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Abstract—Recent entity resolution approaches exhibit benefits when
addressing the problem through unmerged duplicates: instances de-
scribing real-world objects are not merged based on apriori thresholds
or human intervention, instead relevant resolution information is em-
ployed for evaluating resolution decisions during query processing using
“possible worlds” semantics. In this paper, we present the first known
approach for efficiently handling complex analytical queries over proba-
bilistic databases with unmerged duplicates. We propose the ENTITY-JoIN
operator that allows expressing complex aggregation and iceberg/top-
k queries over joins between tables with unmerged duplicates and
other database tables. Our technical content includes a novel indexing
structure for efficient access to the entity resolution information and
novel techniques for the efficient evaluation of complex probabilistic
queries that retrieve analytical and summarized information over a
(potentially, huge) collection of possible resolution worlds. Our extensive
experimental evaluation verifies the benefits of our approach.

1 INTRODUCTION

Entity Resolution is the task of processing a data set in order
to create entities by merging the data set instances that
describe the same real-world objects. This task is especially
important when integrating data from various sources, since
typically each source can use different descriptions for
the same real-world object. Due to its importance, entity
resolution has been widely studied by the database commu-
nity [[15], [23]], and the proposed approaches touch various
aspects of the problem, including string similarity [8], [L1],
collective resolution (using relationships between instances)
[13]], [21], and iterative resolution mechanisms [7].
Modern applications (e.g., Web 2.0) have introduced
new challenges to the resolution problem, including higher
levels of heterogeneity, and more frequent data modifica-
tions [33]. Unfortunately, existing resolution techniques are
not able to address these new challenges [135], since they are
based on an a-priori merging of instances: they first detect
the possible matches between instances and then, given a
threshold, decide which instances to merge into entities.
The entities resulting from the merges are then used for
replacing the coreference instances in the original data set.
To handle these new resolution challenges, recently intro-
duced approaches have moved towards databases that main-
tain unmerged duplicates [4]], [19], [31]. These approaches
perform only the first part of the resolution process, which
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is the identification of the possible matches between the
instances. Such resolution information has different forms,
e.g., clusters of instances that describe the same real-world
object [4l], [31]], or linkages between pairs of matching
instances [19]. In some cases the resolution information is
accompanied by probabilities, encoding the inherent uncer-
tainty of the resolution process. This information is not used
for performing merges between instances (e.g., based on a
threshold), but is maintained alongside the original data to
capture appropriate “possible worlds” semantics at query
time [4], [19]. The focus of these approaches is on using the
resolution information for processing simple (single-table)
queries, with probabilistic answers reflecting the different
possible real-world scenarios, i.e., resolution decisions.

Although answering simple queries over unmerged du-
plicates is important, it is still just a first step towards
a complete solution to in-database entity resolution. The
typical situation is that the unmerged duplicates are part of a
large database that, of course, contains other tables. Conse-
quently, users would require retrieving information related
to all data, and not only the table with the unmerged du-
plicates. In addition, queries returning all answers resulting
from all possible resolution scenarios can easily overwhelm
the user, as the number of these scenarios is huge [12].
In such situations, users typically do not even care about
the exact information in individual entities; rather, their
main focus is on efficiently obtaining aggregate, statistical
insights about the collection of resulting entities, similar,
in spirit, to online analytical processing.

Our Contributions. In this work, we introduce the first
known generic approach for processing complex analytical
queries over probabilistic databases with unmerged dupli-
cates. Our solution offers several benefits with respect to
existing approaches. First, it adopts the most expressive
form of resolution information (i.e., probabilistic linkages
between instances — also accounting for transitivity), and
significantly extends its scope by considering the resolution
information as part of a database with other tables providing
entity-related data. Second, it introduces a novel indexing
structure that provides efficient query-time access to the
resolution information, and the resulting merges and their
probabilities. Third, it is the first to enable the efficient
execution of complex analytical queries over the unmerged
duplicates and their related data.
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Fig. 1. A small fragment of a database with unmerged duplicates.

Our approach supports complex aggregation and
iceberg/top-k queries. A vital operator in the supported
syntax is a novel ENTITY-JOIN operator, which allows ex-
pressing joins between tables with unmerged duplicates and
other database tables. The ENTITY-JOIN can be used for query
analytics using either aggregation operators (e.g., sum, cnt,
min, and max, in combination with range, variance,
and mean) or iceberg/top-k operators. Coupled with our
query processing algorithm, these operators allow users to
efficiently retrieve statistical information about the possible
resolved entities. Each query answer is accompanied by
a probability reflecting the possible worlds in which it
appears. Our contributions can be summarized as follows:
1. We propose the first-known solution of processing
complex probabilistic queries over probabilistic databases
with unmerged entity duplicates. Our focus is on practical
scenarios that do not require retrieving the huge collection
of all possible resolution worlds, but rather analytical or
summarized information on the entities.

2. We introduce the ENTITY-JOIN operator for performing
joins considering the possible resolved entities. We formally
define the semantics of queries with ENTITY-JOIN focusing on
two analytical query types: aggregation and iceberg/top-k
queries.

3. We present a novel indexing structure and processing
algorithms that enable efficient query-time access to the
resolution information, their merges, and their probabilities.
4. We provide new techniques that exploit efficient process-
ing aggregation and iceberg/top-k queries without the need
to materialize the possible worlds.

5. We validate our techniques through an extensive eval-
uation (using three real-life data sets), and also report
comparison results using alternative methodologies.

2 Morivating EXAMPLE

Consider an online store that integrates data from a set
of similar systems. Figure (1| shows a small fragment of
the store’s database. Table Order is a deterministic ta-
ble, whereas table Buyer contains duplicate instances, i.e.,
instances that may describe the same real-world objects.
Executing a resolution algorithm on the Buyer table will
generate probabilistic resolution information that represents
the possible matches between its instances (table Resolu-
tion). For instance, linkage /,, ,, states that with probability
0.9, instance r; from table Buyer describes the same real-
world object as instance r,. Accepting this linkage implies a

Fig. 2. Possible worlds and their merges.

id name surname loc. gender year
e Marion Smith GR female 2009
e Marion Smith DE female 2010
e; Mary Smith DE  female 2011
e,  Marion Smith DE female 2010
er3 Mary Smith DE  female 2011
€123 Mary Smith DE female 2011
ey John Smith GR male 2010
es Johnny Smith GR male 2011
eys  Johnny Smith GR male 2011
TABLE 1

The entities contained in the possible worlds.

new entity, with identifier e, », that replaces both r; and r;.
The system incorporates a merge function for specifying the
data representing the final entity. As we discuss later (Sec-
tion EI), this merge function can have different semantics.
For this example, we assume that it returns the instance
with the highest value on the year attribute. Therefore,
the tuple for the merge between instances r; and r, is
(e12, “Marion”, “Smith”, “DE”, “female”, “20107). TableT]
shows the resulted tuples for all possible merges between
instances of the Buyer table.

Combining the data of tables Resolution and Buyer,
models different real-world situations, depending on which
linkages we actually accept. These are termed possible
worlds (Figure[2)). Accepting all three linkages, for instance,
results in possible world /; that contains two entities: one
created by the merge of ri, r, and r3, and another by the
merge of ry and rs. Typically [4], [19], [31], we assume
that linkages are independent, and thus the probability of
each world (shown in parentheses in the figure) depends
on the probability of the accepted and rejected linkages;
for example, the probability of possible world I; is equal
to the product of the linkages I, ,,, I, and [, .. The
idea of tracking unmerged duplicates and possible resolu-
tion worlds has been recently introduced in the database
community, e.g., in the data models of [4], [19], [31]. In
this work, we follow and extend the model of [19], which
is the most generic model from the ones suggested since it
captures arbitrary probabilistic linkages. In addition, it also
accounts for the required transitivity among linkages, i.e.,
using only the valid of possible worlds.

Consider now that we want to join the entities created by
these merges with the data from table Order. This implies
a set of records for each entity (e.g., for I, t;-t5 would cor-
respond to e; 2 3), typically yielding a huge (exponentially-
large) number of possible result records, considering the



huge number of possible resolution worlds. Generating all
these scenarios is infeasible, and the huge volume of results
would make it impossible for users to derive any mean-
ingful information. To remedy this, we integrate various
analytical operators and qualifiers, operating at different
levels of aggregation. The first aggregation level is within
each possible resolution world, using conventional SQL
aggregate semantics over the merged entities. For instance,
summation over the “amount” attribute of table Order for
each entity generates:

I, : {e123, ..., DE, 570), (e45s, ..., GR, 80)

L:{ein3, . DE 570), {eq, .. GR 40y, (es, ..., GR, 40)

L : {e12, - DE 470), {es, ..., DE, 100), (e4s, ..., GR, 80)

Iy : {e12, ..., DE, 470), {(es, ..., DE, 100}, {e4, ..., GR 40, (es, ..., GR, 40)
Is : {ey3, ..., DE, 120), {ey, ..., DE, 450), (ess, ..., GR, 80)

I : {e13, ..., DE, 120), (ea, ..., DE, 450), {es, ..., GR, 40), (es, ..., GR, 40)
I; : {e1, ..., GR, 20), (ey, ..., DE, 450), {e3, ..., DE, 100), {ess, ..., GR, 80)
Is : {e1, ..., GR, 20), (ey, ..., DE, 450), {e3, ..., DE, 100), {es, ..., GR, 40),

{es, ..., GR, 40)

TABLE 2

Records created by the first aggregation level.

Although the result is a smaller number of records with
aggregated information, it is still of exponential size (i.e.,
linear in the number of possible worlds), and, thus, difficult
for users to analyze for reaching vital business decisions.
We therefore support a second aggregation level, across all
possible resolution worlds, over all the records created by
the first level and based on one (or more) query attributes
of interest.

Our probabilistic, second-level aggregation semantics,
can express and evaluate queries with different analytical
operators over the collection of possible worlds. We now
describe a few such examples.

o Iceberg/Top-k Probabilistic Aggregates: One useful
query type is top-k that allows users to find the high-
probability resolution scenarios that satisfy specific selec-
tion predicates. As an example, consider the following top-k
query:

1 | SELECT top-2 entity _amount, prob

2 | FROM Order entity-join Buyer

3 based on Resolution

4 using sum(Order.amount) as entity _amount

5 | WHERE Buyer.year=2010
This aims to compute the two most likely aggregate
amounts spent by buyers in 2010, along with their respec-
tive probabilities. (Instead of top-k, a query could simply
specify a lower bound on the probability of the aggregate
values returned.) The entities satisfying the wHERE condi-
tions are e, from possible worlds Is¢ 73, e;2 from I3 4, and
e4 from 12,4,6,3[1_1 Their probabilities are the summation of
the probabilities of the worlds in which they participate,
i.e., 0.1 for ey, 0.36 for e;,, and 0.2 for e4. By default,
the entities are ordered by probability, thus, the answer is
{(470, 0.36), (40, 0.2)}.

o Aggregate Ranges: One basic statistical summary is
the range of possible aggregated values over all possible
worlds. As an example, let us consider a manager that wants
to retrieve the range of possible total Order amounts per
location, and thus poses the following query:

QI

., and I.

SELECT Buyer.location, range(entity _amount), prob
FROM Order entity-join Buyer
based on Resolution (Q2)
using sum(Order.amount) as entity _amount

GROUP BY Buyer.location

Although not directly expressed in the query, the ENTITY-JOIN
(lines 2-4) implies aggregation of the records corresponding
to each entity in the possible worlds by assuming an
implicit group-by operator over the entities (aggr. level
1, see Table [2). Evaluating the (explicit, line 5) Group
By clause over the resulting records gives two locations:
“GR” and “DE” (aggr. level 2). Consider now all entities
in the possible worlds. As shown in Table [2] the amount
summation for location “GR” is between 20 and 80, which
means that the range is [20-80]. For location “DE”, it is
between 100 and 570, and thus the range is [100-570].
As both locations are present in all possible worlds, their
probability is 1. These location-range pairs along with their
probabilities compose the answer set for query Q2: {(“GR”,
[20-80], 1), (“DE”, [100-570], 1)}.

U A W N~

¢ Range Drill Down Qualifier: In the above examples, we
showed how to retrieve summarized information. However,
users can also be interested in retrieving results with more
details, probably after executing aggregation queries, which
basically implies reversing parts of the performed summa-
rization. We support this through the “drill down” qualifier.
As our focus is on entity resolution, we use this qualifier
for returning more details with respect to the underlying
resolution decisions, i.e., DRILL DOWN includes sub-ranges
for each subset of instances that are mutually connected
through (possible) linkages. Note that the instances of
such a mergeable subset could potentially all merge to
a single real-world object, while linkage decisions across
such subsets are completely independent.

Our example (Figure [T), has two mergeable subsets
of instances, namely {r, r,,r3} and {r4, rs}. Reposing our
example query Q2 with a prRiLL pown splits the range
of each location into sub-ranges, one for each mergeable
subset of instances. For location “GR” and instances {r4, 5},
we have range [40-80] with probability 1 because this is
present in all the possible worlds. For location “GR” and
entities {ry, 7, 3}, the range is [20-20] and with probability
0.04 as this is present in /; and [g. Similarly, we can see that
for location “DE” and {ry, r,, r3} we have range [100-570]
with probability 1, and no range for location “DE” and
{rq,7s}. Thus, the answer set for query Q3 that includes
a prRILL DOWN is: {(“GR”, [20-20], 0.04), (“GR”, [40-80],
1), (“DE”, [100-570], 1)} (note that pRILL bowN does not
give disjoint alternatives, i.e., ranges might correspond to
overlapping possible worlds and thus the sum of range
probabilities can be greater that 1). Comparing these results
to the ones from the original Q2, the manager understands
that there can be no entities resulting in GR order values
between 21 and 39.

e Statistical Operators: Two additional complementary
functions that provide insightful information over possible
worlds are: (i) mean that shows the average value over
the ranges of all possible merges, and (ii) variance that



indicates the typical discrepancy of the expected value. As
an example, consider again query Q2 but with a mean and
a variance aggregate function instead of range (line 1).
Both are computed based on the mergeable subsets of
instances. As shown in the drill down example, for location
“GR” we have two ranges: [40-80] for the mergeable
subset r4-rs, and [20-20] for rj-r;. The former range
has a mean value of 60 and corresponds to 3 distinct
entitie’] whereas the latter has a mean value of 20 and
corresponds to 1 distinct entity. Thus, the value of mean
is [3x60+1x20]/(3+1)=50, and the value of variance is
[3%(60-50)+1x(20-50)?1/(3+1)=300 (i.e., standard devia-
tion =~ 17ﬂ As such, the manager realizes that the total
amount of orders for location “GR” is typically between
33 and 67 (within one std. deviation of the mean).

Note that the repertoire of aggregate/analytical operators
defined here is similar, in spirit, to [31]. However, there ex-
ist the following crucial differences: (i) the model followed
in [31] assumes that the algorithm is provided with fixed
clusters of instances, which allows them to primarily focus
on basic query-time aggregation. In sharp contrast to [31],
we incorporate a more generic resolution model that re-
quires dealing also with linkages between instances as well
as linkage transitivity; (ii) we also consider probabilistic
linkages, capturing the relevant entity-linkage uncertainty;
and, (iii) we support a more expressive query syntax in
comparison to [31]], which includes two aggregation levels,
additional aggregation functions, and iceberg/top-k queries.

Ideally, this problem should be handled by modeling the
data using a representative graphical model. However, this
would restrict the approach to the most probable situation as
oppose to our algorithm that allows retrieving a larger num-
ber of possible worlds that interest the users. In addition,
executing the inference process (required for retrieving this
most probable world) is prohibitively expensive and cannot
be applied on data sets of real-world applications.

3 FounbATIONS

In this work, we follow and extend the data model
introduced by [19]], which involves duplicated instances
maintained in an unmerged state. More specifically, our
model involves instances that describe the same real-world
object, and linkages that express the belief (i.e., through
probabilities) that two instances should be merged.

It is important to note that our model is different from
conventional tuple-independent probabilistic data models
(e.g., [12]) in several important aspects, including the speci-
fication of probabilities on pairs of instances (i.e., linkages),
and the linkage transitivity requirement that, among other
things, implies the need for reasoning at query time over
subsets of linkages. (This distinction is discussed further in
Section[0]) Although we focus on the probabilistic linkages
model, the ideas we introduce can also be incorporated in
existing techniques for probabilistic data, such as [5], [28].

2. Note that entities resulting from merges between different subsets of instances
are considered as distinct outcomes.

3. Other definitions can also be accommodated by our techniques, e.g., using the
cumulative probability of each range instead of the number of corresponding entities.

3.1 Data Model

We assume the existence of an infinite set of instance
identifiers O, names N, and atomic values V. An instance
is a design artifact used to model a real-world object. It
consists of a unique identifier and a set of attributes. An
attribute is a pair (n,v) of a name and a value, describing
some characteristic of the instance. The set A=NXV
represents the infinite set of all the possible attributes.

DerinitioN 1. An instance r is a tuple {id, A) where ideO
is the identifier and ACA is a finite set of attributes. [ |

We assume the existence of an infinite set of instances R,
and our database contains a subset of these instances, i.e.,
RCR. There are instances among R that describe the same
real-world objects. Such relationships between the instances
of R are encoded by the linkage set, defined as a binary
symmetric relation LCRXR. Each element (r,,rg)€L, also
denoted as lra,r;;’ indicates the belief that r, is the same
real-world object as rg.

DerFiNITION 2. The factor set { JC1 32 } is a partition of
linkages L into disjoint linkage sets, with each factor being
a maximal group of pairwise linked instances: (i) Vl”/Eﬁ,
if L€l = Lpnef (ii) fimsz(o, and (iii) Uiz o f=L.

The mergeable subset of factor JS is the distinct union
of the instances participating in the linkages of ﬁ, ie.,
Ulsr’} Vi€ f] and provides instances that could be
merged into entities. [ |

Factors are essentially connected components of the
linkage graph. The mergeable subset of each factor, i.e., the
instances contained in the linkages of the specific factor,
provide instances that could potentially merge into one
or more real-world objects. On the contrary, the instances
contained in the mergeable subset of different factors can
never participate in the same merge.

Example 1. Consider again the five instances from the
example shown in Figure E] i.e, Ly vy byrsr lryrs. We need
to place each instance in a factor. The first linkage contains
an instance that is also found in the second linkage, i.e.,
instance ry participates in linkages I, ,, and I, ;.. We thus
place the instances from these linkages in the same factor.
The instances of the third linkage participate only in the
specific linkage, thus we create a new factor that contains
these instances. This results in fl:{lrm, Ly ry} and Jg:{lm,rs}
and thus the mergeable subsets of instances {r, ry,r3} and
{rs, rs}.

Having these linkages separated into two factors means
that we only need to consider creating entities by merging
instances participating in the linkages of 3[1 or ch For
example, we do not have to consider merging instances r
with ry since these instances participate in linkages from
different factors, i.e., ry in linkages of 361 and ry in linkages

o ¥, |

Partitioning linkages into factors has positive effects
on efficiency, as we now need to handle linkage subsets
of smaller sizes. Clearly, the factor characteristics (e.g.,



SELECT TOP-K columnj, ..., column, prob |
grp_column, aggFunct(agg column), prob
FROM T; entity-join T,,, based on T
using emAggFunct(7;.column) as agg column 1
[having ent_probability > double]
[WHERE conditions] |
[GROUP BY grp column [with drill-down] ] H;H
[HAVING grp_probability > double] o
emAggFunct: min | max | sum | cnt
aggFunct: range | mean | variance (m)

Fig. 3. The syntax of an entirv-yoiN query.

0NN AW =

number of linkages) depend on the resolution technique
used for generating the linkage set. In essence, we cannot
make any assumption with respect to these characteristics
since the linkage set is given as an input to our approach.
Our goal is to introduce a generic methodology that is able
to operate efficiently over different linkage characteristics.
The influence of characteristics on performance is further
explored in Section

DeriniTION 3. The  entity ey, , created by function
merge(ry, ..., 1), represents the set of pairwise linked
instances ry, ..., y. [ ]

We stress that the merge function, as included in the
above definition, is generic enough to capture the different
possible semantics of merging instances. One possibility is
merge | {ry, ..., ry} — r; with i€[1,n], which is followed by
methods such as [9]], considering that one of the instances
will be used for representing the final merge. Another
possibility for the merge function is merge | {ry, ..., r,} = 1’
with 7.ACUr;.A and i€[1,n]. This merge function creates
the final entity by composing attributes from some/all of
the instances to be merged, as for example performed in
[35]. In the current version of our work, we use the first
function, i.e., one of the instances is used for representing
the final merge. However, incorporating a merge function of
the second type does not alter the techniques introduced for
query evaluation (Section [7). In what follows, we will also
use e, as the identifier of the entity returned by merge(r,
..., 1), and since entities are the results of merges, the terms
entity and merge will be used interchangeably.

We consider a database that maintains the data of a
complex information system. As such, our database does
not only contain information related to instances and their
resolution, but it also contains other tables with additional
information. These tables can, and typically will, also have
references to the instances in R.

DEerFiNiTION 4. A database D with unmerged duplicates is a
tuple (Ty, ..., T, R, L, pl), where Ty, ..., T, are determin-
istic relational tables, R is a table containing duplicates,
L contains linkages over the instances in R, and p' is the
linkage probability assignment function p' | L~ [0,1]. N

Note that, compared to the data model of our earlier
work [19], the key difference here is that we consider the
scenario in which the duplicated instances are part of a
database, i.e., with other tables, over which we need to
provide efficient processing of complex queries. Also note
that the above definition can be extended to include more
than one tables with duplicate instances (Section [7).

An uncertain database with unmerged duplicates (Defini-

(ARG

Fig. 4. The tree structure for factor .
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Fig. 5. Indexing structure for Figure[i]

tion ) contains the linkage set L and the linkage probability
assignment function p' that assigns probabilities to the
L linkages. This means that each linkage exists with the
probability given by p' and does not exist with probability
1-p!. We can therefore create various situations (possible
worlds), by deciding which linkages from L to accept or
not (termed linkage combinations). The combinations for
each world are used for defining the entity merges (e.g.,
Figure [2)).

An ENTITY-JOIN is the probabilistic join between table T;
with each of the entities in the possible worlds. Note that
a possible world will be considered in the join only when
this is valid, i.e., the transitivity of the accepted linkages
does not violate the transitivity of rejected linkages. This
means that if the accepted linkages imply entity e_,. g, .,
then the rejected linkages must also indicate that instance
7, can be merged with instance 7.

3.2 Analytical Queries over Unmerged Duplicates

Figure |3| shows the complete query syntax that can be
processed given an uncertain database with unmerged du-
plicates, i.e., Ty, ..., Ty, R, L, pl). The supported query
syntax is given as an extension of SQL syntax, in order to
illustrate our approach’s capability for easy usage by users
and simple integration with traditional relation databases.

The query semantics focus on enabling users to retrieve
analytical or summarized information about the entities
and related uncertainties. The basis for this task is the
set of possible resolved entities that can be created given
the duplicated instances Ty, and the probabilistic linkage
information 7,.,. The From clause, and more specifically
the ENTITY-JOIN Operator (Figure [3] lines 3-4), states that the
possible resolved entities must be joined with the records
of table T;. Here, we assume a group by operator over each
possible merge (i.e., entity). Thus, the corresponding result
set must include one record per entity. Although this group
by operator is not directly included in the query syntax, it is
implicitly expressed through the emAggFunct aggregation
function (line 5). The supported aggregation functions are
min, max, sum, and cnt.

Example 2. Consider again the ENTITY-JOIN from query
Ql. As explained, our query semantics assume a group
by operator over the records of each entity. For example,
having entity ess from I, gives the following records as the
results of joining Order and Buyer:

o (e4s, “Johnny”, “Smith”, “GR”, “male”, “2011”, 2, 30)
o (e4s, “Johnny”, “Smith”, “GR”, “male”, “2011”, 1, 10)
o (ess, “Johnny”, “Smith”, “GR”, “male”, “2011", 2, 40)
Executing the sum aggregation function over these records,



as required by line 4 in QI, creates the following single
record for the specific entity:

o (e4s, “Johnny”, “Smith”, “GR”, “male”, “2011”, 5, 80)
Let us now assume that the requested aggregation function
is a cnt. Then, the resulted record for the ess entity is:

o (eqs, “Johnny”, “Smith”, “GR”, “male”, “2011”, 3, 3)
|

Over the entities created by the FROM clause we can
execute aggregation and iceberg/top-k. Aggregation queries
allow users to include an additional aggregation level over
the resulting entities across all possible worlds. This query
type is expressed by specifying a GROUP BY clause
(line 7) and an accompanying aggFunct (line 2). Iceberg
and top-k queries allow users to derive high-probability
distinct entities across all possible worlds (line 1 & 5).

In the following paragraphs we further explain the se-
mantics of these query types.

I. Aggregation Queries. The current version of our
approach can execute three aggregation functions over the
entities resulted from the EnTiTY-JOIN (line 2). One of these
aggregation function is range. For this function, the entities
of all possible worlds are grouped by grp column (line 7),
and the function returns the lower and the upper values
among the grouped data.

Aggregation queries with a range function are equipped
with two optional qualifiers. The first is HAVING qualifier
(line 8) that allows setting a lower probability threshold
for filtering the merges. The second qualifier is DRILL-DOWN
(line 8) that returns sub-ranges (instead of just one range)
for each agg column value. These sub-ranges are derived
by combining an agg column value with each one of the
mergeable instance subsets. Thus, each returned sub-range
represents the lower and upper values for instances with
common linkages. A query example that includes a DRILL-
pownN qualifier was discussed in Section

The other two aggregation functions are mean and
variance. Both functions perform the computation by
combining a grp column value (line 7) with each one
of the mergeable instance subsets (similar to the DRILL-
powN qualifier). They then compute mean/variance of
each grp _column value. For mean, this is the summation of
every range midpoint multiplied with the number of entities
in this range, and divided with the number of entities in
all ranges. The computation for variance is similar, but
is based on the squared numerical difference of the range
midpoint with the computed mean value. Both functions
require knowing the total number of entities for each range,
which can be hard to compute; thus, we instead use a
sampling-based estimate (explained in Section [5)). Note that
a query example with a prRiLL-powN qualifier was discussed
in Section 21

II. Iceberg & Top-k Queries. In addition to executing
aggregate queries over the entities created by the ENTITY-
JOIN operator, users can also filter the entities using iceberg
or top-k queries. Both query types consider distinct entities
across all possible worlds, where the probability of each
entity is accumulated across all the possible worlds in

which it is present.

Iceberg queries allow setting a lower limit on the proba-
bility of the entities. This probability is given by including
a HAVING qualifier (line 6) in the query. Top-k queries state
that only k entities should be returned, the ones with the
highest aggregate probabilities (i.e., across all worlds). For
defining such a query, users need to include a Top-xk qualifier
(line 1). An example of a top-k query was presented in the
last paragraphs of Section [2}

4 INDEXING STRUCTURE

We now introduce the indexing structure, which forms the
basis of the efficient processing of the supported query
types. The main goal of the indexing structure is to reduce
the complexity of the computations required when process-
ing queries. This is achieved since the indexing structure
provides efficient access to the information encoded through
the linkages (i.e., potential merges) and since it allows easy
construction of possible worlds (or, parts thereof) as well
as the fast retrieval of their probabilities.

4.1 Construction

Algorithm [I] illustrates the construction of our indexing
structure. The first part creates the factors by detecting
connected components in the given linkage collection L
(lines 2-8). Each linkage is placed in a factor, such that the
instances of this linkage are only referred to by linkages of
the same factor. This step’s complexity is O(|L]).

Once we have created the factors for the given linkage
collection (lines 2-8), we processes the linkages in each
factor (lines 9-18). This involves processing each factor
for computing the probability range of all the possible
worlds that can be generated using the linkages of the
specific factor (line 12), creating a list with the instances
participating in the linkages of the factor by taking the
distinct union of the linkage instances (lines 13-14), and
loading the linkage combinations that can be generated
given this factor (lines 15-17). We elaborate on these steps
in the following paragraphs.

One of the steps involves computing the ranges for
the probabilities of all possible worlds for each factor
(line 12). We will use notation [vf}”, ¥#"] to denote that the
probability range for factor f has a lower value yff " and an
upper value fo ". To simplify the discussion, and without
loss of generality, we now assume that linkage probabilities
are all above 0.5. (To handle linkages with probabilities
below 0.5, we simply assume that these linkages do not
exist and use their complement (see proof of Theorem [I]).)
We now need to use the resolution information that has
the highest probability. Recall that each factor f is a set
of linkages. Thus, in case the probability p of a linkage
is lower than 0.5, we consider the negation of the linkage,
i.e., that the two instances do not match, and this occurs
with probability 1-p. If none of the linkages from factor
ﬁ are accepted then each instance will create a unique
entity. On the contrary, if all linkages are accepted then
we will have one single entity by merging all instances.



Algorithm 1: Construction of the Indexing Structure

Input: Instances R, Linkages L, Linkage prob. function p'
Output: Indexing structure /
I <0, F« 0
foreach [/ € L do // create factors
fi = F.getFactorWithInstanceInLinkage(/.instancel);
f» = F.getFactorWithInstanceInLinkage(/.instance2);
if (fi=fa=-1) then F = F U {{l}};
else if (fi=—1 & f/=-1) then F[f;] = F[f2] U {l};
else if (fr=—1 & fi/=—1) then F[fi] = F[fi] U {l};
| else FLfi]l = F[filV F[Ll F = F\ Flf2];

9 foreach L € F do // process linkages of each factor

10 elem « 0;

1 elem.linkages « L;

12 elem.probability range « computeRange( L ); // Eq.
13 foreach [ € L do

14 L elem.factor = elem.factor | Jgigriner {l.instancel,
Linstance2};

15 TopK « retrieveTopKCombinations( L, K ); // Alg.
16 foreach CL € TopK do
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17 L elem.combinations.addCombinat&References( CL );
18 | 11U felem)
19 return /;

The probabilities of these two situations provide the bounds
of the probabilities for all possible worlds that can be
generated by the linkages of this factor. Therefore, the upper
probability bound is given by the product of all linkage
probabilities, and the lower probability bound is given by
the product of the complements of the linkage probabilities.
The range [vf?", "] for factor f is thus:

vfl" = l_[ (1-p'(.)), and vf = n Pl (1)
Iy ef Iy ef

The algorithm (lines 15-17) also loads a subset of the
linkage combinations from each factor in the index (this
algorithm is presented in the following paragraphs). The
number of linkage combinations that can be generated
depends on the number of linkages in Jf More specifically,
ﬁ can generate at most 2l combinations, where | Jfl
denotes the number of linkages in Jf (This number is only
an upper bound, since the transitivity of linkages makes
some of the combinations invalid.) Clearly, the number
of linkage combinations increases exponentially with the
factor size. Our indexing structure aims to provide efficient
access to the combinations with the highest probabilities.
As discussed, the collection of indexed combinations can
be dynamically expanded (during query processing) at low
overhead.

The probability of a linkage combination CL reflects the
fact that only the specific linkages of factor Jf exist (and the
remaining linkages do not exist) in a possible world. This
corresponds to a possible world in which all instances not
participating in the linkages of CL are independent (i.e.,
not part of any merges). The remaining instances create
one entity merge, or even multiple entity merges in case
the specific linkages can be separated into independent sets
of pairwise linked instances. A possible world is invalid
when the transitivity of the linkages from CL is violated

by the absence of linkages from Jf\CL, as also performed
in [19]. The probability of a possible world given CL is:

0, if merge from CL is invalid

2
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P(CL. f) = {

Example 3. Consider now having factor fl = Al liprss
Ly ri). The linkage combination CL = {l, ,,, l,,,}, and
especially the transitivity between linkages, implies that
there is a merge between instances ri, r,, and r3. However,
JCI\CL equals to {l, ,,} and this states that instances ry
and ry must not be merged. This contradicts the merges
generated by CL and for this reason we consider the
specific merges as invalid. [ |

Once a linkage combination is generated, we include in
our index the probability of the combination along with its
linkages, or linkage sets in case the specific linkages can be
separated into factors. In addition, for each set of linkages
we create instance references, i.e., references to instances r;
and r; for each linkage [, ,, in the combination. Recall that
for every entity merge we apply the merge function, which
returns the instance that will represent the specific merge.
We encode this information in the index by including an
additional reference from the set of linkages to this entity.
Such references are called merge-representation edges.

In addition to linkage combinations and their proba-
bilities, our index also maintains all instances. When an
instance r; does not participate in any of the accepted link-
ages, we must consider an entity that basically corresponds
to r; (i.e., no accepted linkages means that 7; is not merged
with other instances).

Retrieval of Linkage Combinations. An important techni-
cal problem is how to create the possible worlds in order of
decreasing probability. Algorithm [2| describes the process
of retrieving the K linkage combinations with the highest
probabilities for a specific factor. It incrementally generates
such linkage combinations in order of probability and, thus,
it is also directly applicable for efficiently retrieving all
combinations with probability higher than a given thresh-
old. Furthermore, simple adaptations of Algorithm [2| play
a critical role in our aggregate query processing strategies
(Section [3).

Our algorithm is based on a tree structure (Figure[d), with
each node representing a linkage combination. The root of
the tree (lines 2, 3 in Algorithm [2)) corresponds to the com-
bination with the highest probability, i.e., vf;". As explained
above, this is the combination in which all linkages exist.
Each level of the tree contains combinations that exclude
one more linkage compared to the combinations contained
in the previous level. We use m to denote the number
of linkages excluded from f to create the combination.
The following theorem demonstrates that the maximum
probability among the combinations in which m linkages
do not exist is higher than the maximum probability we
will receive if we increase the value of m.

Theorem 1. Let Ly ,, denote the m linkages from factor
Jf that have the lowest probabilities, and CL,, denote the



linkage combination in which the Ly, ,, linkages do not exist,
i.e., CLy=f\Lj . Then P(CLy, §) 2 P(CLy11, f), where
m>0 and m<|3€|. [ | (Proof in the appendix)

Given the above theorem, we initially set the value
of m to zero (i.e., combination represented by the root)
and increase it as processing continues. For example, the
second level of the tree contains combinations with one
excluded linkage, and the last level with | £|-1 excluded
linkages. Thus, the algorithm generates the first child node
CL,4; of node CL,, by excluding the linkage with the
lowest probability, i.e., CL,41=CL,,\{I*} where p'(I*)<p!(lY)
V I¥, VeCL,. We can generate various combinations in
which m linkages do not exist. However, we need to
retrieve combinations sorted by their probabilities, which
is achieved through the following theorem.

Theorem 2. Let CL,.| denote the linkage combina-
tion created by excluding linkage U from CL,, i.e.,
CL1=CL\{l}, and Cle+1 is created by excluding 2
ie., CLmH:CLm\{l/‘l}. If plH<p' (P, then P(CLys1, Jf)
>P(CL,,., f). 1 (Proof in the appendix)

That is, for each node we assume that the link-
ages of CL,, are sorted by probability, i.e., CL,={l",
P, ..} with p'(IH<p!(I""). The algorithm follows the
above theorem and for each node representing combina-
tion CL,,;1=CL,\{I'} generates its right sibling node by
excluding ! from CL,, (j>2).

In short, each child will have probability less than or
equal to the probability of its parent, and the right sibling
of the node will have probability less than or equal to the
probability of its left sibling. Thus, retrieving the top K
combinations corresponds to a depth-first expansion of the
nodes. However, it could happen that the probability of a
node becomes lower than that of a previously visited node.
When this happens we should continue the processing from
the node with the highest probability. For this, each time
we process a node (Algorithm [2), we also generate its right
sibling and its leftmost child (lines 12-13). These nodes
are included in a list sorted by probability (line 14). The
processing always continues from the highest-probability
node in the list.

Our algorithm terminates when we process K unique
combinations from the priority list (lines 6,9), or all nodes
are visited. It is easy to see that complexity is O(K -log K).
The combinations included in our index structure are K - n,
where n is the number of factors created by the linkages
L. The main advantage of this mechanism is that it ignores
combinations that are unlikely to be needed for answering
queries (due to their low probability). When necessary,
query processing techniques can, of course, also generate
combinations that are not included in the structure on-the-
fly (Section [6).

Example 4. Figure |5| shows the structure for the data
of our motivation example. As shown, instances r\-rs are
separated into two factors: factor fl with ri-r3 and ch
with r4-rs. For each factor we compute the probability
range given its linkages. For example, the range for factor

Algorithm 2: Retrieval of Factor’s Linkage Combinations

Input: Number of combinations K, Factor Linkages L
Output: Linkage combinations MaxHeap

MaxHeap < {}; // the top K linkage combinations
Node « createNode(L); // all linkages in first node
C « {Node}; // pending nodes sorted by probability
while ( MaxHeap.size()<K & C.size()!=0 ) do

L process();

return MaxHeap;
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7 function process() // i.e., node with highest prob
8 begin

9 Node = C[0]; C =C\ C[0];

10 if ( MaxHeap.notContains(Node) ) then

11 L MaxHeap «— MaxHeap U Node;

12 sibling_node = Node.createRightSibling();
13 child_node = Node.createLeftmostChild();
14 C « C Uy, {sibling_node, child node};

fl has a lower value vf,”"=(1-0.9)x(1-0.6)=0.04 and an
upper value Vf,""=(0.9)x(0.6)=0.54. In addition, we also
maintain probabilities for linkage combinations. For exam-
ple, instance r3 is connected to combinations {l,, ;,,1y, .}
and {l, ,,}. The former creates entity e;»3 and it has
probability equal to 0.9x0.6=0.54. The latter creates entity
e13 and it has probability (1-0.9)x0.6=0.06. All possible
combinations are included in the index, however if we had
set a limit of 2 combinations per factor, then only the ones
with probabilities 0.54 and 0.36 would be included. [ |

Note that the summation of the probabilities from all
nodes (i.e., representing distinct combinations) of the com-
plete indexing structure is one. However, this is typically
not reflected in the final query answer set since some of
the represented combinations are invalid and thus ignored
(excluded from the answer set).

4.2 Basic Operations

Retrieving groups. Aggregation queries specify a Group
BY clause. We first detect the instances satisfying the query
conditions. These instances are then separated into groups
G, Ga, ..., such that the instances of each G; correspond
to a different value of the field specified by the Group BY
clause, i.e., G;={r;}. For example, processing Q2 requires
detecting the instances per location, and thus we get group
G1={}’2,}’3} for “DE”, and G2={r1,r4,r5} for “GR”.

Retrieving factors. The indexing structure allows us to
retrieve the linkages grouped based on the factors in which
the linkage instances participate. For the instances of group
G, this will result in linkage sets S ji, ..., S j,, where S j; =
{ Ly, | ra O 13€G; & 1y, €4 }. For instance, Go={ry.r4.rs}
gives factors So1={l}, ..l -} and Sn={l,, }.

Retrieving the result of a merge. Another operation is
retrieving the entity resulting from a merge function. For
instance, given a linkage set S ;; (created by the process
described above), we want to retrieve the entity resulting
from the merge of all instances that refer to linkages partic-
ipating in § ;. For this, we use the structure to first detect
the linkage combination that contains all linkages from S j;,
and then follow the merge-representation edge to identify



the instance that will be returned for the corresponding
merge. In addition, we compute the merge’s probability
using Eq. E] and CL=S j. (Merges with zero probability
are, of course, ignored due to transitivity violations.) For
example, instance r; will be the result for the merge of the
linkage set S21={l;, r,>lr .5}

5 AGGREGATION QUERIES

The result set for an aggregation query contains tuples
(g,v%, p), where g is a possible value for the given Group BY
attribute, v* is the computed result for the specific group
value g, and p the overall probability for the specific g
and v*. Symbol a denotes the aggregate function that was
requested in the ENTITY-JOIN, with sum, cnt, min, and max,
representing summation, count, minimum, and maximum,
respectively. For mean and variance functions, v* is a
real number, denoting the computed value. For range, v*
is range [v*, V], where v*/v" denotes the lower/upper value.
The evaluation of an aggregation query with an ENTITY-
joiv is performed following a sequence of steps. The first
step retrieves the instances satisfying the query conditions
separated in groups Gi, ..., G, according to the GrROUP BY
clause (Section [4.2). The remaining steps further process
the instances in each group G;. For summation and count
aggregates, we need to consider all the database records
referring to each instance. On the contrary, for minimum
and maximum aggregates, we only need to consider one
record for each instance and not all the records. We
follow this distinction in the description of these methods.
We first introduce the techniques for evaluating range
with summation or count (Section @, followed by the
techniques for evaluating range with minimum or maxi-
mum (Section [5.2). We then extend these techniques for
evaluating mean and variance as well as additional query
options (Section[5.3)), and finally, we explain the probability
computation (Section [5.4).
5.1 Range with Cnt and Sum Functions

As mentioned above, the aggregate functions for count and
summation require knowledge of all records that are related
to the entities. In addition, their result is monotonically
increasing with respect to the number of instances in the
merge, since more instances increases the join result size
and summation (assuming positive summands). We use
these aspects to efficiently compute the range’s values.
Range’s Lower Value. Given this monotonicity we know
that the range’s lower value, i.e., v*" and v*"", appears when
the entity is generated using only one instance. Therefore,
to compute this value we need to consider only the instances
(without linkages). Given the groups Gy, ..., G, that are
returned by the first step, we evaluate the aggregate function
on the individual instances of each group G;. The lowest
value among all the values returned for each group is then
v* for the specific group. The complexity for this step is
O(JRG|), where RG contains the instances of all G;s.
Range’s Upper Value. Computing the upper value is
more challenging, as we should also follow the linkages
and their combinations. We first retrieve S ji, ..., S j based
on the instances of each group G; (Section f.2). We then

identify the upper value for each § j;, which we denote
with symbol Vs;’.l.. Thus, the final value V? for group G
is the maximum of all upper values, i.e., V? = max(?s?l, e
Vs‘;k). The process for computing vs? is performed using
two phases, explained in the following paragraphs.

Phase 1: The first phase creates a merge out of all the
instances participating in the § ;; linkages, and then ensures
that this merge is an answer to the given query, i.e., will
satisfy the query conditions and the value corresponding
to group G;. For this, we test the merge by retrieving the
entity for the specific merge (that basically is an instance,
cf. Section [4.2)), and check if this results in an instance not
in G;. If this is the case, we remove the instance that causes
the violation.

Phase 2: The instances for this merge were retrieved by
ignoring linkage transitivity, so we now need to verify if
a merge with these instances, or a subset of them, can be
created. This is based on an adaptation of the algorithm
used for retrieving a factor’s combinations (Algorithm [2).
Each node is now a merge between a set of instances, and
the following levels have one instance less (the instance
with the lowest result for the requested aggregate function,
i.e., sum or cnt). A node is considered valid when it
can be created using the linkages of §j that refer to
the instances composing the specific merge and does not
have transitivity violations (Section[4.2). The value returned
by the aggregation function over the first accepted node
corresponds to Vs

In short, computing the range’s upper value needs to
process the k S j; corresponding to the specific G;, and
for each § j; it creates a collection of merges by removing
one of the S linkages in every step. Assuming that § ;
contains all the possible linkages (worst case), i.e., L, then
the complexity for this process is O(k:|L|).

Example 5. Processing query Q2 gives group Gi={r,r3}
for “DE”, and Gy={ry,r4,rs} for “GR”. Let us now compute
the range for G,. Executing the aggregate function returns
20 for r1, and 40 for ry and rs. Thus, vy is set to 20.
To compute the upper value we first retrieve linkages per
factor: So1={l}, 1,,1;, 1} and So2={l,, ;;}. For the former, we
create merge(ry,ra,r3). Since this merge returns entity r3
that is not part of G, we replace it with merge(ry,r;). This
merge returns entity rp that is also not part of G,, and
we thus replace it with merge(ry). Since this merge is also
accepted by the second phase, v;"" is set to 20. For S,
we create merge(ry,rs) and since this is accepted by both
phases V3" is set to 80. Thus, V""" is equal to max(20,80),

and the range for “GR” becomes [20,80]. [ |

5.2 Range with Min and Max Functions

All merges that can be created from the data of a factor
will have ranges that are subsets of the factor’s range. We
start by computing the factor ranges, and then, if needed,
continue with the possible merges (through their linkages).
Alg. [3| provides an overview.

Step 1 - Factor’s ranges: The first step computes
the range of the aggregation values for the factors. For
factor fi, this process will result in range [vf™"*, vf"*]



Algorithm 3: Evaluating min/max aggregate function

Input: Group G;={ry, ..., r,}, Aggr. Funct. a, Indexing str. /
Output: Range v, where v is [V, V]

§ « I.getFactors(G);

foreach S;; €S do

3 f_r « getFactorRange(a, § ji.factor_id); // step 1

// step 2

r_r « getlnstanceRange(a, S j;.distinctInstances());

if f rl <r_rl then r_rllimit=f rl;

if f ru>r_ruthen r_rulimit=f ru;

vevUr

// step 3
8 if r_r.llimit =-1 then compute(r_r.l);
if r_r.u.limit =-1 then compute(r_r.u);
10 return v;
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for the maximum function, and range [vf™", vf"] for
the minimum function. These are the ranges of all the
possible values that can be generated by applying the
specific aggregation function (i.e., line 5, Figure on
any possible world that can be created from the linkages
included in the specific factor.

Computing the factor’s range is based solely on the
instances. More specifically, the range can be retrieved by
evaluating the same aggregate function (min or max) on the
instances from the factor without considering the linkages.
The smaller value among the ones returned from the query
is then yf™"/vf"** and the higher value is vf""/vf"**.

Step 2 - Initial Range Values: Once we have computed
the ranges for the factors, we retrieve the groups Gy, ...,
G; and their linkages separated into factors S i, ..., S
(Section [4.2)). We then compute the range for the instances
participating in the linkages of each S by analyzing the
information in the instances, and then, if needed, we also
follow the linkages and their combinations. This range is
computed similarly to retrieving the range for a factor
(explained above), but now we only consider the instances
participating in the linkages of S ;. The result is range [gs?i,
Vs;‘.i], where a denotes the requested aggregate function.

Consider again the range [vf{, vf{] for factor fl The
resulting range for S ; is given by range [ys?i, Vs?i]. We
know that yf!" is actually the lowest possible value of factor
ﬁ. Thus, if ys‘j?l. is higher than vf{, then it could be that
following some of the related linkages, which we so far
ignored, could give us the exact value. We therefore know
that the lower value of the range is between vs9 and vf?,
and the upper value of the range between \7s‘;l. and vf.

Step 3 - Detecting Final Range: The challenge for
computing the exact range is that we need to also consider
instances outside G;. We first use the index to retrieve the
linkages per factor that the instances of G; refer to, i.e.,
Sty ..., S . For each § j;, we retrieve the range values for
the corresponding factor, i.e., ﬁ, and the range values for
the instances participating in the linkages of S ;. When v f!
is less than ys% or vff is more than vs} we need to search
for the value. As we want to compute the range over all
data in group G;, the following step performs the union of
all S j; ranges.

We might need to search for both bounds in the range

of G; or one of these bounds. This search is basically to
detect if there is a possible world containing a merge with
an instance not in G; that would give the accurate value.
We detect this by following the given linkages along with
their combinations.

Once again, the process for this step is based on an
adaptation of Algorithm [2] The process for computing
the lower bound of min and the upper bound of max
is as described for the sum/cnt aggregate function. The
processing for the upper bound of min and the lower bound
of max starts from merges that contain single entities and
moves towards merges with more entities. In all cases, the
process returns the value of the aggregation function over
the first accepted merge.

The complexity for computing the lower/upper value is
O( ﬁl) when the last part of the process is not needed,
otherwise the complexity is the one provided for retrieving
the factor combinations since the process followed is a
simple adaptation of that algorithm.

Example 6. Consider again Q2, but with a max function
(instead of sum). As in Example[5| grouping gives two sets:
G={nr, r3} for “DE” and Gy={ry,r4,rs} for “GR”. For G,
instance ry belongs to factor fl and ry and rs to 3C2 The
range for fl is [20,300] and for ch is [30,40]. For instance
ry, the value for both ys’z’f‘l‘x and ng’f‘]‘x is 20. We thus set
the lower value to 20 and we know that the upper values is
Jfrom 20 to 300. For instances ry and rs, the value of vsy5" is
30 and ost'z'ng is 40, which results in range [30,40] since
its values are the same with the range values of factor ch
Merging these two ranges gives a lower value 20 and upper
values from 40 to 300, and after searching for the upper
value (as in Example |5)) the final range becomes [20,40].

5.3 Other Functions & Qualifiers

Drill-Down Qualifier. This is an optional qualifier within
the range aggregation function. As explained earlier, an
aggregation query returns tuple {g,v“, p) for each group G,
of the given Group By attribute. During query processing
with a range aggregation function, we retrieve the range
for each S ji, ..., S x. We perform the same processing as
range until the generation of these ranges. Each of these
ranges is included in the answer set, and thus we have one
tuple (g,[gsjfi-isjfi],p) for each S j; and for each group G;.

Mean and Variance. Query processing with these
functions is the same as DRILL-DOWN for generating the
ranges per mergeable subsets of instances. It then continues
by the computation of the mean or variance for group G;
based on these ranges. Given u(S j;) =O.5><(ys?i+§s?i), these
are computed as follows:

Z"Sji e ji)XmergeslnRange(gs‘;i,%‘;

mean(Gj) = Z\,S/_,, mergesinRange(vsi.vs3) and
variance(G ) _ s i |/1(S_,-,-)—mean(G,-)IzXmergesInRange(gsj‘.,.,Vsj‘.‘.)
J s i merges]nRange(ys‘j‘.i,Vs‘jf,.

Computing the total number of merges for each range is a
time consuming process. We instead use an estimate that is



Algorithm 4: Evaluating an iceberg/top-k query

Input: Indexing structure I, Query Q

P if this is an iceberg query or K if this is a top-k query
Output: Entities £
1 F « preprocessingStep(Q);
2 E < {}; // top-K entities satisfying Q
3 Temp « {}; // factors with their current probab.
a for ( fieF )do Temp «— Temp U (f;, vi");
51=1; next_prob = Vfgr;
6
7
8
9

while (true) do

cl « I.getNextCombination(f;, Q);

e « merge(cl);

if (e.probability<next _prob) then
10 i=i+1; next_prob = v ;
1 Temp — Temp \ {(f;, V")) U {(f;, e.probability)};
12 else
13 if e.probability>P then break; // iceberg query
14 E « E U {e};
15 if E.size()<K then break; // top-k query

16 return E;

retrieved through sampling among possible worlds created
by the linkages of the factor to which the specific range
corresponds to. Function mergesInRange is replaced with
2IRFI 5 sampleslnRange(ys;‘.i,Vs?i) / allSamples(), where RF
is the set of all distinct instances participating in the
linkages of § j;.

Having Qualifier. Another option is to filter the entity
merges used in aggregation queries based on their probabil-
ities. This is expressed through the HAVING optional qualifier,
i.e., Figure 3| line 9. As the range probabilities are com-
puted during query processing, the HAVING clause is applied
afterwards for selecting which ranges to include/exclude
from the result set. The same technique is executed also
when the query contains a DRILL-DOWN.

5.4 Computing Probabilities

Query processing groups the instances satisfying the query
conditions by the specified Group BY attribute, i.e., Gy, ...
(Section [£.2). For instance, as discussed in Section [2] the
result set for Q2 contains range [20-80] for location “GR”
(i.e., Gy), and range [100-570] for “DE” (i.e., G»). We
denote the probability of a group as P(G;) and compute it
based on the possible worlds that can be generated for G;
given its corresponding factors. In our example, G, contains
instances ri, r4, and rs, and thus the linkages per factor
are: So1={l, ,.lrr,} and S={l, ,}. The probabilities of
S>1 and Sy, denoted as P(S j;), are used for computing the
probability of G;. We give the details for computing P(G )
and P(S ;) in the following paragraphs.

Probability P(G;). Assume that we have already com-
puted the probability P(S ;) for all sets S that contain
linkages with instances in group G;. The possible worlds
with entities satisfying group G; are the ones that contain
at least a merge from one of S ji, ..., S . Thus, since these
linkage sets are disjoint/independent, the overall probability
of the group, i.e., P(G;), is equal to the complement
of the product between the complement of all the §j
probabilities that correspond to the G; group: P(G;) =

1= Tls,eq, (1 = P(S ;).

Probability P(S j;). We compute the probability of P(S ;;)
as the summation of all worlds with a merge such that,
when we apply the merge function, the instance returned
belongs to G, i.e., is an answer to the query. To avoid the
exponential explosion in the number of possible merges
that we need to examine for computing P(S ;;), we do
not compute the exact probability; instead, we derive an
estimate based on the merges we can generate from the
linkages of S j; that cannot correspond to the value of the
specific G;.

More specifically, to compute P(S ;;), we first create a set
of linkages L, for every instance r; from G;. In the list,
we include all the fl linkages I, ,, if the merge function
with the attributes of instances r,, rg, and r; returns r,
or rz. Only the linkage combination in which none of the
linkages of L,, exists can be accepted. The probability for
this is given by P(r)= 1 - [];¢;, (p'(1)). Thus, we estimate
the overall probability of as P(S j;) = H,kE,Ger P(ry), i.e., the
product between the probabilities of all the possible worlds
satisfying the query for G;.

Recall that S j; is the set of all linkages from factor Jf
that have instances participating in group G;. As explained
above, the probability P(S ;) is defined as the summation
of the worlds that satisfy the given query, which is a subset
of all the possible worlds that can be generated from S j;.
Thus, probability P(S ;) is always < 1.

There are approaches focusing on approximation al-
gorithms for computing the probability bounds of query
answers. For example, [25] derives bounds based on decom-
posing proportional formulas, [26] incrementally computes
bounds given shared query plans, and [14] aims at on
non-materialized views. Working with a much simpler
data model (i.e., tuple-independent probabilistic databases
without inner correlations) allows executing such compu-
tations. An interesting follow-up work is to investigate
possible restrictions over the data model for being able to
incorporate alternative approximation techniques.

6 IceBerG AND ToP-k QUERIES

To process 1CEBERG and Top-k queries, we detect the in-
stances satisfying the wHERE conditions (if any), and sep-
arate them into sets according to the factors, i.e., S, ...,
S (Section . From the indexing structure we can also
retrieve the upper/lower bound probability of each factor,
ie., [vfl", vf"] for )f

The indexing structure contains the top-K linkage com-
binations for each factor. Algorithm ] illustrates how
to evaluate an iceberg/top-k query by navigating in the
structure and the factors. The algorithm uses a temporal
list that contains the factors with instances satisfying the
query, sorted by their upper bound probability (lines 3-
4). The retrieval of the entities is iterative, and each step
processes the linkage combinations in the factor with the
highest probability from the temporal list. For this factor,
it uses the indexing structure to retrieve combinations, and
on each combination it performs its merge. These merges
are included in the result list £ if their probability is higher



than that the upper bound of the following factor (line 12).
Processing continues with the following factor (lines 9-11),
when we find a merge with a probability lower than the
upper bound of the following factor.

As explained in the previous sections, the indexing struc-
ture includes only the linkage combinations with the highest
probabilities. This means that not all linkage combinations
required by a query are included for a factor. In case this
happens, we use the algorithm introduced in Section [] to
generate them.

Example 7. As an example, let us consider query Q1 with
a top-3 in the SELECT clause. The condition YEAR=2010
is satisfied by instance r, from factor fl and instance 1y
from factor ch We start from factor ch since it has the
highest upper probability bound. Thus, we first retrieve
instance ry with probability 0.2. We also set the current
probability value to 0.2. Then, we continue with ., as
its upper probability bound, which is 0.54, is higher than
the current probability value. From f] we first retrieve e
with probability 0.36 and then e, with probability 0.1.
This means that the final top-3 is given by set {{e]2,0.36),

(€4,0.2), {e2,0.1)}. |

7 EXTENSIONS

The ENTITY-JOIN is not necessarily restricted to the join be-
tween two tables, but it might contain more than two tables,
either with deterministic data or with duplicates. The former
means tables 77, ..., Ty, each one referring to instances
from Ty, and having attribute agg column on which the
aggregate function should be applied. Query evaluation can
be performed with the introduced techniques, for instance
using a new table that corresponds to the union over the
entity and agg column attributes of tables 7, ..., Tj.

To evaluate an ENTITY-JOIN that contains two or more
tables with duplicates, i.e., Tqup.1, .., Taup2, We first need
to create one indexing structure for each of the T4y, as
explained in Section 4] The basis of query evaluation would
still be the techniques introduced in the paper, but query
evaluation would now consider all these indexing structures
instead of one indexing structure.

Another extension is to incorporate a merge function that
returns an entity composed of attributes from all instances
to be merged, as discussed in Section This requires
modification on the structure in order to operate on the
attributes and not only on the instances. In short, the struc-
ture should allow the retrieval of the attributes that satisfy
the query conditions, and the merge-representation edges
should include the attributes that each instance “provides”
in the corresponding merge.

8 EXPERIMENTAL EVALUATION

As discussed in Section [2] there is currently no approach
that enables query processing over unmerged duplicates
with capabilities comparable to the ones provided by our
approach. Comparing to existing approximate techniques,
such as the ones discussed in Section [ requires con-
verting the probabilistic entity linkages to a data model

supported by these approaches by partially materializing
the possible worlds. Unfortunately, such conversions are
not able to fully capture the semantics and the meaning
encoded in the probabilistic entity linkages. Arumugam et
al. [6] recently introduced a sampling-based methodology
for efficiently retrieving data when probabilities are present.
Their methodology can be adapted for processing queries
with ENTITY-JOIN by using sampling to generate a subset of
the possible worlds and evaluating the queries over them.
More specifically, given a query, the method first performs
pre-processing, as described in Section Then, for every
group and for every factor containing instances from that
group, the method generates a number of possible worlds.
Note that only possible worlds with merges satisfying the
query conditions are generated. Each world is generated by
randomly selecting which linkages to accept and which to
reject among the linkages of the specific factor. Given factor
ﬁ, we perform c><1n(2|3€|) sampling iterations where c is an
iteration coefficient. This coefficient controls the quality of
the sampling algorithm. Finally, the query is evaluated on
the possible worlds generated by sampling, and the result
sets are then used for composing the final query result set.

In the experiments, we used the sampling-based
methodology (SM) explained above and query processing
over all possible worlds (GW) as baselines for evaluating
the query processing over unmerged duplicates (PM)
proposed in this work. To avoid performance differences
due to implementation aspects, we implemented all ap-
proaches using Java 1.6, and maintained the data in the
same MySQL database. All experiments were executed on
a single core of an Intel Xeon 1.6 GHz machine.

The methods were evaluated using three datasets: (1)
JaccardDB, (2) JaroDB, and (3) CoraDB. The first two
were created by integrating movie-related data coming
from two popular Web systems, IMDb and DBpedia. Both
datasets contained the same instances, but a different set
of linkages. JaccardDB contained linkages generated by
comparing the titles of IMDb and DBpedia pairwise, using
Jjaccard similarity, whereas JaroDB linkages were generated
using jaro. We used these two datasets to study the influ-
ence that the characteristics of the resolution information
has on the efficiency of the proposed methodology. The
datasets contained 51,221 instances (i.e., movies) with
15,529 linkages for JaccardDB and 16,835 linkages for
JaroDB. For the linkage probabilities we used the results
returned by the two matching methods.

The third dataset, CoraDB, contained authors and their
publications from the CiteSeer system. Due to the res-
olution problem, the dataset does not contain a single
description for each author, but various descriptions ranging
between 1 and 43 and with an average 3.39 per author.
This dataset contained 9,774 authors that correspond to
2,882 real-world objects. The resolution information, a total
of 12,440 probabilistic linkages, was generated using a
probabilistic entity linkage algorithm [20] (similar results
were obtained by other proposed linkage algorithms).

We created three databases (7', R, L, p’ ), one for each
described dataset, as follows: the dataset instances were
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Fig. 6. Effectiveness metrics for processing queries over CoraDB vs. different sampling iterations. The
two left plots are for range aggregation queries, and the right plot is for mean aggregation queries.

used for R, and the linkage information for L and p'. The
last two correspond to table T,., included in the query
syntax. The information for 7" was randomly generated with
values following a Zipfian distribution, simulating real-
world data. For JaccardDB and JaroDB, T contained movie-
related information, e.g., budget and ranking. For CoraDB,
T contained 4,799 positions of authors with each position
including university/institute, title (e.g., “PhD student”),
and position’s duration. Queries were created by converting
a randomly selected attribute (n,v) from R into WHERE
conditions.

We used CoraDB in the majority of the experiments,
as this is typically used for resolution algorithms. Jac-
cardDB/JaroDB were used for studying the influence of
resolution and query characteristics, as we could generate
artificial queries with low selectivity (i.e., titles containing
word “with”).

8.1

We first compared effectiveness of PM and GW using
CoraDB. As expected, for range aggregation queries both
approaches returned the same results. For mean aggregation
queries, where PM uses an estimate (Section , we
measured the value discrepancy as [mvpy—mvgew|/mvew,
where mv. is the mean value returned by PM or GW. The
average discrepancy over 200 queries was 0.044, indicating
a negligible difference.

We then compared the efficiency of PM and GW. For
queries involving factors with few linkages, the time of PM
had a negligible difference with the time of GW. However,
the time required by GW was increasing exponentially with
respect to the number of linkages. The time difference
between the two approaches was 2.5 seconds when the
query involved factors with 11 to 12 linkages, 44 seconds
for factors with 13 to 14 linkages, 187 seconds for factors
with 15 linkages, and did not finish for more than 20
linkages. These results confirm that GW is impractical for
real-world data, as the ones used in our evaluation.

Comparison with the GW methodology

8.2 Comparison with the SM methodology

We now compare PM and SM. Recall that range aggrega-
tion queries return a set of tuples, each providing the range
for a specific group. PM always returns the ground truth
- accurate ranges (Section . However, as SM is based
on sampling, the ranges it produces are either identical (in
the optimal case) or subranges of the ones returned by PM.
To compare the accuracy of the returned ranges, we have
used two metrics. The first metric, Endpoints-Detected,
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computes the percentage of upper and lower endpoints (i.e.,
range values) that were correctly detected by SM with
respect to the corresponding endpoints returned by PM.
This occurs when we increase the sampling iterations, since
the query is then evaluated over a larger number of possible
worlds.

Since sampling has a lower effectiveness when dealing
with skewed data, we also have used a second effectiveness
metric called Range-Overlapping. This metric computes
the overlapping between the ranges returned by SM with the
ranges returned by PM. It is computed as RO([v*,%"]1ppy, [V,
Vsm) = length(v* v 1ppr N [V 15 a) / length(v* v 1pu),
where length([v?, V']) computes the length between the
upper and lower value of the given range, i.e., V'—“.
Increasing the sampling iterations, increases the distances
for the intersection of the ranges returned by PM with the
ranges returned by SM, which makes the range-overlapping
metric move closer to 1. For the effectiveness of mean
aggregation queries, we computed the value discrepancy
between the mean values returned by the two approaches,
as described in Section [8.1]

Figure [6] shows the effectiveness results. Each point in
the plots corresponds to the average of processing 200
queries over CoraDB. All plots report effectiveness for an
increasing number of sampling iterations (i.e., cxln(2l1€ ),
achieved by varying the iteration coefficient ¢ (i.e., c€[0.5—
30]). The two left plots correspond to range aggregation
queries (endpoints-detected and range-overlapping), and the
right plot to mean aggregation queries (value-discrepancy).
As expected, increasing the value of ¢ results in a better ef-
fectiveness (lower value-discrepancy, and higher endpoints-
detected and range-overlapping), since then SM evaluates
queries over a larger number of possible worlds. For
instance, the endpoints-detected for cnt is 0.66 when c is
0.5, i.e., slightly more than half of the range endpoints were
correctly detected by SM, and 0.87 when c¢ is 30. In all
cases, PM is substantially more accurate than SM, even
when SM is configured to a high sampling coefficient.

The two approaches were also compared with respect
to efficiency. The evaluation time for different sampling
iterations is shown in Figure [/| With respect to SM we
notice that, as expected, increasing the sampling iterations
increases the evaluation time. The evaluation time for PM
is constant as it does not depend on the sampling iterations.
As shown in the plot, only for a very small value of ¢ the
query evaluation times of SM and PM are comparable. But,
as discussed above, the accuracy of SM for such values of
¢ is quite low.

The overall conclusion from this set of experiments is
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that in order to reach an acceptable effectiveness with
SM, one needs to move towards more sampling iterations
(larger values of c), but for those values the time of SM
is significantly higher than PM. For example, SM requires
0.7 seconds to evaluate a query resulting in an endpoints-
detected effectiveness of 0.87 (with min aggregate func-
tion). Our approach requires substantially less time, and
correctly returns both endpoints of the ranges.

8.3 Influence of resolution characteristics

We now explore the effect of the number of (i) linkages
and (ii) factors with respect to the indexing time and query
execution performance.

We first investigate the influence of the number of
linkages contained in T,.; to the indexing cost of PM. For
this we used the Cora linkage set (i.e., £) to create a small
number of linkage sets (i.e., Ly, L», ...), each one containing
a different number of linkages (i.e., L;CL). For each of
these linkage sets, we have created a single database, and
used it to evaluate the efficiency of PM. Figure [§| shows the
time for creating the CoraDB indexing structure over the
various resolution sizes (i.e., number of database linkages).
As explained in Section .1} the indexing structure includes
the top-K linkage combinations of each factor. The plot
shows the indexing time for two different Ks, i.e., 8§ &
18. The required disk space for K=8 was 3.7MB and
for K=18 it was 4.2MB. As expected, increasing K also
increases the required time and space, since more linkages
need to be processed and included in the indexing structure.
The required time scales sub-linearly with the number of
linkages, allowing the indexing structure to be created in 11
seconds for the complete set of the Cora linkages. Notice
that this is an one time cost, as the indexing structure will
be created only once.

Figure [10] shows the query processing time for different
resolution sizes, i.e., the number of T,., linkages. Each
point in all plots is the average time for processing 400
queries. Plot (a) shows the results for ENTITY-JOIN With min
and max aggregate functions, plot (b) for cnt and sum
functions, and plot (c) shows the time of top-k queries for
returning the Top-5, 10, & 20 answers. For all queries, we
notice a small/sub-linear time increase as the resolution size
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increases, which occurs because query processing needs to
consider a larger number of linkages.

The plots in Figure [9] show the influence of the resolu-
tion characteristics on the query processing time. For this
evaluation, we processed 300 queries and measured (i) the
total number of factors investigated for each query, and (ii)
the total number of linkages that the factors of each query
contained. As expected, the query processing time increases
when the query needs to investigate more factors, or factors
with more linkages. However, as discussed above, the time
required by our approach is substantially better than the
time required by the SM alternative methodology.

8.4 Additional aspects influencing query processing

The last set of experiments focused on investigating addi-
tional aspects that influence query processing time. We used
JaroDB and JaccardDB to investigate: (i) the selectivity of
the given query, and (ii) the number of groups included in
the returned result set. Figures plot the time required
for each of the 300 queries with a min aggregate function
in correlation to the number of groups included in the
returned results and the selectivity of the given query. In
both figures, plot (a) corresponds to aggregate queries with
range, and plot (b) to queries with variance. The behavior
of the approach for queries with mean (not in the figures)
is almost identical to variance.

As shown by these plots, time is higher when the query
has a low selectivity, or when the query returns more
groups. This is expected, since in both situations query
processing needs to deal with a larger number of data
for constructing the results. As it typically happens, the
majority of the queries has high selectivity and returns
only few groups. For example, only 4 queries over JaroDB
returned more than 51 groups, 6 between 41 and 50 groups,
26 between 21 and 40 groups, and the remaining queries
returned up to 20 groups. With respect to selectivity, only
2 queries resulted in more than 401 movies, 21 queries
between 101 and 400 movies, and the remaining up to
100 movies. This means than the majority of queries were
answered in less than 20 seconds, some in less than 40
seconds, and only few required more time. In all plots, we
notice that the two databases have almost the same query
processing time, with JaroDB requiring slightly more time



than JaccardDB. This happens because the Jaccard similar-
ity method, used for generating JaccardDB, generated less
linkages that Jaro similarity method, used for generating
JaroDB, and as explained in the above evaluation, the
number of linkages also affects the query processing time.

9 ReLatep WoRk

The approach introduced in this work is related to two re-
search areas, which we discuss in the following paragraphs.

A - Dealing with Entity Resolution. Our approach
complements existing resolution techniques, and especially
techniques that deal with unmerged duplicates.

More specifically, the approach in [31] focuses on online
analytical processing. The model is based on entity clusters,
from which only one can correspond to the real-world
object. This model does not consider any probabilities.
Query processing returns the range for the values given
by an aggregate function over all possible resolutions. A
similar model is followed in [18], but each cluster entry
is accompanied by a belief probability. As with [31],
the approach in [18]] considers each entity to correspond
with only one of the alternatives. Query processing returns
the values of an aggregate function grouped per resulting
probability, e.g., maximum ‘age’ for the resolved entities
with probability [0.41-0.5]. In contrast to these approaches,
our model is based on arbitrary probabilistic linkages
between entities and focuses on efficiently supporting a
more expressive and complex query syntax.

The approaches [4] and [19] investigate query pro-
cessing when the detected linkages between entities are
probabilistic. The former considers alternative probabilistic
representations between entities, and the latter the existence
of arbitrary probabilistic linkages between entities. We
follow the basis of these approaches, and in particularly
an extension over the [19] model (i.e., the more generic
among the two models). Instead of focusing on simple
singe-table queries, as [4] and [19], our query processing
captures joins between the possible resolved entities and
the other database tables, while also supporting qualifiers
for various aggregate functions, nesting aggregation as well
as qualifiers for retrieving higher level of entity details.

B - Managing Uncertain Data. This area has recently
attracted the attention of the DB community [1]], [22]. For
example, systems such as Trio [2], MayBMS [5], PrDB
[29], Orion [30], SPROUT [24]], [25] and MystiQ [28],
focus on data representation and efficient query processing.

In contrast to deterministic data, top-k for uncertain data
has different interpretations [32]: the top-k tuples from
the possible world with the highest probability, the set of
k tuples that have the highest aggregated probability to
appear together across all possible worlds [27]], [32] (called
“U-Topk”), and the k tuples from any possible world as
long as they have the highest probabilities [32] (called “U-
kRanks”). The current version of our work corresponds
to retrieving the k single-item answers with the highest
probabilities (i.e., Topk from [27]], k U-Topl from [32]). Ré
et al. [27] process U-Topk through Monte-Carlo simulation.
They maintain probability intervals that are then tightened

by generating random possible worlds. Soliman et al. [32]
introduced a framework that navigates the space of possible
worlds in order to generate the top-k tuples. More recent
top-k related approaches are [26] and [14]. The approach
in [26] shares the probability computation of detected sub-
queries with several query answer, and further extends for
the computation of bounds. The goal of [14]] is similar, but
here the authors achieve the computation of bounds without
materialization. With respect to iceberg queries, our work
is based on an indexing structure that detects and maintains
the entities with the highest probabilities. As such, it does
not need to perform a full on-the-fly materialization, but
rather directly retrieve the query answers from the indexing
structure, and only, if needed, generate additional answers.

Another related category contains methods for processing
joins over probabilistic data. The majority of proposed
approaches are for numeric attributes [10]], [17], e.g., tem-
perature and pressure recorded by various sensors. These
approaches process joins using pruning, e.g., [17]] includes
item-, page-, and index-pruning. There are also approaches
that are not restricted to numeric attributes, such as [34],
which proposes the implementation of inference algorithms
(i.e., Viterbi) in-database, and based on this, achieves
efficient computation of top-k probabilistic query answers.

The navigation in the indexing structure of [3] is also
related to ours. In essence, in both indexes the child or
of the right sibling of a node has probability equal or
lower to the node. However, our work provides proofs for
the provided features and additionally explains how the
indexing structure can be (partially) used for evaluation
of aggregation queries. Processing aggregation queries is
the main goal of [16f]. It is achieved by the structural
decompositions of expressions into sub-expressions that
are independent and mutually exclusive. Our approach
supports a more expressive form of aggregation, which
captures two aggregation levels. In addition, processing
these aggregation levels is partially computed directly from
the indexing structure.

10 ConcLusions AND FuTure WoRk

In this paper we address the resolution problem through
a generic framework for processing complex queries over
unmerged duplicates. Our approach considers a database
with duplicated instances, probabilistic linkages between
duplicated instances, and tables with other related data.
We introduce an indexing structure that provides efficient
access to the possible entity merges and their probabili-
ties. Based on this structure, we introduce techniques for
the efficient processing of aggregation and iceberg/top-
k queries over the unmerged duplicates and their related
data, focusing on qualifiers for retrieving analytical and
summarized information. We have also performed an ex-
tensive experimental evaluation using three real-world data
sets, and compared the proposed approach to a sampling-
based methodology and a methodology that generates all
the possible worlds. Our evaluation analyzes the resolution
and query characteristics that influence the query processing



time, and also verifies the approach’s effectiveness and
efficiency.

Our current work focuses on investigating how to ex-
tend the indexing structure for considering also the factor
characteristics. As shown in the experiments (Section [8.3]
and [8.4), the approach requires additional time for handling
factors with a large size, i.e., factors that contain a large
number of linkages. The index structure must include data
according to the factor size, and this would allow balancing
the time required for processing small factors with the time
for processing large factors.
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APPENDIX

Proof of Theorem [I} Each instance match encoded by linkage Iy, ,; exists
with probability pl(l,i,,j) and does not exist with probability 1-pl(lr,.,,/.).
Function p | l,‘.,,j — max(pl(l,i,,l), l—pl(lr/.,r/.)) returns the maximum of
these probabilities, and thus p(.)>0.5.

Let function sort | A F o return a list containing the linkages of f
sorted by the linkage probabilities, i.e., Fyory = { I/ | lfef’,, p(lj)Zp(lf“) ).
Then, the CL, with the highest probability among all CL,,s with m
linkages not existing is as follows: CLm:{leljesort(Jf), J<Ifil-m .

Thus, based on Equation |Z|the probability of CL,, is:

P(CLy, £) = p(I") X o X pAIIT™) 5 (1 = pH=m1y) 5o (1 = p(iUiTy)
Similarly, the probability of CL,,+; is equal to:
P(CLyi1, f) = p(I") X oo X p(F7m1y 5 (1 = pHi=m)) x ... x (1 = p(itfihy)

Therefore, P(CLy, f;)/P(CLys1, ;) = p(M1=m)/(1 = p(1fi=")), and since
p()=0.5 then p(I/il=")/(1 = p(If=")>1. For this we conclude that
P(CLma ﬁ)ZP(CL)71+1’ﬁ)~

Proof of Theorem @ By definition, the probability of CL,41, i.e.,
P(CLy+1, f7), is equal to the probability of CL,, but with one of the
linkages of CL,, not included in CL,+;. Therefore, the probabilities of
the two combinations are:

P(CLys1, ;) = P(CLy, f) X [1 = p(i)]1/ p(t) )
P(CL,, ., f}) = P(CLy, f) x [1 = p(""H1/p("™)  (2)

12 PClLyy1 f) __p(F™) | 1= p()]
PCL,, . f)  [=p@ O~ pl)

Given that the linkages of factor fl are sorted by probability (function

. . j—1
sort in proof of Theorem , then p("1)2p(l)), and thus p;l(l]j))zl.

Also, 1-p(I/=1)<1-p(l/), and thus 11_;‘(’;1.12)21. We can thus conclude that

P(CLys1.) ’
AR 21, and that P(CLys1, f)2P(CL,, . ).
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