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ABSTRACT

Recent work has demonstrated the effectiveness of the wavelet de-
composition in reducing large amounts of data to compact sets of
wavelet coefficients (termed “wavelet synopses™) that can be used
to provide fast and reasonably accurate approximate answers to
queries. A major criticism of such techniques is that unlike, for
example, random sampling, conventional wavelet synopses do not
provide informative error guarantees on the accuracy of individual
approximate answers. In fact, as this paper demonstrates, errors
can vary widely (without bound) and unpredictably, even for iden-
tical queries on nearly-identical values in distinct parts of the data.
This lack of error guarantees severely limits the practicality of tra-
ditional wavelets as an approximate query-processing tool, because
users have no idea of the quality of any particular approximate an-
swer. In this paper, we introduce Probabilistic Wavelet Synopses,
the first wavelet-based data reduction technique with guarantees on
the accuracy of individual approximate answers. Whereas earlier
approaches rely on deterministic thresholding for selecting a set
of “good” wavelet coefficients, our technique is based on a novel,
probabilistic thresholding scheme that assigns each coefficient a
probability of being retained based on its importance to the recon-
struction of individual data values, and then flips coins to select the
synopsis. We show how our scheme avoids the above pitfalls of
deterministic thresholding, providing highly-accurate answers for
individual data values in a data vector. We propose several novel
optimization algorithms for tuning our probabilistic thresholding
scheme to minimize desired error metrics. Experimental results on
real-world and synthetic data sets evaluate these algorithms, and
demonstrate the effectiveness of our probabilistic wavelet synopses
in providing fast, highly-accurate answers with error guarantees.

1. INTRODUCTION

Approximate query processing has recently emerged as a viable
solution for dealing with the huge amounts of data, the high query
complexities, and the increasingly stringent response-time require-
ments that characterize today’s Decision Support Systems (DSS)
applications. Typically, DSS users pose very complex queries to
the underlying Database Management System (DBMS) that require
complex operations over gigabytes or terabytes of disk-resident
data and, thus, take a very long time to execute to completion and
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produce exact answers. Due to the exploratory nature of many DSS
applications, there are a number of scenarios in which an exact an-
swer may not be required, and a user may in fact prefer a fast,
approximate answer. For example, during a drill-down query se-
quence in ad-hoc data mining, initial queries in the sequence fre-
quently have the sole purpose of determining the truly interesting
queries and regions of the database. Providing (reasonably accu-
rate) approximate answers to these initial queries gives users the
ability to focus their explorations quickly and effectively, without
consuming inordinate amounts of valuable system resources. An
approximate answer can also provide useful feedback on how well-
posed a query is, allowing DSS users to make an informed decision
on whether they would like to invest more time and resources to ex-
ecute their query to completion. Finally, for DSS queries requesting
a numerical answer, it is often the case that the full precision of the
exact answer is not needed and the first few digits of precision will
suffice (e.g., the leading few digits of a total in the millions or the
nearest percentile of a percentage).

Wavelets provide a mathematical tool for the hierarchical de-
composition of functions, with a long history of successful appli-
cations in signal and image processing [12, 18]. Recent studies
have also demonstrated the applicability of wavelets to selectivity
estimation [14] and to approximate query processing over massive
relational tables [4, 19] and data streams [9, 15]. Briefly, the idea
is to apply wavelet decomposition to the input relation (attribute
column(s) or OLAP cube) to obtain a compact data synopsis that
comprises a select small collection of wavelet coefficients. The re-
sults of Chakrabarti et al. [4] and Vitter and Wang [19] have shown
that fast and accurate approximate query processing engines can be
designed to operate solely over such compact wavelet synopses.

The Problem with Wavelets. A major criticism of wavelet-based
techniques for approximate query processing is the fact that, unlike,
e.g., random samples, conventional wavelet-coefficient synopses
cannot provide guarantees on the error of individual approximate
query answers. (Coefficients in the synopsis are typically chosen
to optimize an overall error metric, e.g., the L? error in the approx-
imation [18].) In fact, even for the simplest case of approximating
a value in the original data set, the absolute errors can vary widely
(same for the relative errors). Consider the following example:

Original data values | 127 71 87 31 59 3 43 99
100 42 0 58 30 88 72 130
Wavelet answers 65 65 65 65 65 65 65 65
100 42 0 58 30 88 72 130

Table 1: Errors with Conventional Wavelet Synopses.

The first pair of lines shows the 16 original data values (the ex-
act answer), whereas the second pair shows the 16 approximate
answers returned when using conventional wavelet synopses and
storing 8 coefficients (details are given in Section 3.1). Although



the first half of the values is basically a mirror image of the second
half, all the approximate answers for the first half are 65, whereas
all the approximate answers for the second half are exact! Simi-
lar data values have widely different approximations, e.g., 30 and
31 have approximations 30 and 65, respectively. The approximate
answers make the first half appear as a uniform distribution, with
widely different values, e.g., 3 and 127, having the same approx-
imate answer 65. Moreover, the results do not improve when one
considers the presumably easier problem of approximating the sum
over a range of values: for all possible ranges within the first half
involving x = 2 to 7 of the values, the approximate answer will
be 65 - x, while the actual answers vary widely. For example, for
both the range dO to d2 and the range d3 to d5, the approximate an-
swer is 195, while the actual answer is 285 and 93, respectively. On
the other hand, exact answers are provided for all possible ranges
within the second half (although the user will not know this).

This illustrates the following serious problems for approximate
query processing with wavelet synopses, due to their deterministic
approach to selecting coefficients and their lack of error guarantees:

1. The user is provided no guarantees on the quality of a given
wavelet synopsis for individual answers.

2. The quality of the answers can vary widely, even
e within the same data set,

e when the range is the same width, and is large (e.g., al-
most half the range),

e when the synopsis is large (e.g., half the data vector size),
e when the data values in the range are nearly the same, and
e when the actual answer is the same or nearly the same.

These are circumstances where one might expect approxi-
mate answers of similar quality.

3. The user has no way of knowing whether or not a particular
answer is any good.

4. Moreover, the approximate answers are biased, and there is
no bound on this bias' (in contrast, sampling typically yields
unbiased answers: the expected value of the approximate an-
swer is the exact answer).

Our Solution: Probabilistic Wavelet Synopses. In this paper, we
propose a novel approach to building wavelet synopses that enables
unbiased approximate query answers with error guarantees on the
accuracy of individual answers, thereby mitigating the four serious
problems outlined above. Whereas conventional wavelet synopses
rely on deterministic thresholding for selecting a set of “good”
wavelet coefficients, our technique is based on a novel, probabilis-
tic thresholding scheme that assigns each coefficient a probability
of being retained based on its importance to the reconstruction of
individual data values, and then flips coins to select the synopsis.
Our basic scheme deterministically retains the most important co-
efficients while randomly rounding the other coefficients either up
to a larger value or down to zero. This randomized rounding en-
ables unbiased, guaranteed-error reconstruction of individual data
values as well as unbiased, guaranteed-error answers for any range
aggregate query. The basic scheme is contrasted with an alternative
scheme we propose in which coefficients are either selected or not
(but never rounded up) according to the assigned probabilities, re-
sulting in low-bias approximate answers but often with tighter error
guarantees.
The contributions of this paper are as follows.

The bias of an estimator © for a quantity © is | E[0] — ©|. If E[@] = ©,
the estimator is unbiased. For a deterministic estimator, we will equate the
bias with the absolute error |© — .

1. We provide a quantitative and qualitative demonstration of
the unpredictable, widely varying errors arising using con-
ventional wavelet synopses for approximate query answers.

2. We provide the first wavelet-based compression technique
that provably enables unbiased data reconstruction of a data
vector, with error guarantees on individual answers.

3. We provide novel optimization algorithms for tuning our prob-
abilistic thresholding scheme to minimize (a) the expected
mean-squared error, and (b) an upper bound on the maximum
error in the reconstruction of the data. For reconstruction er-
ror, we focus on relative error with a sanity bound (details in
Section 3), as this is arguably the most important for approx-
imate query answers. (We can also handle absolute error.)

4. We present a variation on our scheme that allows for recon-
struction bias, but selects coefficient probabilities to mini-
mize this bias, often resulting in tighter error guarantees.

5. We describe how our approach for data vectors can be ex-
tended for use with multi-dimensional data sets.

6. We demonstrate the effectiveness of our probabilistic wavelet
synopses in providing fast, highly-accurate answers with er-
ror guarantees, using real-world and synthetic data sets.

There is an extensive literature on wavelets and yet, to the best of
our knowledge, this is the first paper to present a wavelet-based
compression technique that enables unbiased data reconstruction
with error guarantees.

2. WAVELET BASICS
2.1 One-Dimensional Haar Wavelets

Suppose we are given the one-dimensional data vector A con-
taining the N = 16 data values depicted in Table 1. The Haar
wavelet transform of A can be computed as follows. We first av-
erage the values together pairwise to get a new “lower-resolution”
representation of the data with the following average values [99,
59, 31, 71, 71, 29, 59, 101]. In other words, the average of the first
two values (that is, 127 and 71) is 99, that of the next two values
(that is, 87 and 31) is 59, and so on. Obviously, some information
has been lost in this averaging process. To be able to restore the
original values of the data array, we need to store some detail co-
efficients, that capture the missing information. In Haar wavelets,
these detail coefficients are simply the differences of the (second
of the) averaged values from the computed pairwise average. Thus,
in our simple example, for the first pair of averaged values, the de-
tail coefficient is 28 since 99 — 71 = 28, for the second we again
need to store 28 since 59 — 31 = 28. Note that no information
has been lost in this process — it is fairly simple to reconstruct the
sixteen values of the original data array from the lower-resolution
array containing the eight averages and the eight detail coefficients.
Recursively applying the above pairwise averaging and differenc-
ing process on the lower-resolution array containing the averages,
we get the following full decomposition:

Resolution Averages Detail Coefficients
4 [127,71, 87,31, 59, 3, 43,99, —
100, 42, 0, 58, 30, 88, 72, 130 ]
3 [99, 59, 31,71,71,29,59, 101] | [28, 28, 28, -28, 29, -29, -29, -29]
2 [79, 51, 50, 80] [20, -20, 21, -21]
1 [65, 65] [14, -15]
0 [65] [0]

The wavelet transform (also known as the wavelet decomposi-
tion) of A is the single coefficient representing the overall average
of the data values followed by the detail coefficients in the order
of increasing resolution. Thus, the one-dimensional Haar wavelet
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Figure 1: Error tree for our example data array A (N = 16).

transform of A is given by Wi = [65, 0, 14, -15, 20, -20, 21, -21,
28, 28, 28, -28, 29, -29, -29, -29]. Each entry in W} is called a
wavelet coefficient. The main advantage of using W instead of the
original data vector A is that for vectors containing similar values
most of the detail coefficients tend to have very small values. (How-
ever, this is obviously not the case with our “bad” example data
array.) Thus, eliminating such small coefficients from the wavelet
transform (i.e., treating them as zeros) introduces only small errors
when reconstructing the original data, giving a very effective form
of lossy data compression [4, 18, 19].

Note that, intuitively, wavelet coefficients carry different weights
with respect to their importance in rebuilding the original data val-
ues. For example, the overall average is obviously more important
than any detail coefficient since it affects the reconstruction of all
entries in the data array. In order to equalize the importance of all
wavelet coefficients, we need to normalize the final entries of W
appropriately. A common normalization scheme (also discussed in
Section 2.3) is to divide each wavelet coefficient by V2l , where
1 denotes the level of resolution at which the coefficient appears
(with I = 0 corresponding to the “coarsest” resolution level, as de-
picted in the above table). Thus the normalized coefficient, c;, is

Ci/‘ /9level(c;),

Basic Haar Wavelet Properties and Notational Conventions. A
helpful tool for exploring and understanding the key properties of
the Haar wavelet decomposition is the error tree structure [14]. The
error tree is a hierarchical structure built based on the wavelet trans-
form process. Figure 1 depicts the error tree for our simple example
data vector A. Each internal node ¢; (i = 0, ... , 15) is associated
with a wavelet coefficient value, and each leaf d; (i = 0,...,15)
is associated with a value in the original data array; in both cases,
the index 7 denotes the positions in the (data or wavelet transform)
array. For example, co corresponds to the overall average of A.
Note that the values associated with the error tree nodes c; are the
unnormalized coefficient values; the resolution levels [ for the co-
efficients (corresponding to levels in the tree) are also depicted. We
use the terms “node” and “node value” interchangeably in what
follows. For ease of reference, Table 2 summarizes some of the
notation used in this paper with a brief description of its seman-
tics. Detailed definitions of all these parameters are provided at the
appropriate locations in the text.

Given an error tree T' and an internal node t of T', t # co, we
let leftleaves(t) (rightleaves(t)) denote the set of leaf (i.e.,
data) nodes in the subtree rooted at t’s left (resp., right) child. Also,
given any (internal or leaf) node u, we let path(u) be the set of all
(internal) nodes in 7" that are proper ancestors of u (i.e., the nodes
on the path from u to the root of T, including the root but not u)
with non-zero coefficients. Finally, for any two leaf nodes d; and
dp, we let d(I : h) denote the range sum E?:l d;. Using the er-

[[ Symbol (i € 0..N-1) | Semantics

A, Wy Input data array and wavelet-transform array
N, N, Number of cells (non-zero cells, resp.) in A

B Target number of coefficients retained

d; Data value at cell ¢ of the data array

d; Reconstructed (approximate) data value at cell ¢

d(l:h) =31 d; | Range sum of data values betw. cells l and h

ci, c;.* Unnormalized / normalized Haar coeff. at cell ¢
level(c;) Level of resolution of Haar coefficient c;
leftleaves(t) Leaves in error subtree rooted at ¢’s left child
rightleaves(t) Leaves in error subtree rooted at ¢’s right child
path(t) All non-zero proper ancestors of ¢ in error tree

T; Error subtree rooted at node corr. to ¢;

PATHS; Set of all root-to-leaf paths in 77
E[X], Var(X) Expectation and variance of random variable X
WS4, [WSA| Probabilistic wavelet synopsis for array A,

and number of retained coefficients
Ai Probabilistic rounding value used for coef. ¢;
C; Weighted Bernoulli random variable for coeff. ¢;
yi =i/ “Success” probability for random variable C;
NSE(d;) Normalized standard error for reconstructed d;
VAR(2, y;) Variance of C; for a given y;

Table 2: Notation.

ror tree representation 7', we can outline the following important
reconstruction properties of the one-dimensional Haar wavelet de-
composition [14, 19].

(P1). The reconstruction of any data value d; depends only on
the values of the nodes in path(d;). More specifically, we
have d; = Ecj-epath(di) d;j - ¢j, where ;; = +1if d; €

leftleaves(cj) or j = 0, and §;; = —1 otherwise. For
example, in Figure 1, ds = co — ca2 + ¢5 — c10 =65 — 14 +
(—20) — 28 = 3.

(P2). An internal node ¢; contributes to the range sum d(l : h)
only if ¢; € path(d;) U path(ds). More specifically, d({ :

h) = chEPath(dl)Upath(dh) x;j, where
(h—1+1)-¢, ifj=
T = (|1eftleaves(cj,l: h)|— (1

|rightleaves(cj,l: h)|) - ¢;, otherwise.

where leftleaves(cj,l : h) = leftleaves(c;) N {di,

dit1, ..., dn} (i.e., the intersection of leftleaves(cj)

with the summation range) and rightleaves(c;,! : h) is

defined similarly. For example, in Figure 1, d(3 : 5) =

3co + (1 — 2)62 —c4 + 2¢5 —cog + (1 — 1)010 =93.
Thus, reconstructing a single data value involves summing at most
log N+1 coefficients and reconstructing a range sum involves sum-
ming at most 2log IV + 1 coefficients, regardless of the width of
the range.

2.2 Multi-Dimensional Haar Wavelets

The Haar wavelet decomposition can be extended to multi-dimen-
sional data arrays using two distinct methods, namely the standard
and nonstandard Haar decomposition [18]. Each of these trans-
forms results from a natural generalization of the one-dimensional
decomposition process described above, and both have been used
in a wide variety of applications, including approximate query an-
swering over high-dimensional DSS data sets [4, 19].

As in the one-dimensional case, the Haar decomposition of a
d-dimensional data array A results in a d-dimensional wavelet-
coefficient array W, with the same dimension ranges and num-
ber of entries. Error tree structures for multi-dimensional Haar
wavelets can be constructed in a manner similar to those for the
one-dimensional case, and properties (P1)-(P2) can be extended to



multi-dimensional Haar wavelets. (The full details as well as effi-
cient decomposition algorithms can be found in [4, 19].) Our novel
technical results and algorithms rely solely on these key properties
of Haar wavelets and, therefore, are applicable for general, multi-
dimensional wavelet synopses. However, to simplify the exposi-
tion and remain within the specified page constraints, the develop-
ment in this paper is based primarily on the one-dimensional case,
and the extensions to the multi-dimensional case are only sketched
briefly in Section 3.6.

2.3 Wavelet-Coefficient Thresholding

Given a limited amount of storage for the wavelet synopsis of a
data array A, we can only retain a certain number B of the coeffi-
cients stored in Wx. (The remaining coefficients are implicitly set
to 0.) Letting IV, denote the number of non-zero entries in the data
array A, we typically have B < N ; that is, the chosen B wavelet
coefficients form a highly compressed approximate representation
of the original data. The goal of coefficient thresholding is to de-
termine the “best” subset of B coefficients to retain, so that some
overall error measure in the approximation is minimized. Conven-
tional coefficient thresholding is a completely deterministic process
that typically retains the B largest wavelet coefficients in absolute
normalized value (an example is given in the next section). Itis a
well-known fact that, for Haar wavelets, this thresholding method
is in fact provably optimal with respect to minimizing the overall
root-mean-squared error (i.e., L*-norm average error) in the data
compression [18]. More formally, letting d; denote the (approx-
imate) reconstructed data value for cell ¢, retaining the B largest
normalized coefficients implies that the resulting synopsis mini-

mizes the quantity y/ & >, (di — d;)? (for the given amount of

space B).
3. PROBABILISTIC WAVELET SYNOPSES

In this section, we first detail the problems with conventional
wavelet synopses, and then present our probabilistic approach based
on randomized rounding. We present three schemes for selecting
rounding values, then outline extensions for multidimensional data,
and finally, summarize our approach, with an example.

3.1 The Problem with Conventional Wavelets

As discussed above, conventional wavelet synopses retain the
B wavelet coefficients with the largest absolute value after nor-
malization (according to level); this deterministic process mini-
mizes the overall L? error in reconstructing all the data values.
Unfortunately, these guarantees on overall error cannot provide any
interesting/non-trivial error guarantees for the approximation of the
individual data values or the results of individual range-sum queries.

The example in Figure 1 discussed previously illustrates this fail-
ing. Table 3 depicts the wavelet coefficients in the wavelet trans-
form (Wa) for the data array in Figure 1, followed by the level of
each coefficient (Level(c;)) and the normalized coefficients (cj ).
With conventional wavelet synopses, we retain the B coefficients
c¢; with largest |¢f|. In this example, |5, |c3], |cgl. |c7]. |cials
|e1sl, |cia], and |e1s| are all greater than 10, while the rest are at
most 10. Thus for B = 8, the conventional wavelet synopsis is
{co, c3, cs, €7, C12, C13, C14, C15 }, as shown in the table.

For a given wavelet synopsis, approximate answers are obtained
by assuming all non-retained coefficients are zero, and either ap-
plying property (P1) from Section 2.1 to estimate individual values
or applying property (P2) from Section 2.1 to estimate range sums.
For the wavelet synopsis above, Table 1 depicts the (error-prone)
individual-value estimates obtained. For example, ds = co — ¢2 +
¢s — c10, and so ds =65 — 0 + 0 — 0 = 65; since ds = 3,

>

2 3 4 5 6 7
10 11 12 13 14 15

|
|
4 15 20 20 21 21 |
|
|
|

‘ index 4

wav. coeff. ¢;
28 28 29 -29 29 29

T 2 2 12 2
3 3 3 3 3
10 10 3 2

-I 29 -29 -29 -29

V2 2/2 2/2 2V/2 232
-15 0 0 21 =21
0 29 -29 -29 -29 |

)\
W

‘ level(c;)

IN

17
2

‘ retained coeff. | 65
[0

1
9
0
28
0
3
norm. coeff. ¢} 65 0
Iz
V2
0
0

Table 3: Wavelet Synopsis Using Deterministic Thresholding.

the estimate has over 2000% relative error! Likewise, d(3 : 5) =
3co — ¢2 — ¢4 + 2¢5 — cg, and so the estimate for this range sum is
195 -0 — 0+ 0 — 0 = 195; since d(3 : 5) = 93, the estimate has
over a 100% relative error!

The reader may verify that each of the four problems outlined in
Section 1 occur in this example, when using a conventional wavelet
synopsis. For example, even when the synopsis happens to produce
an exact answer to a range sum query that involves the right half of
the data values, there is no way of knowing this from the synopsis,
because c; is not retained.

Moreover, it is not difficult to construct examples with arbitrar-
ily large relative and absolute error. For example, a simple linear
transformation of the data array in Figure 1 yields this example:

Original 124dM 68M 84M 28M 56M 0 40M  96M
data values 10IM 43M IM 59M 31IM &M 73M 131IM
Wavelet 64M -2M 14M -15M 20M -20M 2IM -2IM
transform 28M 28M 28M -28M 29M -2OM -2OM -29M

synopsis 0 0 0 0 20M -29M -29M -29M
64AM 64M 64M 64M 64M 64M  64M  64M
99M 4IM -IM 5M 29M R87M T7IM 129M

Wavelet
answers

‘ | |
| |

‘ | |
| |

‘ Wavelet | 64M__ 00 -ISM_ 0 0 2IM -2IM |
| |

‘ | |
| |

Note that the data value ds is 0, but its estimate using a conventional
wavelet synopsis with B = 8 is 64 million, the same as the estimate
for dp = 124 million.

Root Causes. As can be seen from these examples, conventional
wavelet synopses suffer from (1) strict deterministic thresholding
(i.e., 100% above the threshold are retained, and 0% below the
threshold are retained), (2) independent thresholding (i.e., there is
no attempt to adapt the thresholding based on what is happening
to neighboring coefficients, in order to avoid large regions with no
retained coefficients), and (3) the bias resulting from dropping co-
efficients without compensating for their loss. For example, the
retained coefficients (from the right half of the tree in Figure 1) are
only slightly larger than the non-retained coefficients (from the left
half), and yet all the right half coefficients are retained while none
of the left half coefficients are retained, and there is no attempt to
compensate for the resulting bias.

Our approach, outlined next, is to address these three root causes
of wavelet synopsis errors, by devising a scheme based on random-
ized rounding®, using carefully chosen rounding values.

3.2 Our General Approach

We seek to overcome the problems with conventional wavelet
synopses outlined thus far by introducing a new approach for build-
ing wavelet synopses from wavelet-transform arrays. In a nut-
shell, our scheme deterministically retains the most important co-
efficients while randomly rounding the other coefficients either up
to a larger value (called a rounding value) or down to zero. The

2Randomized rounding [16] has been used previously as a technique for
obtaining approximate solutions to integer programs [17] and approximate
sums of integers in parallel [13]. Our application of randomized rounding
is in a completely different domain, requiring novel techniques.



probability of rounding up vs. down is selected so that the expected
value of the rounded coefficient equals the original coefficient. By
carefully selecting the rounding values, we ensure that (1) we ex-
pect a total of B coefficients to be retained, and (2) we minimize
a desired error metric in the reconstruction of the data, e.g., the
maximum relative error.

The key idea in our thresholding scheme is to associate, with
each non-zero coefficient ¢; in the wavelet-transform of A, a ran-
dom variable C; such that (1) C; takes the value zero (i.e., ¢; is
discarded from the synopsis) with some (possibly zero) probabil-
ity, and (2) E[C;] = ¢;. Then wsa, the probabilistic wavelet
synopsis for A, is comprised of the values for those random vari-
ables C; with non-zero values. We determine the general form
of these random variables using a randomized rounding scheme,
where we select a rounding value, X;, for each non-zero ¢; such
that C; € {0, A}, 0 < ;—: <1, and

C — i with probability %
*7 1 0 with probability 1 — £t

Thus, our proposed thresholding scheme essentially “rounds” each
non-zero wavelet coefficient c¢; independently to either A; or zero
by flipping a biased coin with success probability $t. It is easy
to see that for this rounding process the expected value of each
rounded coefficient is E[Ci] = A - 52 +0- (1 — 3£) = ¢i (e,
the actual coefficient value), and its variance is snnply

C;
—(BICi])* = A7 - )\i_c% =i—ci)e 2

2

For the special case where we deterministically retain the coeffi-
cient, we set A; = ¢;, and indeed Var(C;) = 0.

Var(C;) = E[C?)

Unbiased Estimation. Let JZ denote the estimate for the data
value d;, as calculated based on the coefficient values retained in
our probabilistic wavelet synopsis WS a, using property (P1) above.
Moreover, let d(I : h) (davg(l : h)) denote the estimate for the
range sum d({ : h) (the range average d(l : h)/(h — 1 + 1), resp.),
as calculated based on the coefficient values retained in WS 4, using
property (P2) above. Clearly, di, d(I : h), and davg(l : h) are
random variables. In the full paper [7] we show (using the two
properties and the linearity of expectation):

. h), and dauvg(l : h) are unbi-
: h), and

THEOREM 3.1. Each of ds, d(1
ased estimators for the data value d;, the range sum d(l
the range average d(l : h)/(h — 1 + 1), respectively.

For example, suppose we select A\g = co, A10 = 2 - ¢10, and
A = 3;:,- for all other non-zero coefficients ¢; in Figure 1. Let
yi = i—: be the probability of rounding up. Then E[ci5] = E[Co] —
E[C:] + E[Cs] — E[C10] = yoro — y2A2 + ysAs — y10A10 =
65—2-21+ 2-(—30) — 3 -56 = 65 — 14 — 20 — 28 = 3, which is
exactly ds. Likewise, E[d(3 : 5)] =3 - E[Co] — [Cz] [C4] +
2-E[Cs] — E[Co]=3-65—2-21—2-30+2-2-(—30) — 2-42
=195 — 14 — 20 — 40 — 28 = 93, which is exactly d(3 : 5).

The Impact of the \;’s. Everything thus far holds for any choice
of Ai’s, as long as 0 < $& < 1. The choice of the A;’s is crucial,
however, because it determmes the variances of our estimators as
well as the expected number of coefficients retained. Indeed, the
key to providing “good” error guarantees for individual data values
(for range sums) lies in selecting the A;’s to ensure small variances
Var(d ) of the reconstructed data values (data paths, resp.) while
not exceeding the prescribed space limit for the synopsis. Because

each coefficient is rounded independently, we have by Equation 2:

Var(d;) = Var( Y 85-Ci)= Y (8;) Var(Cy)

c;€path(d;) c;€path(d;)

Yoo - a 3)

c;€path(d;)

Thus, having a A; closer to ¢; reduces the variance. On the other
hand, we retain all non-zero coefficients after the rounding step,
and |Ws 4|, the number of non-zero coefficients after rounding, is a

random variable such that:
Ci

E[|wsal] = N C))
. 1
i|c; 0
Thus, having A;’s further from their respective ¢;’s reduces the ex-
pected number of retained coefficients. For a given target B on the

number of retained coefficients, our choice of A;’s needs to ensure
that E[|wsal] < B.

3.3 Rounding to Minimize the Expected
Mean-Squared Error

A reasonable approach is to select the A; values in a way that
minimizes some overall error metric (e.g., L?) in the approxima-
tion. Because such error metrics are obviously random variables
under our probabilistic methodology, we seek to minimize their
expectation. The theorem below follows from the orthogonality
properties of the Haar basis [7].

THEOREM 3.2. For any choice of \i’s for the non-zero c¢;’s
such that 0 < $& < 1, the expected value of the overall L? er
ror in reconstructing the data values from a probabilistic wavelet

= B[S, (d et

synopsis, E[L?] i — dj)?) is 2 ileio STeveltay =

> (Ai—ci)c;
ile;#0 glevel(e;)”

Theorem 3.2 shows that the variance of the non-zero coefficients
at lower levels of resolution (that is, closer to the root of the error
tree) has a higher impact on the overall L? error. This is a very
intuitive result since, by virtue of the Haar decomposition, such co-
efficients contribute to the reconstruction of a larger number of data
values. Based on Theorem 3.2, selecting the rounding values A; to
minimize the expected L? error subject to a given expected space
constraint’® B can be formally stated as the following optimization
problem:

[Expected L? Error Minimization] Find the rounding values

X that minimize the expected L* error Euc 40 2(1)‘;;8%,
subject to the constraints 0 < & < 1 for all non-zero ¢; and

Ellwsal]l = 3251020 % x <B. I

An Optimal Algorithm for Computing the \; Values. The above-
stated problem is a continuous, non-linear optimization problem
with an objective function that is convex in the problem variables.
In general, such convex programming problems are solved using
computationally-intensive numerical methods (e.g., Sequential Qua-
dratic Programming (SQP) or interior-point methods), that are typ-
ically not intended to scale beyond a few thousand variables [8].
Fortunately, the specific form of our L? error minimization prob-

lem allows us to derive an efficient optimal algorithm for comput-

ing the rounding values A;. More specifically, letting y; = i—’z
3For simplicity, we discuss expected space constraints in this paper, al-
though one can ensure we are within an absolute space bound B *, by tar-
geting an expectation slightly less than B * and possibly repeating the coin
tossing a few times until |WS A\ < B*. In our experiments comparing
wavelet approaches, we ensure that all synopses have the same number of
coefficients.




(i.e., the “success” probability for random variable C;) and k; =
2

c? .. 2 e .
JTevelten Tevelrey It is easy to see that our expected L* error minimiza-
tion problem is equivalent to:

Minimize Z y—: subject to Z yi < Bandy; € (0,1].
ilc; #0 ilc; #0
(Note that terms involving only ¢;’s are constant in our minimiza-

tion problem, and hence safely ignored.) Based on the Cauchy-
Schwarz inequality, the minimum value of the objective is reached

ki . .. ki
when Sor 18 the same for all ¢ with ¢; # 0. Let w = o S0

that we require 2 iieito Yi = 2ijei 0 @ < B. Itis not hard to
see that using exactly B is better than using less than B, so we get
w = % M ; Vk; and hence y; = B'\/E for all ¢ with non-zero

Sivki

Ci Ci Y Vki
Ai = — = —=t—), &)
Yi B-Vk;
for all ¢ with non-zero c;, is the optimal solution, ignoring the sec-
ond constraint that y; € (0, 1].

This leads to our MinL2 algorithm, which we sketch here. We
first compute the v/k;’s and their sum. We would like to apply
Equation 5 to set the rounding values, but this may result in one
or more y; > 1. Thus we consider the indices ¢ in non-increasing
order of \/E While y; > 1, we set A; to ¢, so that y; = 1,
and then loop to recurse on the subproblem without ¢. Once we
encounter a y; < 1, we are guaranteed that all remaining y; are
less than 1 as well, and we can safely apply Equation 5 to set the
rounding values. Using convexity arguments, it can be shown that
MinL2 produces the optimal solution to our optimization problem.
Our algorithm runs in linear time, plus the time for sorting (a total
of O(Nlog N) time). It uses O(NV) total storage space. Using
the rounding values produced by the algorithm results in unbiased
approximate answers for individual values and for ranges, with the
minimum expected mean-squared error over all individual values.

¢;. Thus, setting

3.4 Rounding to Minimize the Maximum
Relative Error

In the previous section, we described how to obtain unbiased ap-
proximate answers while minimizing an overall error metric. How-
ever, there were no error guarantees for individual answers, and
indeed there can be wide discrepancies in the accuracy of recon-
structed values. (Recall from Section 3.1 that conventional wavelet
synopses suffer from this same problem, as well as from bias.)

In this section, we present techniques for minimizing the max-
imum reconstruction error for individual data values and ranges.
Thus, we will achieve our goal of providing guarantees on the ac-
curacy of each reconstructed value. We focus on minimizing the
relative error, and only briefly describe our approach for absolute
error at the end of the section. Although minimizing absolute error
is somewhat easier to achieve, we believe that minimizing relative
error is more important to approximate query answering.* On the
other hand, relative error is unduly dominated by small data values
(e.g., for a data value = 3, returning 2 as the reconstructed value is
a 50% relative error!), so various techniques have been studied for
combining absolute and relative error (see, e.g., [10, 19]). In this
paper, we study an error metric that combines relative error with a

“For example, when (exact) answers can vary by orders of magnitude, it is
often preferable to have each answer be within say 1% relative error than
have each answer be within the same absolute error, because the same ab-
solute error may correspond to orders of magnitude differences in relative
error (say, .1% to 100%).

sanity bound s. Our goal is to produce estimates d; for each data
value d; such that

|d; — di| < e max{|di|, s} (6)

for a given sanity bound s > 0, where the relative error bound
€ > 0 is minimized, subject to the prescribed space limit for the
Synopsis.

In the context of our probabilistic wavelet synopses, we know
that the expected value of (L is d;, and we would like to mini-
mize the variance, in order to make it highly likely that Equation 6
is satisfied. More precisely, we seek to minimize the normalized
standard error for a reconstructed data value:

Var(d;)
max{|d;|, s}

Note that by applying Chebyshev’s Inequality, we obtain (for all
a>1)

Pr (|d — di| > o+ Nse(d:) - max{ldil, 5}) < 5, ®)

NSE(d;) = (N

so that minimizing NSE will indeed minimize the probabilistic bounds
on our relative error metric.

Based on the earlier development, letting PATHS = {path(d;) :
i =1,...,N} (ie., the set of all root-to-leaf paths in the error
tree, where paths again ignore both data value nodes and nodes
whose coefficient is zero), and applying Equation 3, we can define
our maximum NSE minimization problem as follows.

[Maximum Normalized Standard Error Minimization]

Find the rounding values \; that minimize the maximum NSE

for each reconstructed data value; that is,

\/Zi € patn(dy)(Xi = Ci) " Ci
) max{[dx], S}

Minimize ax
path(dy) € PATHS

®

subject to the constraints 0 < & < 1 for all non-zero ¢; and
Ellisall = Ly 0 52 < BB

Our solution to the maximum NSE minimization problem re-
lies on applying four key technical ideas, which we will describe
throughout this section. The first is Exploiting the Error-Tree Struc-
ture for Coefficients: As explained above, the variance for the re-
construction of individual data values is computed by summing the
contributions of independent random variables C; along all root-to-
leaf paths in the error-tree structure for Haar wavelet coefficients;
our algorithm takes advantage of this hierarchical problem struc-
ture to efficiently explore the solution space using dynamic pro-
gramming, as discussed next.

Formulating a Dynamic Programming Recurrence. We would
like to formulate a dynamic programming recurrence for this prob-
lem. Accordingly, we first simplify Equation 9 by squaring the
main (N SE(cik)) term; this does not alter the optimality of any so-

lution. As before, we let y; = 5, where y; € (0, 1] for a non-zero

coefficient ¢;. Then, let VAR(%, ;) = (A — ¢i)e; = 1;—’“ -l

denote the variance of C; (the random variable associated with ci)
for the given y;. Let T} be the subtree of the error-tree rooted at the
node corresponding to coefficient ¢;. Let PATHS; denote the set of
all root-to-leaf paths in T. Finally, let M[j, B] denote the optimal
(i.e., minimum) value of the maximum NSE(dy)? among all data
values dj, in T; assuming a space budget of B; that is,

] i VAR(%Z, Y5
M[j,B] = min max %
) m.
?l,'E(O,l],'LETHci;éO; path(dg) i€path(dy) a‘X{ k,S }
PET;|c;#0 y;i<B €PATHS;

10)



VAR(G,y;)

min { max{ NoRM G + M(2) bl } } ifj < Noej 20,
y; €(0,min{1,B}]; WM(-;J"Z;-T) + M[2§+1,B —y; — by]

VAR@,y;)
Mlj,B] = { °br&l0-B-v] (11)
U B] ming, ¢jo,5] { max{ M[25,br], M[2j +1,B—br]}} ifj<Nandc¢; =0
0 ifj >N
0 otherwise
VARG, y; VAR(i,y; (b))
) . MaXpath(dy )€PATHSy; { ax{d2, SJ 7+ Xiepatnn) axgdg 5%y
Ml[j,B] = min max 12)
’ y;€(0,min{1,B}]; VAR(,y;) + Z VAR(,y; (B—y;—br))
JbLE[O,B—yj] MaXpath(dg)EPATHS; 41 max{d%, 52} i€path(dg) max{dZ,52}

Consider the recurrence for M[j, B] depicted in Equation 11
(omitting the j = 0 case), where NORM(4) = max{miner, {d} },
s?} is the normalization term for subtree 7;. Note that the indices
27 and 25 + 1 in this recurrence correspond to the left and right
child (respectively) of node j in the error-tree structure (Figure 1).
Intuitively, Equation 11 states that, given a space budget of B for
the subtree rooted at node j, the optimal solution for the ¥;’s and the
corresponding cost (maximum NSE?) needs to minimize the larger
of the cost for paths via j’s two child subtrees (including the root in
all paths), where the cost for a path via a subtree is the sum of: (1)
the variance penalty incurred at node j itself, assuming a setting
of y;, divided by the normalization term for that subtree, and (2)
the optimal cost for the subtree, assuming the given space budget.
This minimization, of course, is over all possible values of y; and,
given a setting of y;, over all possible allotments of the remaining
B — y; budget “units” amongst the two child subtrees of node j.
Of course, if ¢; is zero then none of our space budget needs to be
allocated to node j, which results in the simpler recurrence in the
second clause of Equation 11. Finally, data nodes (j > IN) cost
no space and incur no cost, and the “otherwise” clause handles the
case where we have a non-zero coefficient but zero budget (¢; # 0
and B = 0).

Equation 11 is a significant simplification of Equation 10, so why
might it be correct? Consider a node with coefficient ¢; # 0. Start-
ing with Equation 10 and separating the root from the rest of the
path, we can rewrite the expression for M4, B] as shown in Equa-
tion 12, where the y;(b)’s are the optimal choice for y;’s given
space b. To proceed from here, we need to apply a second key tech-
nical idea: Exploiting Properties of Optimal Solutions. Consider
the following claim:

CLAIM 3.1. Consider a subtree T; and a space budget B > 0.
Then in an optimal setting of the y;’s, a min data value d in T; has
the maximum cost, i.e., NSE(d)? = M[i, B].

Assuming for now that Claim 3.1 is correct, we have, for all d;, €

. VARG,y;) _ VAR(,y;) VAR(j,y;
Ty;: max{d?, 312} = NORM(2]J) < ‘max{dZ, 512}’ and EzEpath(d)
VARG,y; (b)) _ VAR(i,y; (br))
max{d2, SL} M[2J’bl’] 2 Eiepath(d[,) max{d%,sé} - Thus,

the maximum cost path via the left subtree is path(d), and its cost

is % + M|2j,br]. By a similar argument for the right sub-

tree, it follows that Equation 11 is correct, assuming Claim 3.1 is
correct.

Unfortunately, there are corner cases which make Claim 3.1 false!
Thus we need to apply a third key technical idea: Perturbing Co-
efficients to Avoid Harmful Corner Cases. We can ensure these

5Details are in the full paper. In a nutshell, the problem arises in subtrees
T; described below in the “perturbation rule”. In such corner cases, it is in
general not possible to make the min data value in 75 have the maximum
cost while minimizing the maximum cost. In the worst case, this prob-
lem compounds itself up the tree, destroying any hope of developing a fast
dynamic-programming algorithm.

corner case do not occur by “perturbing” certain zero coefficients
by a very small perturbation amount A, making them either +A
or —A with equal probability (to ensure no reconstruction bias is
introduced):
[Perturbation Rule] For each subtree 7 such that (1) one of
its child subtrees, say T%;, has all zero coefficients, (2) its other
child subtree, T2;+1, has at least one non-zero coefficient, and
(3) the min data value in T%; is less than the min data value in
Ti+1, then perturb ca;.

Note that each data value has at most one perturbed coefficient on
its path, so the effect of this perturbation is minimal. We deter-
mined experimentally that a good choice for A is min{0.01
In the full paper, we prove:

S
aﬁ}'

THEOREM 3.1. Claim 3.1 holds for any error-tree after apply-
ing the perturbation rule. Thus, for such trees, Equation 11 cor-
rectly computes the optimal M[j, B), as defined in Equation 10.
Hence, computing M0, B] using Equation 11, saving the optimal
choices for y; and by, at each step, yields the optimal y;’s (and
hence \;’s) that solve the Maximum Normalized Standard Error
Minimization problem.

The problem with the recurrence in Equation 11 is that the y;
and bz, each range over a continuous interval, making it infeasible
to use. Thus, rather than insisting on an exact solution, we instead
propose an efficient approximation algorithm that produces near-
optimal solutions to our maximum NSE minimization problem.

An Efficient Approximation Algorithm for Minimizing the Rel-
ative Error. The fourth and final key technical idea applied in our
dynamic programming algorithm is to Quantize the Solution Space:
Instead of allowing the y; variables to vary continuously over (0, 1],
we assume that these variables take values from a discrete set of g
choices corresponding to integer multiples of 1/qg, where g is an
input integer parameter to our algorithm; that is, we modify the
constraint y; € (0,1] toy; € {%, %, ..., 1}, and the constraint
br € [0,B]tobr € {0, él’ , B}. Obviously, our approximate
solution converges to the optimal solution for the maximum NSE
minimization problem as g becomes larger. On the other hand,
as we show below, larger values for g also imply higher running-
time and memory requirements for our algorithm. Thus, the input
“quantizing” parameter g provides a convenient “knob” for tuning
the tradeoff between resource requirements and solution quality for
our approximate dynamic-programming algorithm.

The pseudo-code for our algorithm (termed MinRelVar) is based
on the above quantization of the recurrence in Equation 11, and is
depicted in Figure 2. The initial invocation of this recursive algo-
rithm is done with root = 0 and B equal to the total (expected)
number of coefficients to be retained in the wavelet synopsis.®

SNote that node 0, corresponding to the overall average, should be handled
as a special case, since it only has one child in the error tree (Figure 1); the
modifications required are straightforward and omitted from the description
for clarity.



procedure MinRelVar( Wy , B, g, root )

Input: Array W4 = [co, ... ,cny—1] of N Haar wavelet coefficients,
space budget B (expected number of retained coefficients),
quantizing parameter g > 1, error-subtree root-node index root.

Output: Value of M[root, B] according to the quantized version of
Eqn. 11 (M[root, B].value), with the optimal space allotments for the
root (M[root, B].yValue) & left child subtree (M [root, B].leftAllot).

Note: We assume that prior to the initial invocation, the perturbation rule
has been applied, using a given perturbation value parameter A. Also,
both NORM(¢), using a given sanity bound parameter S, and NZ 3], the
number of non-zero coefficients in the subtree rooted at ¢, have been
computed for all 5. Finally, M [z, B].computed is initialized to false, for
all4and all B = 0, & ., B*, where B* is the root’s space budget.

g
begin

1. if (root > N —1or NZ[root] < B) then

2. return 0 /I no nodes left or all coeffs can be retained

3. if (NZ[root] > B * q) then

4. return oo /I not enough space even for minimal allocations
5. if (M[root, B].computed = true) then

6. return M [root, Bl.value // optimal value already in M|

7. MJroot, B].value := 0o

8. forl:=1togdo

9. if (croot =0) then

10. rootLeft := rootRight := rootSpace := 0

11.  else

12. rootLeft := (q — 1) * €2 . /(I * NORM(2 x j))

13. rootRight := (q — 1) * ¢y o o /(I ¥ NORM(2 % j + 1))

14. rootSpace :=[/q

15.  endif

16.  for b := 0 to B—rootSpace step 1/q do

17. L :=MinRelVar( Wy, b, q, 2 * root )

18. R :=MinRelVar( W4, B—rootSpace—b, g, 2 * root + 1)

19. if ( max{rootLeft+L , rootRight+R} < M[root, B].value ) then
20. M{[root, B].value := max{ rootLeft+L , rootRight+R }

21. M[root, B].yValue := rootSpace

22. M]root, B].leftAllot := b

23. endif

24.  endfor

25.  if (cyoot =0) then break /I no need to iterate over multiple
26. endfor

27. M[root, B].computed := true

28. return M[root, B].value

end

Figure 2: The MinRelVar Algorithm: Rounding to Minimize
Maximum Normalized Standard Error.

Time/Space Complexity and the Quantizing Parameter g. Given
a node/coefficient j in the error tree and a budget B, MinRelVar
computes the optimal value by examining g possible space allot-
ments for j (Step 8) and, for each of these, a maximum of O(q- B)
ways of distributing the remaining budget among the two children
of node j (Step 16). (Once an optimal value is computed it is
recorded in the dynamic-programming array for future reference.)
Thus, the overall running-time complexity of algorithm MinRelVar
is O(Ng®B). Moreover, typically the running time will be faster
due to the considerable pruning during the search. With respect to
the space requirements of our algorithm, note that, even though the
size of the full dynamic-programming array M is O(NgB), Min-
RelVar does not require the entire array to be memory resident. In
fact, it is easy to verify that, at any given point during the execu-
tion of MinRelVar, there will be at most one active “line” (of size
O(gB)) of array M per level of the error tree. This is because the
results for all descendants of a node j can be swapped out once
the results for j have been computed. Thus, the memory resident
working set size is only O(gB log N).

An Optimization. Recall that for nonzero coefficients, we select
ay; € {%, %, ..., 1}. Because it is often useful to permit very
small y;’s for unimportant coefficients, this forces a larger choice

for g, in order to make the smallest value, <, be sufficiently small.
Instead, we propose the following simple optimization: allow y; =
0 even for nonzero coefficients. The problem, of course, is that
then the variance, VAR(Z, ;) = % - ¢2, for this coefficient is
infinite, and hence this choice for y; will never be selected as the
optimal choice by the MinRelVar algorithm. To get around this
problem, we observe that because the coefficient is always rounded
down when y; = 0, its contribution to the squared error of any data
value in its subtree is cZ, not infinite. Thus, we can set VAR (4, 0) =
¢Z in our dynamic programming algorithm. The downside of this
optimization is that it introduces a small bias in the reconstruction.
On balance, however, it leads to a faster algorithm (because a larger
g can be used) and highly-accurate answers (see Section 4).

Minimizing the Maximum Absolute Error. Minimizing the max-
imum absolute error is essentially equivalent to minimizing the
maximum total variance across all root-to-leaf paths in the error
tree of the wavelet decomposition. In the full paper, we formu-
late the optimization problem of rounding values in a probabilistic
wavelet synopsis to minimize the maximum reconstruction vari-
ance. Our formulation gives rise to a non-linear, convex program-
ming problem that is significantly more complex than that of mini-
mizing the expected L? error (Section 3.3); thus, it is unlikely that
efficient, specialized solution procedures exist [8]. Given the short-
comings of generic convex-program solvers, we present an efficient
approximate algorithm for the problem based on dynamic program-
ming that runs in O(Ng?B) time and O(N + gBlog? N) space.

3.5 Low-Bias Probabilistic Wavelet Synopses

A key feature of our probabilistic wavelet synopses is their use
of randomized rounding, in order to achieve unbiased, guaranteed-
error reconstruction of data vectors as well as unbiased, guaranteed-
error answers for range queries. In this section, we propose an
alternative scheme that does not perform randomized rounding. In-
stead, each coefficient is either retained or discarded, according to
the probabilities y;, where as before the y;’s are selected to mini-
mize a desired error metric.

The high-level approach is the same as before, except that now
there is a random variable, C;, associated with each coefficient that
is ¢; with probability y;, and O with probability 1 — y;. Clearly,
C; is no longer an unbiased estimator for ¢;, so this scheme in-
troduces bias into the reconstruction of data values. To combat
this, we select y;’s to minimize the maximum normalized bias for

a reconstructed data value, where the normalized bias for a data

PO leil-(1-y;)
= pi;i({";gil,s} . To see why the |¢;| - (1 — ;)

term above makes sense, observe that E[C;] = ¢; - y;. It follows
that each C; contributes either plus or minus ¢;(1 — ;) to the ex-
pected reconstruction bias of all data values in its subtree. Thus,
|ei| - (1 — ys) upper bounds the expected contribution of this coef-
ficient to the reconstruction bias.

We define our maximum normalized bias minimization problem
as follows.

[Maximum Normalized Bias Minimization] Find the y;’s

that minimize the maximum normalized bias for each recon-

structed data value; that is,

Die path(dy) leil - (1 —y:)
max{|dg|, s}

value dj, is

Minimize max
path(dy) € PATHS

subject to the constraints 0 < y; < 1 for all 4, and E[|ws 4[] =

We can readily adapt the combinatorial solution of the previous
section to solve this minimization problem. Details are in the full
paper. We will refer to this algorithm as the MinRelBias algo-



rithm. Intuitively, this approach has more in common with tradi-
tional wavelet synopses, in that we either retain or discard a co-
efficient as is. However, due to the randomization and our choice
of optimization metric, we still avoid the four pitfalls of traditional
wavelet synopses outlined in Section 1. In fact, as shown in Sec-
tion 4, the MinRelBias algorithm produces probabilistic wavelet
synopses that yield significantly more accurate answers than tradi-

tional wavelet synopses, and often outperform our other approaches.

3.6 Extension to Multi-Dimensional Wavelets

In this section, we sketch the key ideas for extending our ran-
domized rounding approach to multi-dimensional data. As ob-
served in [4], a nice feature of the nonstandard Haar decomposition
is that the multi-dimensional wavelet-transform array Wa can be
computed in one pass over the (suitably-ordered) data array, with
coefficients computed bottom up from the leaves of the error tree.
Unfortunately, this pass may use far more than N, space, where
N, is the number of non-zeros in the data array, because Wa can
have far more than IV, non-zeros. Thus, as in [19], we perform
coefficient thresholding during the computation of W, to ensure
that we retain at most IV, (non-zero) coefficients. We developed a
new thresholding technique that performs this initial thresholding
without introducing any reconstruction bias (previous schemes did
not limit the bias they introduced). Namely, in the one pass over
the data array, we retain all coefficients computed until we reach
our limit of IV, coefficients. At that point, we need to create room
for more coefficients, so we select a threshold A such that for say
20% of the coefficients ¢; computed thus far, |c;| < A/2. Then we
flip coins, rounding each such ¢; up to A (or -, if ¢; < 0) with
probability |c}\"‘ and down to zero with probability 1 — ‘ifl . We ex-
pect to discard at least half of these coefficients, reducing the space
by between 10% and 20%. Moreover, this does not introduce any
reconstruction bias, because the expected value for each coefficient
is still ¢;. We then continue with the pass over the data array, re-
peating this process whenever we accumulate IV, coefficients. This
results in a probabilistic wavelet synopsis WS4 with no more than
N, coefficients (and at least %Nz coefficients).

The above captures the main idea, but the actual thresholding
process we use is more complicated. First, we use |c; |, the mag-
nitude of the normalized coefficients, to select the pool of coef-
ficients subject to coin flips. Second, each newly-computed co-
efficient that would have been subjected to coin flips under the
most recent thresholding, is subjected to this thresholding. Thus
at any point, all coefficients have been treated equally, independent
of when they were computed. Third, each thresholding step with
a new A accounts for the previous thresholding steps in order to
maintain unbiased answers and equal treatment. Fourth, since all
coefficients are treated equally, we need not store the rounded value
for retained coefficients, only the original value. This property is
used in the phase described next.

As before, our goal is to have only B < N, coefficients. This
we accomplish by applying our MinRelVar scheme to select the
yi, and then flipping coins to reduce Wsa to B coefficients. We
adapt the algorithm to account for the variance already incurred by
rounded up values; this variance can be computed because we have
the original ¢;. (We cannot account for the variance due to rounded
down values, due to our space limit of INV,.) More significantly, we
extend MinRelVar to the multi-dimensional case. We argue that
a modified dynamic programming formulation still holds for the
multi-dimensional case, and that the running time for the quantized
version is O (N, qQB2d), where g is the quantization parameter, B
is the space bound, and d is the number of dimensions. This is the
first wavelet-based compression technique for multi-dimensional

[ 0 1 2 5 11 22 45
ci 204 6 -4 20 4 -1
vi |13 5 1 5 g -
A 204 9 -8 20 8 -6 L
coins S S F S S F -
WS 204 9 - 20 8 - -
Overall Algorithm:

Step 1. Select y;’s using the desired optimization
algorithm (e.g., MinRelVar). Defines each A; = %
when using rounding (shown), or A\; = ¢; when not
using rounding.

Step 2. Flip coins, which defines the synopsis WS.

Steps 3+. Answer queries from WS by applying properties c45 o
(P1)-(P2). E.g., d2g = 204 — 9 — 20 + 8 = 183.

(Note: the actual value for dog = 186). d26 m

Figure 3: Summary of the approach, with an example (error
bounds not shown).

data that provably enables unbiased reconstruction of data values
and unbiased answers to range queries.

3.7 Summary of the Approach

Figure 3 summarizes the steps for constructing and using our
probabilistic wavelet synopses. For brevity, we show example val-
ues for ¢;, As, etc. only for a single path in an example error tree.
In Step 1, we select the y; using any of the optimization algo-
rithms (e.g., MinL2, MinRelVar or MinRelBias). This defines
the \; = % when using rounding, or A\; = ¢; when not using
rounding. In Step 2, we randomly either retain or discard each
Ai, according to the probability y;. An example outcome is shown
(labeled “coins”). This results in the probabilistic wavelet synop-
sis {(0,204), (1, -9), (5,20), (11,8),...}. We perform several
(e.g., 5) trials of coin flips, and select the synopsis that minimizes
the mean relative error. In Steps 3+, the synopsis is used to an-
swer queries. For point queries, property (P1) is used. For range
sums or averages, property (P2) is used. More generally, we can
apply any of the previous techniques [4, 19] for answering queries
from wavelet synopses, using our probabilistic wavelet synopses.
Furthermore, we can exploit the upper bounds on standard error
or bias guaranteed by our synopses to provide strong probabilistic
error guarantees on individual query answers [7].

4. EXPERIMENTAL STUDY

In this section, we present the results of an empirical study we
conducted using the novel techniques developed in this paper for
building probabilistic wavelet synopses. The objective of this study
is to verify the effectiveness of our probabilistic synopsis tech-
niques in reducing the data-reconstruction bias compared to con-
ventional, deterministic thresholding based on normalized coeffi-
cient values. To this end, we have experimented with different syn-
thetic and real-world data sets. The major findings of our study can
be summarized as follows:

e More Consistent, Low-Error Data Reconstruction. By
exploiting our randomized thresholding strategies, probabilis-
tic wavelet synopses can enable a more consistent, lower-
error approximation of data values; the result is a signifi-
cantly smaller value of mean relative error in data reconstruc-
tion across the entire underlying data domain.

e Improved Quality Guarantees for Individual Data Val-
ues. Besides reducing the overall relative error, our prob-
abilistic wavelet synopses can also significantly reduce the
maximum (and other percentiles) of relative-error values at
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Figure 4: Approximation error for “Normal” Zipfian permutation with data skew z = (.7: (a) Mean relative error. (b) Maximum

relative error. (c) 25-percentile relative error.

individual data points; thus, for a given amount of synop-
sis space, they can offer tighter quality guarantees for recon-
structed values than conventional deterministic wavelets.

As our results show, the most significant improvements occur with
smaller synopses, larger skew, or noisy data. All experiments re-
ported in this section were performed on a Sun Ultra-250 machine
with 1 GB of main memory running Solaris 2.7.

4.1 Testbed and Methodology

Techniques and Parameter Settings. Our experimental study com-
pares the conventional, deterministic thresholding scheme for Haar
wavelet coefficients (i.e., maintaining the largest coefficients in ab-
solute normalized value) with our three probabilistic thresholding
schemes MinL2, MinRelVar, and MinRelBias, designed to min-
imize the expected L? error, the maximum normalized standard
error, and the maximum normalized bias, respectively.7 For Min-
RelVar, we used the optimization described in Section 3.4, as it
improved the accuracy of our answers.

For the normalizing methods (i.e., MinRelVar and MinRelBias),
we determined a setting for the quantization parameter g used in
our dynamic-programming solution by comparing our algorithms
to a continuous mathematical-optimization solver on some small
example data sets. Our results showed that our algorithms quickly
converged to the optimal continuous solution even for relatively
small values of the quantization parameter g. We decided to use a
value of g = 10 for our experimental runs, as we found that value
to give good accuracy as well as reasonable running times for our
dynamic-programming algorithms. For each input data set, we de-
termined the value of the sanity bound s as the 10-percentile value
in the data (i.e., 90% of the data points had values greater than
s). Finally, we experimented with different values for the perturba-
tion parameter A, and determined that A = min{0.01, %} was
a good choice.

Synthetic-Data Generation. We ran our techniques against sev-
eral different one-dimensional synthetic data distributions, gener-
ated as follows. First, a Zipfian data generator was used to produce
Zipfian frequencies for various levels of skew (controlled by the
z parameter of the Zipfian), numbers of distinct values, and total
frequency values (i.e., data-tuple counts). We varied the z param-
eter between 0.3 (low skew) to 2.0 (high skew), the distinct values
between 128 and 512, and the tuple count between 100, 000 and
500, 000. Next, a permutation step was applied on the generated
Zipfian frequencies to order them over the data domain; we ex-
perimented with four different permutation techniques: (1) “NoP-

7To the best of our knowledge, there are no known deterministic thresholding schemes
that optimize for relative-error metrics. Furthermore, our dynamic-programming tech-
niques do not directly extend to a deterministic setting; for example, the error guar-
antees of our schemes rely on assigning fractional storage, y; € (0, 1], to non-zero
coefficients and then flipping coins to obtain y; € {0, 1}.

erm” basically leaves the ordering as specified by the Zipfian data
generator, i.e., smaller values have higher frequencies; (2) “Nor-
mal” permutes the frequencies to resemble a bell-shaped normal
distribution, with the higher (lower) frequencies at the center (resp.,
ends) of the domain; (3) “PipeOrgan” permutes the frequencies in
a “pipe-organ”-like arrangement, with higher (lower) frequencies at
the two ends (resp., center) of the data domain; and, (4) “Random”
permutes the frequencies in a random manner over the domain.

Approximation-Error Metrics. We consider three metrics to gauge
the accuracy of the different wavelet-synopsis techniques. Let d;
((fi) denote the 4" accurate (resp., reconstructed) value in the do-
main, and let s be the specified sanity bound for the approximation.
The maximum relative error in the reconstruction is max;{ 7de; {_df’ |S}
1 %. The 25-percentile
relative error is an upper bound on the relative error of 75% of
the data values in the domain. The maximum relative error can be
returned to the user as a guaranteed-error bound for the reconstruc-
tion of any individual data value, and our MinRelVar and MinRel-
Bias techniques are designed to help minimize this error. However,
it is based on only the largest error, and hence it provides a less in-
formative comparison than the other two metrics. Thus we will
primarily use the mean relative error for the comparisons in this
section (the 25-percentile relative error results are similar [7]).

4.2 Results — Synthetic Data Sets

We present some of our experimental results with synthetic data
sets for different frequency permutations and settings of Zipfian
skew. The numbers shown in this section were obtained using a
data domain of 256 distinct values and a tuple count of 200, 000;
we observed similar results for other parameter settings. After
computing the y;’s for the MinL2, MinRelVar, and MinRelBias
schemes, five trials of the coin flippings using different random
seeds were performed, and the synopsis was selected that gave the
least value for the observed mean relative error.

. . 1 N
The mean relative error is + 3 ;_

Relative-Error Numbers: Mean, Maximum, and 25-Percentile.
Figure 4 depicts the numbers obtained by all four techniques for
mean, maximum, and 25-percentile relative error on a ‘“Normal”
Zipfian data set with skew z = (.7. Clearly, even for this moderate
value of data skew, our MinRelVar and MinRelBias algorithms are
able to guarantee better relative-error reconstruction for data values
than deterministic, with the difference being especially evident for
space-constrained synopses. More specifically, for 10 retained co-
efficients, both our methods give an over 200% improvement in
mean relative error over deterministic, reducing it from over 0.5 to
about 0.15. Remember that with 256 distinct values, 10 coefficients
represent an approximately 4%-space synopsis of the full distribu-
tion. As the space for the synopsis is increased, the three methods
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converge to the same relative error numbers. Similar trends can be
seen for the maximum and 25-percentile relative errors. With re-
spect to our MinL2 technique, our results show that it can result in
large relative errors (even worse than those of deterministic); this
is to be expected, since MinL2 does not explicitly optimize for the
maximum normalized bias or variance in the reconstruction of data
values. Due to its somewhat erratic behavior, MinL2 is omitted
from our discussion in the remainder of this section. The trends are
similar for higher values of the skew parameter z, with the relative
difference between deterministic and our MinRelBias and MinRel-
Var strategies becoming even more pronounced [7].

Effect of Data Skew. Figure 5 depicts the ratio between the mean
relative error values obtained by deterministic and those obtained
by our MinRelBias technique for “Normal” Zipfian distributions
with varying values of the skew parameter z. The trends are similar
for our MinRelVar technique [7]. Obviously, the relative-error ben-
efits obtained by our probabilistic techniques increase explosively
as a function of the skew in the underlying data, with error ratios
being way off the chart for z = 1.5, 2.0 and 10-15 coefficient syn-
opses. For lower values of z, our probabilistic synopses offer more
moderate benefits or match the relative-error performance of the de-
terministic scheme. Note that, even for higher synopsis sizes (e.g.,
35-40 coefficients), our techniques can offer error improvements
as high as 100% over deterministic thresholding.

Effect of Permutation Strategy. Figure 6 depicts the mean rel-
ative error ratio between deterministic and our MinRelBias syn-
opses as a function of the data skew parameter z for 15-coefficient
synopses and for each of the four permutation strategies tested in
our experiments. The trends are similar for our MinRelVar tech-
nique [7]. Clearly, the “Normal” and “PipeOrgan” frequency ar-
rangements (the two curves are indistinguishable in the figure) are
the ones reaping the largest error benefits from our strategies, with
the improvement increasing explosively for higher data skew; e.g.,
for z = 2.0, both MinRelBias and MinRelVar reduce the mean rel-
ative error by over 8, 000% with respect to deterministic. The error
improvements for the non-permuted Zipfian (“NoPerm”) are not as
spectacular, but still are as high as 100-150% for more skewed dis-
tributions. Finally, for the “Random” data set, our methods seem
to closely match (in most cases) the performance of determinis-
tic thresholding and, as a consequence, offer little (if any) bene-
fit in terms of relative error. We should note, however, that by
randomly permuting Zipfian frequencies, “Random” results in a
highly-irregular data set over which any small synopsis based on
Haar wavelets is doomed to give poor approximations; thus, our
results are not entirely surprising.

4.3 Results — Real-World Data Sets

To explore how our techniques performed on real-world data,
we used the Cover Type data set from the National Forest Ser-

vice, down-loaded from U.C. Irvine [11]. There are 581,012 tu-
ples in the data set; each tuple has 54 attributes (elevation, slope,
distance to highway, forest cover type, etc). Most of these at-
tributes have low cardinality, but there are 10 quantitative attributes,
each with cardinality 256 or higher. We ran our techniques on
a number of these attributes, and we report representative results
on two of the attributes: “hillshade3pm” (CovType-HS3) and
“aspect” (CovType—2). These two attributes test our algorithms
under widely different distributions. CovType-HS3 measures a
hillshade index (from 0 to 255) at 3pm on the summer solstice. Its
histogram (the input to the synopsis techniques) is shown in Fig-
ure 7(a); as can be seen from the figure, the distribution is bell-
shaped and relatively smooth. CovType—-A measures the aspect
in degrees azimuth, ranging from 0 to 359. Its histogram is shown
in Figure 7(b); the distribution is more uniformly spread, with a
pipe-organ-style fluctuation and considerable peaks of noise.
Figures 7(c,d) depict the ratio of mean relative errors between
deterministic thresholding and our MinRelBias and MinRelVar
schemes as the number of retained coefficients is varied. Clearly,
our probabilistic wavelet synopses offer very substantial accuracy
benefits over conventional deterministic synopses for both of the
real-life data sets used in our tests. Further, our results show that
for both CovType-HS3 and CovType—A the mean relative error
numbers for the deterministic scheme improve very slowly as more
space is given to the synopsis; thus, the relative performance of our
schemes actually improves as the number of coefficients increases.

5. RELATED WORK

Wavelets have a long history of successes in the signal and im-
age processing arena [12, 18] and, recently, they have also found
their way into data-management applications. Matias et al. [14]
first proposed the use of Haar-wavelet coefficients as synopses for
accurately estimating the selectivities of range queries. Vitter and
Wang [19] described I/O-efficient algorithms for building multi-di-
mensional Haar wavelets from large relational data sets and show
that a small set of wavelet coefficients can efficiently provide ac-
curate approximate answers to range aggregates over OLAP cubes.
Chakrabarti et al. [4] demonstrated the effectiveness of Haar wavelets
as a general-purpose approximate query processing tool by design-
ing efficient algorithms that can process complex relational queries
(with joins, selections, etc.) entirely in the wavelet-coefficient do-
main. Matias et al. [15] considered the problem of on-line mainte-
nance for coefficient synopses and propose a probabilistic-counting
technique that approximately maintains the largest normalized-value
coefficients in the presence of updates. (We are currently work-
ing on how to dynamically maintain our probabilistic wavelet syn-
opses.) Gilbert et al. [9] proposed algorithms for building approx-
imate one-dimensional Haar-wavelet synopses over numeric data
streams. All the above papers rely on conventional, deterministic
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Figure 7: (a,b) CovType-HS3 and CovType—A data sets. (c,d) Ratio of mean relative error between deterministic and probabilistic

wavelet synopses for CovType—-HS3 and CovType—A data.

thresholding schemes that typically decide the significance of a co-
efficient based on its absolute normalized value; as demonstrated
in this paper, such schemes can result in large relative errors.

There is a rich literature on m-term approximations using wavelets
(m is the number of coefficients in the synopsis). Previous related
work has studied dynamic-programming style approaches, deter-
ministic thresholding to minimize a desired L? metric, and bounds
on worst case error [5]. We are not aware of work addressing rel-
ative errors with sanity bounds, arguably the most important sce-
nario for approximate query processing in databases. Anastassiou
and Yu (e.g., [2, 3]) have written a series of papers on the topic
of probabilistic wavelet approximation. However, these papers are
unrelated to our approach, as they actually study the mathematical
properties of certain wavelet operators for approximating continu-
ous monotone functions and probability distributions.

To the best of our knowledge, and after consulting several wavelet
experts (e.g., [6]), it seems that our approach of probabilistically
rounding and selecting coefficients has not been previously stud-
ied. To our knowledge, our approach is the first to provide unbiased
reconstruction for individual data values and value ranges.

6. CONCLUSIONS

This paper has introduced probabilistic wavelet synopses, the
first wavelet-based data reduction technique that provably enables
unbiased data reconstruction, with error guarantees on individual
approximate answers. We have described a number of novel tech-
niques for tuning our scheme to minimize desired error metrics, as
well as extensions to multi-dimensional data. Experimental results
on real-world and synthetic data sets demonstrate that probabilistic
wavelet synopses significantly reduce approximation relative error
compared with the previous deterministic approach, in most cases
by over a factor of 2, and up to a factor of 80 for highly skewed
data. Therefore, we recommend their use in approximate query
processing systems.
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