]
of elements and they require no modifications to the operating
system software running on elements or hosts. More specif-
ically, our topology discovery tool utilizes information either
from the address forwarding tables (AFTs) of elements cap-
turing the set of medium access control (MAC—i.e., layer-2)
addresses that are reachable from each element interface, or (in
the absence of AFT data) from the elements’ Net ToMedia ta-
bles. The main algorithmic challenge that our tool faces is how
to “stitch” such (local) information together to identify inter-
connected router/switch interfaces and come up with a com-
plete physical LAN topology. The issue of heterogeneity comes
into play when trying to access the address forwarding informa-
tion of elements from different vendors. Even though interna-
tional standards bodies have proposed a standard MIB design
[19] with uniformly defined and named variables for collecting
address forwarding data, this design is often not adhered to in
commercially available elements. As a consequence, our tool

often needs to gather the necessary information by accessing
and interpreting MIB variables stored in vendor-specific private
MIBs or custom-designed files.

Our algorithm for stitching local address forwarding informa-
tion together into a complete network topology works perfectly
when 1) each switched domain (i.e., collection of switched IP
subnets connected to the “outside world” through one or more
layer-3 routers) consists of a single switched subnet, and 2) the
element address forwarding tables are complete; that is, they
contain the full set of MAC addresses in the subnet reachable
from each element interface. Unfortunately, these conditions
are rarely satisfied in modern IP networks, thus forcing our
solutions to deal with a number of complications that arise in
practice.

» Switched domains usually comprise multiple subnets with
elements of different subnets often directly connected
to each other. This introduces serious problems, since it
means that an element can be completely transparent to
its direct physical neighbor(s). In fact, we prove that this
situation gives rise to scenarios under which no algorithm
using only address forwarding information can identify
a unique physical topology. We do, however, propose
an engineering solution that extends our approach to
multiple subnets and identifies a small set of candidate
network graphs which is guaranteed to contain the correct
topology. Furthermore, we provide a succinct charac-
terization of a broad class of networks for which our
algorithm is guaranteed to uniquely identify the accurate
physical topology.

* Element address forwarding tables typically employ an
aging mechanism to evict infrequent destination MAC
addresses from the address cache; thus, the sets of MAC
addresses found in these tables are not necessarily com-
plete. We develop several different techniques to handle
this problem. Our first set of techniques tries to guarantee
that the address forwarding information collected is
reasonably complete. This can be accomplished by either
1) generating extra network traffic across switches (using
the IP ping mechanism) to ensure that element AFTs
are adequately populated, or 2) collecting element AFT
information continuously (e.g., at regular intervals) to
ensure that the majority of relevant MAC addresses are
seen. Our second set of techniques extends our topology
discovery algorithm so that interconnection decisions are
made based on incomplete information by employing
some reasonable approximations and heuristics. Note that,
since it is very unlikely to guarantee the completeness
of address forwarding information without an inordinate
amount of extra traffic, a hybrid of these techniques is
likely to work best in practice.

e Virtual LANs (VLANSs) allow IP network managers to
completely break the linkage between the physical and
logical network by grouping the interfaces of the same
physical network element into different subnets. Our
topology discovery algorithm can readily handle VLANs
if the VLAN interface groupings are known. (This infor-
mation is available in most proprietary MIBs.)
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Our topology-discovery algorithms are at the heart of the Net-
Inventory network management system that has been imple-
mented and extensively tested over Lucent’s research network at
Murray Hill, NJ. The results have been very encouraging and,
in fact, NetInventory is now an integral part of Lucent’s net-
work-management product portfolio.

Organization: The remainder of this paper is organized as
follows. Section II reviews necessary background information
and presents our system model. In Section III, we develop our al-
gorithm for discovering the physical topology of a single subnet.
Section IV then extends our algorithm to handle multiple sub-
nets in a switched domain and identifies a broad class of net-
works for which our algorithm is guaranteed to discover the
unique physical topology. In Section V, we discuss how our so-
lution can be extended to deal with incomplete information and
VLANS. Sections VI and VII give an architectural overview
of the NetInventory network-management system and present
some experimental results. Finally, Section VIII concludes the

paper.

II. BACKGROUND AND SYSTEM MODEL

In this section, we present necessary background information
and the system model that we adopt for the network topology
discovery problem. We refer to the domain over which topology
discovery is to be performed as an administrative domain. We
model an administrative domain network as an undirected graph
N. The nodes in the network correspond to network elements
that can be one of three types: routers, switches, and hosts.! A di-
rect physical connection between a pair of interfaces belonging
to different network elements is modeled as an edge between
the corresponding nodes in V. The goal of our algorithms is to
discover the nodes and edges of NV as accurately as possible.

We define a switched domain to be the maximal set S of
switches such that there is a path in N between every pair of
switches in S, involving only switches in S. Fig. 1 shows the
graph corresponding to an example administrative domain. In
Fig. 1, R1, R2, and R3 are routers, while S1 through S5 are
switches forming two distinct switched domains ({S1, S2, S3}
and {S4,S5}). We define an IP subnet as a maximal set of IP
addresses such that any two nodes within a subnet can commu-
nicate (at layer-3 or above) with each other without involving a
router. Typically, every network element within an administra-
tive domain is identified with a single IP address and a subnet
mask that defines the IP address space corresponding to the el-
ement’s subnet. For example, IP address 135.104.46.1 along
with mask 255.255.255.0 identifies a subnet of network ele-
ments with IP addresses of the form 135.104.46.x, where x is
any integer between 1 and 254. Note that a switched domain can
comprise multiple different subnets and communication across
these different subnets must go through a router. For example, in
Fig. 1, the switched domain {S4, S5} contains only one subnet
while the switched domain {S1,S52,S3} consists of two sub-
nets, one containing S1 and S3, and the other one containing
S2. Therefore, a packet from S1 to S2 will have to be routed

ITo simplify the exposition, we do not explicitly consider unmanaged net-
work elements (e.g., hubs) in the remainder of this paper; the detailed treatment
of hubs in NetInventory is discussed in [1].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

—

<§5 D \1

subnet-3 /
\\\ -

Fig. 1. Network graph for a typical administrative domain.

through R1 and R2, despite the existence of a direct physical
connection between S1 and S2.

Switches within a switched domain typically employ the
spanning tree protocol to determine unique forwarding paths
for each switch [20], [25]. Our topology discovery algorithm is
based on the MAC addresses learned using backward learning
[20], [25] on interfaces that are part of the switched domain
spanning tree. Therefore, it follows that we do not discover
edges between interfaces that are not active (i.e., are eliminated
by the spanning tree protocol) at the time of network discovery.
In the remainder of the paper, we use NV to refer to the admin-
istrative domain graph with all such inactive edges removed.
We also assume that the structure of N remains stable during
the course of topology discovery.

We denote the jth interface of a switch .S; by S;;. For each in-
terface S;;, the set of addresses that have been learned (by back-
ward learning) on that interface is referred to as the AFT corre-
sponding to S;; and is denoted by A;;. Therefore, A;; is the set
of MAC addresses that have been seen as source addresses on
packet frames received at S; ;. We say that A;; is complete if A;;
contains the MAC addresses of all network nodes from which
frames can be received at S;;. If the switched domain comprises
only one subnet, then A;; corresponds to the set of nodes in
N that are reachable from S; via the interface S;; by a path in
the switched domain spanning tree. In the case of multiple sub-
nets, however, the above is not necessarily true. For example,
in Fig. 1, S3 will never receive a frame from S2 with S2 as the
source MAC address. The reason is that, if S2 has to communi-
cate with S3, then the packet from S2 is first sent to R2, which
in turn forward it to R1 and, finally, R1 forward the packet to
S3 with the source MAC address being that of R1 (even though
the packet passes through S2).

III. SINGLE SUBNET SWITCHED DOMAINS

In this section, we describe a topology discovery algorithm
under the following assumptions: 1) each switched domain con-
tains exactly one subnet; 2) no VLANS are present in the ad-
ministrative domain; and 3) the address forwarding tables are
complete. (Of course, as already discussed in Section II, we also
assume that the topology of the network does not change during
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Procedure FINDROUTERS(R;)

/* Ry is the IP address of some known router in the administrative domain */
begin

1. routerSet := { Ry}, routersVisited := ¢

2. while routerSet # ¢ do {

3 choose a router R from routerSet

4 routerSet := routerSet - { R}

5. if ( R € routersVisited ) then continue

6. routersVisited := routersVisited | J { R}

7 N H(R) := next hops for R for some destination

8 routerSet := routerSet | ] NH(R)

9

}

end
Fig. 2. Discovering routers in an administrative domain.

the discovery process.) We first briefly describe how we dis-
cover the set of network elements in N and then describe our
algorithm for discovering the (active) edges of V.

The basic idea behind discovering the set of routers in the ad-
ministrative domain is to repeatedly find the neighboring routers
of the currently known routers until no new routers are dis-
covered. We assume that we know the IP address of at least
one router, say, 21, in the administrative domain to bootstrap
this process?. The neighboring routers of a router R are the
set of routers that are next hops for some destination in the
ipRouteTable in MIB-II [19] in R. Fig. 2 outlines our al-
gorithm for discovering the set of routers in the administrative
domain.

The switches in the administrative domain are identified by
first discovering, for each interface of a router R, the subnet
that it is directly connected to or, equivalently, the set of IP ad-
dresses D to which it can perform direct delivery. This is ob-
tained by first getting the IP address of an interface of R using
the ipAddrTable in MIB-II. The set D is then computed by
enumerating the set of IP addresses in the subnet corresponding
to the IP address of an interface. This enumeration takes into
account the subnet masks and the IP address formats. For each
IP address, we use the element MIB to obtain a MAC address
(from the ipNetToMediaTable), a subnet, a system name,
and the number of ports. Once D is computed, for each IP ad-
dress in D, we determine whether it corresponds to a switch
by checking for the presence of the Bridge MIB [9]. Actually,
both routers and switches may contain the Bridge MIB and,
therefore, we use the value of the ipForwarding and the
system. sysServices variables to determine if a node is a
switch or a router. If ipForwarding is not 1 or the second bit
of system.sysServices is set, then the element in ques-
tion is a switch, otherwise it is a router.

At this juncture, we have essentially discovered the set of
all network elements in the administrative domain N. We next
describe how to discover the active interconnections between
such elements.

A. Discovering Spanning-Tree Edges

We discover the edges of N, one switched domain (in this
case, one subnet) at a time. Let U/ be the set of MAC addresses
corresponding to the switches and the routers of a subnet S. We
begin the description of our edge discovery algorithm with a

2We assume N is a connected graph; otherwise, we need to know the identity
of one router in each connected component.

Procedure FINDINTERCONNECTIONS(S1, S2,...Sn, R1,R2,..., Rm)
/*S1,8S2,...,Sp are the switches of subnet S */

/* R1, Ra,..., Rm are the routers of subnet S */

begin

1. for each switch S; do

2. for each interface j of S; do {
3. if (S;; has already been matched ) then continue
4. else if(AijUAkl =U and Aij mAkl = ¢ ) then
5. match S;; with Sy, /* S5 and Sy; are connected */
6.
7. for each router Ry, switch S; do
8. for each interface j of .S; do
9. if ( S;; is not matched and A;; contains Ry, ) then
10. match S;; with Ry, /* S;j and Ry, are connected */
end
Fig. 3. Discovering switch and router interconnections.

lemma that establishes a necessary and sufficient condition for
an interface of a switch element to be connected to an interface
of another switch.

Lemma 3.1: Interfaces S;; and Sy; are directly connected to
each otherif and only if A;; UAy =U and A;; N A =¢. A

Proof: 1f S;; and Sy, are directly connected to each other
then, clearly, A;; N Ay = ¢. Further, since all address for-
warding tables are complete, A;; U Ay = U.

To prove the other direction, assume that A;; U Ay = U
and A;; N Ay = ¢, but S;; and Sy, are not directly connected.
Since the active spanning tree of the switched domain does not
contain loops, A;; (Ay;) does not contain S; (respectively, Si).
As a consequence, A;; contains S, and Ay contains S;. Let P
be the path between S; and Sy, in the spanning tree. There are
two cases to consider.

1) P contains both S;; and Si;. In this case, there exists
another switch .S,,, in P and, therefore, it cannot be the
case that A;; N Ay = ¢.

2) P contains either exactly one of S;; and Sy, or neither
of the two. In this case, since nodes S; and S;, are con-
nected and, furthermore, S;(S}) is reachable from Sy,
(respectively, S;;) (since S; € Ay, S, € A;j), we have
found two distinct paths (i.e., a loop) in the spanning tree
of the switched domain between S; and Sy. This is again
a contradiction. [ |

Lemma 3.1 gives us the basis for a simple algorithm to dis-
cover direct connections between switches. However, we still
need to discover connections between routers and switches. We
now describe the condition for a router to be connected to a
switch.

Definition 3.2: A leaf interface of a switch S; is an interface
that is not connected to an interface of any other switch. ]

Clearly, an interface .S;; for which there does not exist an-
other interface Sy, such that A;; and Ay, satisfy the conditions
specified in Lemma 3.1 is a leaf interface. We can now state a
necessary and sufficient condition for a router to be connected
to a switch.

Lemma 3.3: A router R is connected to an interface S;; if
and only if S;; is a leaf interface and A;; contains the MAC
address of R. [ ]

Fig. 3 gives the pseudo-code for the single-subnet, edge-dis-
covery algorithm based on Lemmas 3.1 and 3.3 (termed
FINDINTERCONNECTIONS).
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Procedure FINDLEAFCONNECTIONS(S1, S2,...Sn )
/* S1,82,...,Sp are the nodes of a subnet N */
begin

Current = {S1,S2,...,5 }

1

2. while ( Current is not empty ) do {

3 find AFT A;; with minimal number of entries

4 if (A;; = {S¢}) then { /* Aj;j contains a single entry */
5. create a connection between S; and St

6 eliminate node Sy from all remaining AFTs

7 continue

8

9. else {

10. let Aij = {Stla---,Stk}

11. create a hub and use it to connect all S;, S, ,..., St
12. eliminate St,, ..., St, from all remaining AFTs

13.

14. }

end

Fig. 4. Alternative algorithm for single-subnet discovery.

The FINDINTERCONNECTIONS procedure can discover con-
nections between switches and routers as well as hosts. In the
remainder of this section, we discuss a faster, simple alterna-
tive algorithm (termed FINDLEAFCONNECTIONS) to discover the
topology of a single-subnet network that, in fact, can also deal
with the case of unmanaged hubs. Our FINDLEAFCONNECTIONS
algorithm relies on the following lemma.

Lemma 3.4: Let Ay, be an address forwarding table of min-
imal cardinality among all other address forwarding tables in V.
Then, every element in Ag; has a single interface in the switched
domain spanning tree. ]

Proof: Let Ay be the address forwarding table that con-
tains the smallest number of MAC addresses among all interface
AFTs in N. Let S; be a network node (whose address is) con-
tained in Aj;. We claim that S; has a single interface Si; in the
spanning tree. Assume, to the contrary, that Sy has at least two
such interfaces; consequently, S; cannot be a leaf node. Thus,
there exists a node S, that is attached to S; through an inter-
face other than Sy;. But, in this case, Ay, is clearly not minimal,
since there exists a port of S; whose address forwarding table
contains a proper subset of the MAC addresses in A, that does
not contain S;. Thus, S; can only have a single interface in the
spanning tree. This completes the proof. ]

The pseudo-code for procedure FINDLEAFCONNECTIONS is
depicted in Fig. 4. Briefly, the algorithm starts with finding an
address forwarding table A;; of smallest cardinality. If such a
table contains a single element, then a connection is created
and, since the discovered single-port node has already been con-
nected, it is excluded from every other AFT that it belongs to. If
the number of elements in this minimal AFT A,; exceeds one,
then all single-port elements along with the minimal-AFT port
are connected by a hub, and all such single-port elements are ex-
cluded from every other AFT that they are discovered in. (Note
that, if S;; is the final port of the S; node to be connected, then
S; itself can also be excluded.) Further, if there already exists a
hub connection containing at least one of these elements, then
the two hubs are merged into a single hub.

IV. MULTIPLE SUBNET SWITCHED DOMAINS

As described in the previous section, for switched domains
containing a single subnet, network-element interconnections
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Fig. 5. Example network containing multiple subnets.

are fairly easy to determine. Interfaces .S;; and Sy, are connected
if and only if the union A;; U Ay; contains all the nodes in the
subnet and the intersection A;; N Ay; is empty.

Unfortunately, the assumption that nodes in a switched do-
main are always from a single subnet may not always hold. As
an example, consider the network depicted in Fig. 5. Switches
S1 and S belong to subnet 1, while S, and S; belong to
subnet 2. The algorithm from the previous section will not be
able to connect interfaces S91 to Sia, as it should. The reason
for this is that switches S and S3 do not show up in the address
forwarding table of switch S;. (Since S5 and S3 belong to a
different subnet, frames originating at S, and Sj3 are actually
routed to switch S; through the R, router.) Even if we were to
consider a modification of the previous algorithm in which two
interfaces are connected if the union of their address forwarding
tables includes all the nodes in some subnet, the method would
still not work. Since A5 U A217A12 U Az, and Ao U Ay
contain all the nodes in subnet 1, the modified algorithm would
find that interfaces So1,S31, and Sy are all valid candidates
for connecting to Si2, which violates the condition that the
interface matching must be one-to-one.

In this section, we extend our solution for single subnets with
additional rules to account for cases when our algorithm finds
multiple interfaces that are potential candidates for connecting
to a single interface. The rules exploit properties of the span-
ning tree algorithm and enable us to narrow down the choice of
interfaces that can be connected to a given interface. We must
note, however, that the rules may not always be able to pinpoint
the exact topology of a network (although our expectation is that
such cases will be rare). In fact, we can show that there are cases
for which it is impossible to uniquely determine the topology of
the network, based solely on address forwarding information.

Consider the two distinct network topologies depicted in
Fig. 6. Switches S7 and S, belong to a single subnet, while
switches So and S5 both belong to different subnets. Clearly,
the address forwarding tables for switches in both topologies
are identical, even though switch Ss is connected to S in
Fig. 6(a) and Sj is connected to .S7 in Fig. 6(b). Thus, any algo-
rithm that relies only on address forwarding table information
cannot distinguish between the two topologies. Since it may
be impossible to infer a unique topology based on the given
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Fig. 6. Example indistinguishable network topologies.

information, we restrict ourselves to finding a minimal set of
candidate topologies that contains the actual network topology.

A. Properties of Multi-Subnet Switched Domains

As mentioned earlier, the approach we adopt to discovering
the topology of switched domains containing multiple subnets
is to rule out interface connections that cannot exist. In the fol-
lowing lemmas, we identify the conditions under which two in-
terfaces cannot be directly connected. The lemmas make use of
the following property for switched domains containing mul-
tiple subnets: Suppose S; and Sy, are two nodes from different
subnets; then, A;; contains S}, if and only if there is a node S,
from the same subnet as Sy, such that Sp,...,S;,..., Sk isa
path in the spanning tree. Let U, ;;,; denote the set of MAC ad-
dresses in the union A;; U Ay;.

Lemma 4.1: Let S;; and Sy; be different interfaces. If A;; N
Api # ¢, then interfaces S;; and Sy, cannot be connected. ®

Proof: Suppose, to the contrary, that node S, appears in
both A;; and Ay, and interfaces S;; and Sj; are connected.
Then, there is a path from S, to S; via S}, and from S, to Sy,
via S;. Furthermore, each of these paths belongs to the spanning
tree, which leads to a contradiction. Thus, if two interfaces have
a nonempty intersection they cannot be connected. [ |

Lemma4.2: Lett be a subnet that contains at least two nodes
Sp and Sg. If A;; N A = ¢ and Uyjp; contains either S,
or S, but not both, then the interfaces S;; and Sj; cannot be
connected. [ ]

Proof: Suppose that S;; and Sy; are connected. Without
loss of generality, let S, € A;;. Thus, there must be a path from
Sp to S; passing through S}, in the spanning tree. We consider
two cases.

1) The path from Sy to S; in the spanning tree does not pass
through Sj,. In this case, S, will belong to Ay since the
path in the spanning tree from S, to .S}, will pass through
S; and S, and S, and S, belong to the same subnet .

2) The path from S to S; in the spanning tree passes through
St Inthis case, since S}, is in A;;, there must be anode S,
such that Sy, ..., Sk, S;, ..., S, is apath in the spanning
tree and .S,. also belongs to subnet ¢. Thus, it follows that
Sqs-++3 Sk, Siy ..., Sr will also be a path in the tree and

S, will belong to A;; also.

Thus, we have shown above that both S, and S; must belong to
Uijm if Si; and Sy, are connected, and so the interfaces cannot
be connected. [ |
Lemma4.3: Let AijﬂAkl = ¢and AijﬂApt = ¢.IfUijk[ =
Uijpt and S; and Sy, belong to the same subnet which is different
from that of S, then S;; and Sj; cannot be connected. [ ]
Proof: Suppose S;; and Sy; are connected. Note that

A = Apt since Aij N Ay = o, Aij n Apt = ¢ and
Uijtki = Uijps. Also, since S; and Sj are from the same
subnet, S; € Ay and, thus, S; € A, Thus, there must
exist a node S, belonging to the same subnet as S; such that
SiySky-.-,Sp,..., Sy is a path in the spanning tree for the
subnet. However, since S; and S belong to the same subnet,
this implies that S, € A,;, which leads to S, € Ayy; this is
clearly impossible, so we have a contradiction. ]

B. Topology Discovery Algorithm

Our topology discovery algorithm initially assumes that every
candidate pair of interfaces is connected. It then applies the re-
sults of the lemmas presented in the previous section in order
to eliminate pairs of interfaces that cannot be connected. Thus,
finally, for every interface, we are left with a set of interfaces
that the interface can be potentially connected to. This is output
by our algorithm. Note that, if after excluding pairs of interfaces
that cannot match, every interface matches only one other inter-
face, then our algorithm computes the unique physical topology
of the network.

From Lemmas 4.1, 4.2, and 4.3, it follows that for any pair of
interfaces S;; and Sy; to match, the following must hold.

1) Aij N Ay is empty.

2) For every subnet ¢, either A;; U Ay contains all nodes

from subnet ¢ or none of them.

3) If S;; and Sj; belong to the same subnet, then there does

not exist a node S, from a different subnet such that
Uijkl = U“ pt and Aij n Apt = ¢.

For all such pairs of potentially matching interfaces S;; and
S} satisfying the above conditions, we refer to their AFT unions
Ui as valid unions. For a valid union Uy, if S; does not
occur in any other valid union, then we can conclude that S;; is
connected to Si;. As a result, we can eliminate all other valid
unions containing S; ;. This follows since the set of valid unions
represents a superset of the actual connections in the network.
Also note that, since between any pair of nodes there can be at
most one active connection, once we have connected an inter-
face of S; with an interface of S}, all other valid unions that
could potentially create a loop in the underlying topology can
be eliminated.

Thus, our topology discovery algorithm for matching inter-
faces is as follows.

1) Generate the initial set of valid unions U.
2) Repeat the following step until no further valid unions can
be deleted from U.

2.1) If aninterface Sj; occurs in only one valid union U1,
in U then create a connection between S;; and Sy, and
(2.1.1) delete all valid unions containing S;; from U
(except for U;jx;); and, (2.1.2) delete all valid unions



408

Uiwpy, Where (z,p,y) # (4,k,1) and S, is any node
that can reach node Sy, using existing connections (in-
cluding Sy, itself).

If every interface Sy; occurs in more than two valid
unions then select U;j;;, such that the number of oc-
currences of Sy, in valid unions of U is minimal among
all (node, interface) combinations. Otherwise, select
an arbitrary U;;x;. In either case, after the selection is
fixed, repeat steps (2.1.1) and (2.1.2) above.

3) For every selected valid union U in U, output “S;;

connected to Si;”.

2.2)

The connections output by the topology discovery algorithm
above are guaranteed to be a superset of the actual connections
in the network. As we pointed out earlier, for certain networks
(see Fig. 6) it is impossible to accurately compute the network
topology. For such networks, our algorithm may not return a
unique network topology; in other words, our algorithm may
output multiple possible connections for an interface, only one
of which is an actual connection (in the network). However, for
most practical network topologies, we expect our algorithm to
generate the precise topology information in which there is a
one-to-one mapping between interface pairs. The question of
what extra information (in addition to address forwarding in-
formation) is required to guarantee the discovery of a unique
topology for arbitrary networks remains open. In the following
example, we demonstrate that while the topology discovery al-
gorithm for the single subnet case (Section III) cannot find the
correct topology for the 2-subnet network in Fig. 5, our algo-
rithm for multiple subnets will in fact identify the correct net-
work topology.

Example 4.4: Consider the network depicted in Fig. 5.
Switches 57,54 and router R; belong to subnet 1 while
switches S, S3 and router Ry belong to subnet 2. There
is a single interface (S71) that contains only R; and a
single interface (S23) that contains only Rp. Consequently,
S11 is connected with 7;. Similarly, Ss3 is connected
with R,. The remaining address sets A;; are as follows:
Arp = Agy = {S4}, Apy = Ayp = {S1, R1}, Az = {S3, 54},
and A3; = {51, 52, Ry, Ra}.

The valid unions are: U1221 = U3241 = {Sl, S4, Rl},
and U2231 = {51,52753,547R1,R2}. Note that
Ui2s1 = {51,52,54,R1, Ry} is not a valid union (due
to Lemma 4.2) since it contains switch S but not S3 belonging
to subnet 2. Furthermore, U141 = {57, S4, Ry} is also elim-
inated (due to Lemma 4.3) since Ui241 = Ui291 and switches
S1 and S, belong to the same subnet, while S; and Ss belong
to different subnets. Since every interface occurs only once in
the above set of valid unions, Sy5 is connected with So1, So is
connected with S37, and S35 is connected with Sy;. [ ]

C. Characterization of Identified Topologies

In this section, we characterize a broad class of switched do-
mains for which the algorithm developed in the previous section
is guaranteed to identify the unigue physical topology. We refer
to this class of switched domains as ordered networks (formally
defined below). Note that, we view each switched domain as a
tree of active forwarding paths as determined by the spanning

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

Fig. 7. Example ordered network.

tree protocol [20]. We define a set of addresses A to be legal if,
for any subnet ¢, A contains either all or none of the addresses
in £.

Definition 4.5: A network is an ordered network if it can be
arranged as a rooted tree that satisfies the following two proper-
ties: 1) For every subtree in the (rooted) network tree, for every
subnet contained in it, there exists a node belonging to the subnet
elsewhere in the network (not in the subtree); and 2) For any two
subtrees rooted at nodes S; and Sy, in the (rooted) network tree,
if the union of addresses in the two subtrees is legal, then: (a)
the nodes S; and S}, belong to the same subnet; and, (b) the par-
ents of S; and Sy, in the tree belong to the same subnet (that is
perhaps different from that containing S;, Si). ]

Let us denote a connection between interfaces S;; and Sy
such that S; is a parent of Sy, in the network tree by (S;;, Ski)-
We refer to a pair of subtrees as legal subtrees if the union of ad-
dresses in the subtrees is legal. The first property of ordered net-
works ensures that for a connection (.S; 3 S k1), the address table
A;; contains all the addresses in the subtree rooted at Sj. The
second property, by requiring that roots and their parents for a
pair of legal subtrees belong to the same subnet, guarantees that
valid unions which do not correspond to matching connections
are eliminated by our algorithm. Note that this requirement is
not too restrictive, since most networks will most likely contain
few pairs of legal subtrees. Furthermore, it is trivially satisfied
in networks that do not contain pairs of legal subtrees or net-
works in which every subnet occurs in more than two distinct
subtrees of the root.

The network depicted in Fig. 5 is an ordered network. To see
this, consider the network arranged as a rooted tree with node
So as the root, as shown in Fig. 7. Note that for every subtree
in the network tree, there is a node belonging to a subnet in
the subtree elsewhere in the graph. For example, consider the
subtree rooted at S;. Node S, belongs to the same subnet as Sy
and is not contained in the subtree. Also, the network satisfies
the second property of the ordered network definition. To see
this, note that the subtrees rooted at nodes .S; and .S4 constitute
a pair of legal subtrees (since they contain all the addresses in
subnet 1), and the nodes themselves as well as their parents (S5
and S3) belong to the same subnet.

Theorem 4.6: The topology discovery algorithm presented
in Section IV-B identifies the accurate physical topology for
ordered network graphs. |

Proof: For ordered networks, for any parent-child connec-
tion (S;;, Ski), it is the case that A;; is the set of addresses that
appear in the subtree rooted at Si. Also, Ay is the set of ad-
dresses belonging to subnets in Sy’s subtree that are not con-
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tained in A;;. We refer to these addresses as the complement of
A;j and denote them by A;;. Note that A;; U A;; is legal. Thus,
Akl = Aij and Aij = fikl.

In an ordered network, for any distinct pair of parent-child
node connections (S;;, Sk;) and (Spq, Suv), Aij # Apq and
Apr # Ayy. As aresult, for the connection (S;;, Ski1), there can
exist at most one other connection (S,,, Sy,) such that A;; =
Ay and Ay = Apq. In this case, the subtrees rooted at Sy, and
Sy, constitute a pair of legal subtrees (since Ax; = Apq = Aup).
Furthermore, these connections can result in the following four
valid unions that are all equal: U;;xi, Uijpg, Upquo, and Ugye.
Of these, U;jpq and Uy, will be deleted since S; and S, be-
long to the same subnet, and Sy and S,, also belong to the same
subnet (due to the second property of ordered networks). We still
need to show, however, that the valid unions U;j; and Upgue
will not be deleted. For this, we need to show that S; and S},
belong to different subnets (a similar argument can be used to
show that S, and S,, belong to different subnets). If S; is in the
same subnet as Si, then .S; must belong to Ay;. However, since
Api = Apq, S; must be in the subtre rooted at S,,. This, how-
ever, would mean that S}, is also in the subtree rooted at S,,, and
so Sy € A,q, which is impossible since Ay = Apq and Sy,
cannot be in Ay;. [

We must note that our topology discovery algorithm can de-
termine the accurate topology for networks that may not be or-
dered. Fig. 8 depicts one such network. In the figure, S, Ss, S,
and Rs belong to subnet 1, So and R; belong to subnet 2, and
S, and R3 belong to subnet 3. For every possible rooted net-
work tree, one of subnets 2 or 3 will be entirely contained in a
single subtree and so the network cannot be ordered. Our algo-
rithm, however, will accurately discover the physical topology
of the network. Thus, the class of ordered networks is actually a
proper subset of the class of networks for which our algorithm
identifies the unique physical topology. In other words, the “or-
dered network” condition is only sufficient for our algorithm to
uniquely identify the layer-2 topology; the question of deter-
mining a characterization that is both necessary and sufficient
for our techniques remains open.

V. EXTENSIONS

We now show how the algorithms that we presented in the
previous subsections can be extended to handle incomplete ad-
dress forwarding tables and Virtual LANs (VLANS).

A. Dealing With the Completeness Requirement

Thus far, we have assumed that each address forwarding table
A;; is complete, i.e., it consists of all MAC addresses reachable
from S; through the interface .S;;. In practice, however, this as-
sumption is highly unlikely to hold. The reason for this is that,
although the A;;’s are learned based on the source addresses

in frames received at the interface S;;, these learned entries are
aged (and removed) by the network elements. Therefore, unless
an element constantly receives packets from a source address at
intervals smaller than the aging interval (which is typically five
minutes to five hours), the element may delete the entry corre-
sponding to that source address. Thus, the A;; address sets may
not be complete.

We present two complementary sets of techniques to deal
with the above problem. Our first set of techniques attempts to
keep the A;;’s as complete as possible either by creating extra
traffic across nodes in a switched domain or by continuously
collecting the relevant AFT information. Our second set of tech-
niques employs approximations and heuristics to handle minor
deviations from completeness. These two solutions together en-
sure that our algorithms work in practice as borne out by our
experiments with the Bell Labs research network.

Our first solution tries to ensure that the A;;’s are as com-
plete as possible by generating extra traffic between pairs of
nodes in the switched domain and, consequently, not allowing
the address forwarding table entries to age. The mechanism we
use to generate traffic from node X to node Y is to generate
an ICMP (Echo Request) message from a network management
station to X with the source address in the ICMP packet set to
the IP address of Y. This essentially involves creating “spoofed”
ICMP ping packets that look like they originate from node Y,
while they actually originate from the management station. This
will cause X to respond to the Echo Request to node Y. There
are potential problems with this approach. First, when switches
in the network are connected through “out-of-band” interfaces,
the ICMP messages sent between such switches would not pop-
ulate the address forwarding tables of “in-band” interfaces, as
required by our algorithm. To deal with such scenarios, our im-
plementation relies on sending ICMP messages between hosts
and switches in the same subnet to ensure that the “in-band”
interfaces are used. Second, for security concerns, network ad-
ministrators often explicitly disable the ICMP ping command
on some nodes, which means that our spoofed pings will not
help in populating the switch address forwarding tables. Finally,
even in the case that ping commands are enabled, the number
of required messages raises a potential scalability concern as the
size of the underlying switched domain grows. To address this
concern, our implementation restricts ping message exchanges
only to nodes belonging in the same subnet (which is typically
not that large); furthermore, in the case of large subnets, we also
subdivide the subnet into smaller segments and perform the AFT
population in parallel for these segments.

A different technique used in NetInventory in an effort to ob-
tain address-forwarding information that is as complete as pos-
sible is to query element AFT's continuously (i.e., at regular time
intervals). Our data-collection program copies the address for-
warding tables of the switches at regular intervals and does not
age out the entries regularly like switches do. Experience shows
that after one normal business day, the address forwarding ta-
bles are usually almost complete. Note that, in the (rare) event
of a change in the spanning-tree topology for the underlying
switched domain (e.g., due to a failure), this approach may re-
sult in false-positive connections, since some switch addresses
could be legitimately dropped from element AFTs. To eliminate
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such false positives, NetInventory also employs a slow timeout
mechanism for collected address-forwarding entries.

Our second set of techniques extends the valid-union algo-
rithm described in Section IV-B to handle the cases in which the
address forwarding tables are incomplete. More specifically, we
modify Condition (2) in the valid-union definition as follows.

* For every subnet ¢, the union A;; U Ay, contains either no
nodes from ¢, or all nodes from ¢ that appear in the union of
the address forwarding tables for all interfaces of S;, S;.

The above modification is guaranteed not to eliminate true con-
nections, while it may also produce some false positives. Our
experience with the NetInventory system shows that employing
a combination of the above-described techniques guarantees the
reliable and accurate discovery of layer-2 topology information.

B. Handling VLANs

VLAN:Ss define multiple spanning trees within a switched do-
main. A switch may belong to multiple VLANs and effectively
maintains address forwarding tables for each VLAN that it is
a part of. Frames belonging to a specific VLAN are then for-
warded by a switch using the forwarding tables for the VLAN. If
we have access to the address forwarding tables for each VLAN,
then we can run our algorithms for each VLAN individually in
order to generate the spanning tree for the VLAN. We only need
to be careful to restrict ourselves to the universe of addresses
comprising only MAC addresses within the VLAN.

The major difficulty in handling VLANs within the Net-
Inventory topology discovery algorithms is discovering where
the required VLAN information is stored in the element
MIBs. Standard SNMP MIBs do not provide information
on address forwarding tables for individual VLANSs, but our
experience shows that this information can be collected using
proprietary MIBs (for example, the Prominet MIB for Cajun
Switches). Thus, NetInventory needs to employ wrappers that
are custom-designed for specific types of switches in order to
extract VLAN information from the proprietary portions of
their MIBs. The extensions necessary for dealing with VLAN
topology discovery are currently being incorporated in the
NetlInventory architecture.

Our next example demonstrates that, even in the presence
multiple subnets and VLANs in a switched domain, our
topology discovery algorithm (Section IV-B) can still identify
the correct topology.

Example 5.1: Consider the network depicted in Fig. 9.
Switches 51,54, and router R; belong to subnet 1; switches
So,S3, and router Ry belong to subnet 2; switches Sy, Sg,
and router 3 belong to subnet 3. In addition, there are three
VLANS, one for each subnet. The first VLAN consists of the
path Ry, 51,55, 54, the second consists of the tree involving
router Ro and switches S, S and S3, and the third consists
of the path Rj,S¢, Ss3,S4,S2,S55. The address forwarding
tables for the interfaces without taking into account VLAN
information are shown in Fig. 9.

There are single interfaces that contain only R;, or Ra,
or R3. Consequently, 1,72 and 73 are matched respectively
with 571,512, and Sgz and these interfaces are elimi-
nated from further consideration. The set of valid unions
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A13={S2,54}
A14={S3}
A21={S5}
A22-{S1,S3,R1,R2}
A23={S4,S6,R3}
A31={S2,R2}
A32={S6,R3}
A33={S5}
A41={S1,S5,R3}
A42-{S6,R3}
A51={S6,R3}
A61={S5}
r1={S1,54}
r2={S2,53}
r3={S5,56}
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Fig. 9. Network containing VLANs and multiple subnets.

is as follows: U1322 = {Sl,SQ,Sg,S4,R1,R2},U1431 =
{82,853, Ra},Us1a2 = U151 = Uszer = Uszaz = Uszsy =
Uiz61 = {55, 86, R3}, and Upzay = {51, S4, S5, 56, Ry, R3},
The valid unions Uj3s2, U1431, and Ussy all contain interfaces
that appear only once in the set of unions. Consequently,
S13, 514, and So3 are matched with Sos, S31, and Sy, respec-
tively. Thus, union Usq4s is eliminated since Sog is already
matched with S4;. Deletion of Usjss causes Usjs; to be
selected (since interface So; appears only once). Thus, in the
next iteration, Usss; is deleted. In the final iteration, among
the remaining unions, since interfaces S3» and S33 occur only
once, Uszg1 and Ussys are retained, while Uysgy is eliminated.
Thus, the final set of valid unions yields the actual topology of
the network. [ |

VI. IMPLEMENTATION

We have implemented the topology discovery algorithms pre-
sented in this paper in the context of the NetInventory system,
which is designed as part of a network management tool suite. In
this section, we describe the NetInventory conceptual and func-
tional system architecture. The key features of NetInventory are
as follows:

* automatic discovery of currently active network elements
for a specific network or a given network segment;

* automatic discovery of (active) network interconnections
at layer-3, layer-2, or layer-1 (i.e., hubs) of the OSI pro-
tocol hierarchy;?

* storing current as well as historic network information
in the network management database, and using database
techniques to access the topology information in an effi-
cient manner;

* ensuring automatic database updates whenever the
network goes through either management- or network-in-
duced changes;

* easy system extensibility.

NetlInventory automatically discovers and maintains layer-1,
layer-2, and layer-3 network information, including (but not
limited to) network topology for heterogeneous networks with
multiple sets of subnets, and maintains a database consisting of

3The details of the layer-1 algorithms of NetInventory can be found in [1].
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information about network elements and their interconnections
by periodically updating its topology information as the net-
work goes through changes. The frequency of data collection
and the set of network addresses that the information should
be collected from are specified by the user as configuration
settings. Information in the database is timestamped to enable
historical views of the network and report the network changes
that have occurred in a given time frame. The NetInventory
database also contains information about network elements at
layer-1 (e.g., hubs) that do not have any IP address assigned to
them. NetInventory comes with a graphical user interface and
can be easily integrated with existing network management
tools. The current version of NetInventory assumes that the
topology of the underlying network remains stable during the
discovery process; thus, it cannot effectively deal with node or
link failures that may occur during network discovery.

A. Netlnventory Conceptual System Architecture

In this section, we describe the NetInventory conceptual
system architecture. NetInventory assumes that each node in
the network has one of four basic types: router, switch, hub,
and host. We assume that each switched domain is a tree and
the network may include several switched domains, so that
the entire network is not necessarily a tree. The NetInventory
conceptual system architecture is depicted in Fig. 10.

The three basic components of NetInventory are User
Interface (GUI), Resource Discovery, and Topology Discovery.
The NetInventory database contains information about each
network node and its interfaces that were active during the
discovery process. It also contains information on interconnec-
tions among nodes. Database information on active network
nodes is collected by the NetInventory Resource Discovery
process. The process gathers the information in a consistent
manner from network-element MIBs using SNMP commands
and from other sources such as domain name servers (DNS),
administrative files maintained by network managers, and
system files. Along with the collected information, the resource
discovery process stores the time at which data collection was
performed and the data source from which the information was
extracted.

The data collection process accesses information from each
node’s MIBs. It is a well known fact that access to large MIB
tables may significantly degrade node performance. This is
especially noticeable for router nodes that have large routing
and address conversion tables and for switch nodes that have
large address forwarding tables. In order to reduce the perfor-
mance impact of NetInventory on a network, each MIB entry
returned by the nodes is processed immediately and used to
determine what other MIB entries are needed. For example, the
validity (dot1dTpFdbStatus) of an entry in the address
forwarding table needs to be checked only if the corresponding
MAC address (dotldTpFdbAddress) belongs to the
switched domains whose topology is being computed, and
the corresponding port (dot1dTpFdbPort) is up. By using
this kind of optimizations, the data traffic, and hence the CPU
load on the routers and switches, required to collect topology
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Fig. 10. NetInventory conceptual system architecture.

information is reduced by almost 60% compared to standard,
publically available SNMP utility packages that download the
entire MIB before processing it.

The topology discovery process generates the network map
for a user-specified set of nodes. Requests are initiated by the
network manager using the NetInventory user interface. The
discovered map is also stored in the database along with the
timestamp of map generation. Each map is stored as a set of
links with each link indicating the two network elements that it
connects and the ports through which they are connected. All the
NetlInventory code except for the GUI is written in platform-in-
dependent C++. We are also currently working on a Java version
that will make our GUI implementation platform-independent.

B. Netlnventory Functional System Architecture

The NetInventory system consists of five primary modules.

1) Inventory. This module generates and periodically up-
dates the NetInventory database. There are two modes of
operation:

a) Inventory Creation: The network operator creates
“profiles” in which a list of IP addresses and
masks for the subnets being monitored are spec-
ified. For single nodes to be included, the mask
255.255.255.255 is used. All the inventory
information is collected on the nodes, not just the
portion pertaining to the specified subnets. For
example, if a router is attached to eight subnets
(hence, having eight IP addresses) but only one
of the IP addresses is specified in the profile, the
information regarding the other seven interfaces
will still be collected. After the initial inventory
creation, the operator may examine the inventory
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2)

3)

4)

5)

information and decide to add other subnets to the
profile.

b) Inventory Maintenance: The information on nodes
discovered in the inventory creation process will be
refreshed periodically, with a refresh interval spec-
ified by the network operator. When the same node
is specified in multiple profiles, its information will
be refreshed according to the shortest interval only.
For example, the operator may specify the entire
subnet in one profile that is refreshed every hour,
while using another profile to monitor the gateway
router and the web server at five-minute intervals.

In addition to specifying a data-refresh interval, the pace
of communication within each data collection cycle can
also be configured by the operator at a level that does not
impose significant load on the network. We use our own
pipelined version of ping for node discovery; that is, the
program does not wait for the response from the first IP
address before sending out the next ICMP ping packet.
The speed of our ping is only limited by the speed of the
network interface at the management station. Therefore,
to avoid flooding the network, we insert artificial delays
between packets. Theoretically, we could ping more than
1.3 million nodes per second on a 100-Mb/s Ethernet con-
nection but, in practice, we set the program to ping 160
nodes per second, in 16-node bursts, 100 ms apart.
Topology. This module computes the topology of the
specified profile. It works in three phases:

a) Address Forwarding Table Population: Use the
“spoofed” ping-packet techniques described in
Section V-A to ensure that element AFTs are
reasonably complete.

b) Data Collection: Collect information pertaining to
the topology of the network as specified in the pro-
files. If an address forwarding table is incomplete,
entries from the previous run may also be used.

c) Topology Generation: The topology of the specified
profile is computed and stored in the database.

Device Vendor Plug-in. Not all vendors design their net-
work elements to completely conform to all standards.
For example, the Lucent Cajun switches use a different
format to store the address forwarding table due to VLAN
considerations. NetInventory allows special data collec-
tion actions to be taken based on the value of the sy sOb-
jectIDMIB variable. This applies to both the Inventory
and the Topology portions.

Interface Type Plug-in. NetInventory started with han-
dling only Ethernet interfaces. However, we quickly rec-
ognized the need to compute the topology of network el-
ements connected using other technologies, such as Fast
Ethernet, ATM, FDDI, SONET, and Frame Relay inter-
faces. Our current NetInventory implementation supports
all these different connection technologies.

Protocol Plug-in. Currently, NetInventory uses primarily
SNMP to collect MIB information. However, the system
is implemented in such a way that the node informa-
tion can also be collected through other means, such as
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a telnet command-line interface, which is used exten-
sively in the Telecom world.

VII. EXPERIMENTAL RESULTS

We have conducted several experiments using parts of
Lucent’s own research network. The main purpose of these
experiments was twofold. First, we wanted to test the accuracy
and correctness of our topology discovery tools in a real-life
networking installation. Second, we wanted to verify the
practicality of our tools by obtaining measurements for the
running times of our algorithm for networks with multiple
network elements that are distributed over several subnets.
For the experiments presented in this section, we were mostly
concerned with network elements that are either routers or
switches.

Our results verified the robustness of our methodology for
multi-subnet administrative domains, even in the presence of
element interfaces with incomplete address sets. The topology
maps generated by our tool were compared against the maps that
were manually maintained by local network administrators. For
all administrative domains tested, our tool generated the correct
physical topology map. In fact, there were several cases in which
our tool discovered element connections that were not present
the network administrators’ maps. In all such cases, the new
interconnections discovered by our tool were indeed proven to
be correct by a thorough check of the actual network topology.
(The maps maintained manually by our network administrators
did not include hosts, which made the task of comparing them
against the output of NetInventory tedious, but manageable.)
Figs. 11 and 12 depict the topology maps of two multi-subnet
networks discovered by our NetInventory system. (Since these
maps depict parts of Lucent’s proprietary research network, we
are using generic names for the network elements.)

In Fig. 11, switches switch; and switchs as well as router
routers belong to the same subnet, while all remaining switches
and router; belong to a different subnet. For our test runs, we
found that the address sets that our algorithm collected for in-
terfaces on switches switchs, switch7, and switchg were not
complete. Nevertheless, NetInventory was able to discover the
correct network topology using the supplemental approximation
techniques described in Section V-A. We should also note that
the connection between switches switch, and switchs was in
fact missing from the network administrators’ manual map.
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TABLE 1
NETINVENTORY PERFORMANCE RESULTS
No. of No. of Routers/ | No.of | Ping Inventory AFT Topology
Subnets Switches Nodes Time Time Time Time

5 5 38 8.0 42 1 <1

8 12 74 59 23 4 <1
10 14 89 7.3 29 3 <1
12 23 241 7.7 40 9 <1
14 26 322 12.1 69 9 <l
20 32 522 18.6 229 19 <1
22 35 566 31.0 156 21 <1
28 40 672 7.5 176 22 <1
30 41 677 20.9 175 27 <1
32 43 691 24.6 186 25 1
36 44 717 314 349 26 1
40 49 736 34.5 207 28 <1
44 84 779 323 341 286 1
48 90 915 39.4 379 202 1
52 92 922 47.2 376 266 1
56 94 928 54.3 348 260 1
64 113 1221 51.2 492 259 2
72 243 1363 66.1 961 1437 5

Fig. 12 depicts the physical topology map discovered by Net-
Inventory for a network with six distinct subnets composed as
shown in the figure.

A second goal of our experimental study was to verify the
practicality of our topology discovery algorithm, by measuring
its running-time requirements for various network sizes. Table I
shows the running time (in seconds) of different NetInventory
components at various network sizes. (The “AFT Time” column
in Table I indicates the time spent in order to populate switch
AFTs.) For this experiment, our NetInventory implementation
was compiled with Borland C++ Builder 5.0 and was run on
a Pentium II 400-MHz computer with 288 MB of RAM and

Windows NT 4.0 operating system. The maximum size of the
working set during the entire experiment was 11 620 kB.

In general, we have discovered that our algorithm is suffi-
ciently fast for all practical purposes. As can be seen in our num-
bers, most of the time in NetInventory is spent on data collec-
tion. Even in fairly large network configurations with more than
200 switches and 1000 nodes, running our topology algorithm
took only five seconds.

VIII. CONCLUSION

Automatic discovery of physical topology information
plays a crucial role in enhancing the manageability of modern
IP networks. Despite the importance of the problem, earlier
research and commercial network management tools have
typically concentrated on either: 1) discovering logical (i.e.,
layer-3) topology, which implies that the connectivity of all
layer-2 elements (e.g., switches and bridges) is ignored; or 2)
proprietary solutions targeting specific product families. In
this paper, we have developed novel, practical algorithms for
discovering physical topology in heterogeneous IP networks.
The practicality of our solution stems from the fact that it
relies solely on local address forwarding information routinely
collected in the SNMP MIBs of routers and switches. The main
algorithmic challenge we have addressed is how to cleverly
“stitch” that information together into a complete layer-2 LAN
topology. Our algorithms can handle switched domains com-
prising one or more subnets and can be extended to deal with
incomplete information and VLANs. We have implemented our
algorithms in the NetInventory topology-discovery tool, which
has been experimentally tested over Lucent’s research network.
The results clearly validate our methodology, demonstrating
the accuracy and practicality of the proposed algorithms.
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