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1 Introduction collect monitoring data and perform detection on sub-sdcon
or smaller time scales; and increase the number of moniyors b

As the Internet has evolved into a valuable and critical seran order of magnitude or more. Changes in timescale and size

vice platform for business and dalily life, the research com-can massively increase the volume of data sent to the NOC,

munity has enthusiastically applied data mining methods tgotentially overloading its network capacity.

improve application performance by analyzing and optimiz- The distributed nature of monitor sites implies important

ing the behaviors of the underlying systenesy(,datacenter communication network constraintfue to either network

design, network resource provisioning, network secuetty,)  bandwidth restrictions or power limitations.(.,sensor bat-

These data mining procedures often use large-scale widelyery life). Such limitations are obvious in sensor networks

distributed monitoring systems, which continuously geteer  but also in large enterprise networks which typically do not

numerous distributed data streams, and backblwf the  over provision links to remote office sites. Clearly, we

datato a central locationg.g.,a Network Operation Center needcommunication-efficient distributed monitoribgcause

or NOC) for data analysis and decision making. This applicanaive solutions that simply continuously “push” compidd¢a

tion scenario presents both new opportunities and chakeng streams to a central collection site will not scale.

in efficient data analysis and online decision making, wizere  The database community has developed approximate data

decision function depends on aggregating and analyaing replication protocols for managing distributed and cambins

tinuousdata streams fromistributedmonitors. data streams [5], that efficiently and effectively enableticd-

The statistics and machine learning communities have peized access to distributed streams (data objects whosesvalu
formed extensive research into decision making methods [1continuously change over time). Because their goal is to ag-
including outlier detection, clustering, classificatiets., with  gregate data at the NOC within arerror bound on accuracy
the results being algorithms that mainly assume all data hawegardless of actual system conditipggeam processing ap-
been collected at a central point, and focus on post-calect proaches suffer from excessive query overhead in the presen
data analysis and problem diagnosis, with little consiti@na  of bursty data and are ill suited for efficient decision makin
of the more general distributed, continuous data collectio Our key insight in the efficient decision making problem
and analysis problem. We believe that the machine learning thatexact data is often not a requirement the important
community should now focus on the design of algorithms thatmetric is note-error approximation of system state, rather it is
function well with limited data. e-error decision making. In other words, we care about how

We envision two open problems: efficiently performing on- accurately monitoring detects a violation, not how acalyat
line decision makingvith low communication overheadnd it determines overall system state.
providing fine-grain control over the tradeoff between deci ~ With this insight we can use approximate replication tech-
sion accuracy and communication overhead. Most existingliques to reduce communication costs and study fundamental
research has focused on sampling techniques, however, tti@deoffs between central site synchronization commtioica
randomness in this type of sampling could discard key infor€osts and decision making accuracy. Using machine learning
mation needed by decision making algorithms. Instead, w@&nd statistics, thisost-accuracy tradeof€an be codified in
advocate usingmart filteringfor data reduction, where the a system that lets users specify a minimum allowable accu-
filtering is designed to carefully select which datantui ship. racy level, and then it minimizes communication costs while
Specifically, the filtered data should be that which has mini-neeting the specified accuracy requirement.
mal impact on decision making performance or its accuracy.

3 The Problem Space

2 Challenges In Figure 1, we show the three axes of the design space for the
_ _ _ . ~online decision making and detection problem:

Us_lng a centralized model, Where .e}ll monltoreq dgta IS Pellrime Scales of detection represent at least three detection condition

odically pushed to the NOC, simplifies the application of de- e instantaneousriggers fire when an aggregate threshold

tection and correlation functions to global data. Howewer, value is violated at any single instant [4, 6], whibeed-window
centralized model introduces significant efficiency, tinads, and cumulativetriggers detect persistent threshold violations
and size scalability limitations, especially when atteimgpto over fixed andany sizevindows of time, respectively [2].



Detection Functions include simple lineard.g.,SUM and more so-
phisticated onese(g.,Top-k, PCA, and SVM) enabling a wide
range of detection application®.¢., botnet attacks, volume

anomalies in ISP network, and electric power grid anomplies Tme Scae Yy @

Communication Architectures include a one-level tree where ev-
ery monitor directly communicates with the NOC, multi-leve  cumuiative
tree structures where monitors have a parent-child reistiip, / Comm. Ar

and pure distributed topologies.
Fixed-windo Pure Distributed
Ourresearch has explored a slice of the problem space: var-
ious detection functions defined on a one-level tree topolog Tree Structure
(the shaded area in Figure 1). The rest of the space repseseff™""**"* One-level

an interesting opportunity for the research community.
SUM, AVG, MIN, ... Top-k, PCA, K-Mean, SVM, ... Detection Functic

4 Towards Efficient Decision Making Figure 1:The whole problem space.

As an exp|0|’at0ry Step, we propose, D-Trigger' a genera| Providing efficient decision making in Iarge-scale dis-
framework for efficient online detection that gracefullydn  tributed systems remains an open problem, however oualiniti
grates a variety of decision making, online machine leaynin results from leveraging machine learning demonstratedae f
approximation, and optimization algorithms. Our key goalssibility of balancing accurate decision making with minzed
and accomplishments are to: enable real-time detectionevheCOmmunication needs. Based on the applications we have ex-
a system’s state is tracked continuously, so even smallrabnoamined so far, we believe that our framework and approach
mal events are detected; significantly reduce the datactetle ~ are broadly applicable and a basis for exploring a wide spec-
for detection, thus reducing communication overhead;-guartrum of algorithms that deal with anomaly detection. There
antee desired detection accuracy even with a reduced amougfie several research directions for further exploratiocipid-
of data. D-Trigger combines very high detection accuraay aning using multi-level tree or pure distributed communioati
low communication overhead for the detection of various un-architectures to further reduce the processing and conuauni
usual eventsd.g.,detecting botnet attacks, network traffic vol- tion burden at the NOC; supporting more sophisticated types
ume anomalies, and electric power grid anomalies). of detection algorithmse(g.,wavelet decomposition, entropy
We have developed two specific approaches for securitfnalysis, clustering, classification, and sequential Hyggis
applications: a queueing-based approach for botnet detef2ethods); and developing resilient monitoring infrastuoes
tion [2] and a Principal Components Analysis-based appiroacthat can tolerate data losses.
for network-wide anomaly detection [3]. A common theme
in both approaches is collaborative anomaly detectionsacro References
many widely distributed monitors, and a key lesson we have
learned is that data can be intelligently filtered by cotitigl ~ [1] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. The Ele-
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