Efficient Algorithms for Constructing Decision Trees with
Constraints

Minos Garofalakis
Bell Laboratories
minos@bell-labs.com

KAIST* and AITrct

ABSTRACT

Classification is an important problem in data mining. A
number of popular classifiers construct decision trees to gen-
erate class models. Frequently, however, the constructed
trees are complex with hundreds of nodes and thus diffi-
cult to comprehend, a fact that calls into question an often-
cited benefit that decision trees are easy to interpret. In
this paper, we address the problem of constructing “sim-
ple” decision trees with few nodes that are easy for humans
to interpret. By permitting users to specify constraints on
tree size or accuracy, and then building the “best” tree that
satisfies the constraints, we ensure that the final tree is
both easy to understand and has good accuracy. We de-
velop novel branch-and-bound algorithms for pushing the
constraints into the building phase of classifiers, and pruning
early tree nodes that cannot possibly satisfy the constraints.
Our experimental results with real-life and synthetic data
sets demonstrate that significant performance speedups and
reductions in the number of nodes expanded can be achieved
as a result of incorporating knowledge of the constraints into
the building step as opposed to applying the constraints af-
ter the entire tree is built.

Categoriesand Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms

Classification, Decision tree

1. INTRODUCTION

Classification is an important problem in data mining. Briefly,
the input to a classifier is a training set of records, each of
which is a tuple of attribute values tagged with a class label.
A set of attribute values defines each record. Attributes with
discrete domains are referred to as categorical, while those
with ordered domains are referred to as numeric. The goal

*Korea Advanced Institute of Science and Technology
t Advanced Information Technology Research Center

Dongjoon Hyun

djhyun@cs.kaist.ac.kr

Rajeev Rastogi
Bell Laboratories
rastogi@bell-labs.com

Kyuseok Shim
KAIST* and AITrct
shim@cs.kaist.ac.kr

is to induce a concise model or description for each class in
terms of the attributes. The model is then used to classify
(i.e., assign class labels to) future records whose classes are
unknown.

Classification has been successfully applied to wide range of
application areas, such as medical diagnosis, weather pre-
diction, credit approval, customer segmentation, and fraud
detection. Among the different proposals, decision tree clas-
sifiers have found the widest applicability in large-scale data
mining environments. A number of algorithms for induc-
ing decision trees have been proposed over the years (e.g.,
C4.5 [8], CART [3], SPRINT [11], PUBLIC [9], BOAT [5]).
Most of these algorithms comnsist of two distinct phases, a
building (or growing) phase followed by a pruning phase.

Even after pruning, the decision tree structures induced by
existing algorithms can be extremely complex, comprising
hundreds or thousands of nodes and, consequently, very dif-
ficult to comprehend and interpret. This is a serious prob-
lem and calls into question an often-cited benefit of decision
trees, namely that they are easy to assimilate by humans.
In many scenarios, users are only interested in obtaining a
“rough picture” of the patterns in their data; thus, they may
actually find a simple, comprehensible, but only approxi-
mate decision tree much more useful than an accurate (e.g.,
MDL-optimal) tree that involves a lot of detail. The idea of
simple, approximate decision trees becomes even more at-
tractive by the fact that the size and accuracy of a decision
tree very often follow a law of “diminishing returns” — for
many real-life data sets, adding more nodes to the classifier
results in monotonically decreasing gains in accuracy. As a
consequence, in many situations, a small decrease in accu-
racy is accompanied by a dramatic reduction in the size of
the tree. For example, Bohanec and Bratko [2] consider a
decision tree for deciding the legality of a white-to-move po-
sition in chess. They demonstrate that while a decision tree
with 11 leaves is completely accurate, a subtree with only 4
leaves is 98.45% accurate, and a subtree with only 5 leaves
is 99.57% accurate. Thus, more than half the size of the
accurate tree accounts for less than 0.5% of the accuracy!

In this paper, we attempt to remedy the aforementioned
problem by developing novel algorithms that allow users to
effectively trade accuracy for simplicity during the decision
tree induction process. Our algorithms give users the abil-
ity to specify constraints on either (1) the size (i.e., num-
ber of nodes); or, (2) the inaccuracy (i.e., MDL cost [6, 7,



9] or number of misclassified records) of the target classi-
fier, and employ these constraints to efficiently construct
the “best possible” decision tree. More specifically, let T
denote the “accurate” decision tree built during traditional
decision tree induction. Our work addresses the following
two constrained induction problems:

(1) Size-Constrained Decision Trees. Given an upper
bound & on the size (i.e., number of nodes) of the clas-
sifier, build an accuracy-optimal subtree of T' with at
most k nodes; that is, build the subtree of T with size
at most k that minimizes either (a) the total MDL
cost, or (b) the total number of misclassified records.

(2) Accuracy-Constrained Decision Trees. Given an up-

per bound C on the inaccuracy (total MDL cost or
number of misclassified records) of the classifier, build
a size-optimal subtree of T" with inaccuracy at most
C; that is, build the smallest subtree of T' whose total
MDL cost or number of misclassified records does not
exceed C.

Thus, our constraint-based framework enables the efficient
induction of decision tree classifiers that are simple and
easy to understand, and, at the same time, have good accu-
racy characteristics. Due to space constraints, we defer the
presentation of our algorithms for constructing accuracy-
constrained decision trees to [4].

A naive approach to building the desired optimal subtree
that satisfies the user-specified size or accuracy constraint
is to first grow the full (accurate) tree T', and then employ
algorithms based on dynamic programming to prune away
suboptimal portions of T until the constraint is satisfied.
Such algorithms for the optimal pruning of accurate decision
trees have been proposed in the earlier work of Bohanec and
Bratko [2] and Almuallim [1], where the accuracy measure
was assumed to be the number of misclassified training set
records (i.e., the “resubstitution error” of [3]).

The problem with such naive approaches is that they essen-
tially apply the size/accuracy constraints as an afterthought,
i.e., after the complete decision tree has been built. Obvi-
ously, this could result in a substantial amount of wasted
effort since an entire subtree constructed in the building
phase may later be pruned when size/accuracy constraints
are enforced. If, during the building phase, it is possible
to determine that certain nodes will be pruned during the
subsequent constraint-enforcement phase, then we can avoid
expanding the subtrees rooted at these nodes. Since building
a subtree typically requires repeated scans to be performed
over the data, significant reductions in I/O and improve-
ments in performance can be realized.

The major contribution of our work is the development of
novel decision tree induction algorithms that push size and
accuracy constraints into the tree-building phase. Our al-
gorithms employ branch-and-bound techniques to identify,
during the growing of the decision tree, nodes that cannot
possibly be part of the final constrained subtree. Since such
nodes are guaranteed to be pruned when the user-specified
size/accuracy constraints are enforced, our algorithms stop
expanding such nodes early on. Thus, our algorithms es-
sentially integrate the constraint-enforcement phase into the

tree-building phase instead of performing them one after the
other. Furthermore, by only pruning nodes that are guar-
anteed not to belong to the optimal constrained subtree,
we are assured that the final (sub)tree generated by our in-
tegrated approach is ezactly the same as the subtree that
would be generated by a naive approach that enforces the
constraints only after the full tree is built. Determining,
during the building phase, whether a node will be pruned
by size or accuracy constraints is problematic, since the de-
cision tree is only partially generated. To guarantee that
only suboptimal parts of the tree are pruned, requires us to
estimate, at each leaf of the partial tree, a lower bound on
the inaccuracy (MDL cost or number of misclassifications) of
the subtree rooted at that leaf (based on the corresponding
set of training records). Our branch-and-bound induction
algorithms apply adaptations of our earlier results [9] on es-
timating such lower bounds to the problem of constructing
size/accuracy-constrained decision trees. Our experimental
results on real-life as well as synthetic data sets demonstrate
that our approach of pushing size and accuracy constraints
into the building phase can result in dramatic performance
improvements compared to the naive approach of enforcing
the constraints only after the full tree is built (see [4] for
details). The performance speedups, in some cases, can be
as high as two or three orders of magnitude.

| Symbol | Description |

T Full tree constructed at the end of the
building phase

T Partially-built tree at some stage of the
building phase

Ty Final subtree of T (satisfying the user-
specified constraints)

R Root of tree constructed during the build-
ing phase

a Number of attributes

N Generic node of the decision tree

S Set of records in node N

Ny, N, Children of node N

c(S) Cost of encoding the classes for records
in S

Cospiit(N) Cost of encoding the split at node N

k Constraint on the number of nodes in the
final tree

c Constraint on the MDL cost/number of
misclassified records in the final tree

Table 1: Notation
2. PRELIMIN ARIES

In this section, we present a brief overview of the building
and pruning phases of a traditional decision tree classifier.
More detailed descriptions of existing decision tree induction
algorithms can be found in [3, 9, 11]. Table 1 summarizes
some of the notation used throughout this paper.

The overall algorithm for growing a decision tree classifier is
depicted in Figure 1(a). Basically, the tree is built breadth-
first by recursively partitioning the data until each partition
is pure (i.e., it only contains records belonging to the same
class). The splitting condition for each internal node of the
tree is selected so that it minimizes an impurity function,
such as the entropy, of the induced data partitioning [3].



procedure BUILDTREE(S):
Initialize root node using data set S
Initialize queue @ to contain root node
while @ is not empty do {
dequeue the first node N in Q
if node N is not pure {
for each attribute A
Evaluate splits on attribute A
Use best split to split NV into N1 and N»
Append N; and N, to Q

e BN S e

(a)

procedure PRUNETREE(Node N):
1. if N is a leaf return (C(S) +1)
2. minCost; := PRUNETREE(V1);
3. minCostz := PRUNETREE(N3);
4. minCosty := min{C(S) +1,
Csp”t(N) + 1 + minCost; + minCOSt2};

if minCosty = C(S) +1

prune child nodes N; and N> from tree
7. return minCosty

o o

(b)

Figure 1: (a) Tree-Building Algorithm (b) Tree-Pruning Algorithm

To prevent overfitting of the training data, the MDL prin-
ciple [10] is applied to prune the tree built in the growing
phase and make it more general. Briefly, the MDL principle
states that the “best” tree is the one that can be encoded
using the smallest number of bits. The cost of encoding the
tree comprises three distinct components: (1) the cost of
encoding the structure of the tree (single bit); (2) the cost
of encoding for each split, the attribute and the value for
the split; and, (3) the cost of encoding the classes of data
records in each leaf of the tree. In the rest of the paper, we
refer to the cost of encoding a tree computed above as the
MDL cost of the tree.

The goal of the pruning phase is to compute the minimum
MDL-cost subtree of the tree T' constructed in the building
phase. Briefly, this is achieved by traversing 7' in a bottom-
up fashion, pruning all descendents of a node N if the cost
of the minimum-cost subtree rooted at N is greater than
or equal to C(S) + 1 (i.e., the cost of directly encoding the
records corresponding to V). The cost of the minimum-cost
subtree rooted at N is computed recursively as the sum of
the cost of encoding the split and structure information at
N (Cspiit(N) + 1) and the costs of the cheapest subtrees
rooted at its two children. Figure 1(b) gives the pseudocode
for the pruning procedure; more details can be found in [9].

3. THE INTEGRATED APPROACH: PUSH-

ING CONSTRAINTS INT O TREE-BUILDING

The pruning phase described in the previous section com-
putes the subtree of 7' with minimum MDL cost (recall that
T is the complete tree constructed during the tree-building
phase). In this section, we consider the following constraint
on the desired subtree Ty of T: For a given k, Tf contains
at most k£ nodes and has the minimum possible MDL cost.

The dynamic programming algorithms presented in [1, 2] en-
force the user-specified size/accuracy constraints only after a
full decision tree has been grown by the building algorithm.
As a consequence, substantial effort (both I/O and CPU
computation) may be wasted on growing portions of the tree
that are subsequently pruned when constraints are enforced.
Clearly, by “pushing” size and accuracy constraints into the
tree-building phase, significant gains in performance can be
attained. In this section, we present such integrated deci-
sion tree induction algorithms that integrate the constraint-

enforcement phase into the tree-building phase instead of
performing them one after the other.

Our integrated algorithms are similar to the BUILDTREE
procedure depicted in Figure 1(a). The only difference is
that periodically or after a certain number of nodes are split
(this is a user-defined parameter), the partially built tree T},
is pruned using the user-specified size/accuracy constraints.
Note, however, the pruning algorithm of Section 2 cannot
be used to prune the partial tree.

The problem with applying constraint-based pruning before
the full tree has been built is that, in procedure PRUNE-
TREE (Figure 1(b)), the MDL cost of the cheapest subtree
rooted at a leaf N is assumed to be C(S) + 1 (Step 1).
While this is true for the fully-grown tree, it is not true
for a partially-built tree, since a leaf in a partial tree may
be split later thus becoming an internal node. Obviously,
splitting node NV could result in a subtree rooted at N with
cost much less than C(S) + 1. Thus, C(S) + 1 may over-
estimate the MDL cost of the cheapest subtree rooted at IV
and this could resulting in over-pruning; that is, nodes may
be pruned during the building phase that are actually part
of the optimal size- or accuracy-constrained subtree. This is
undesirable since the final tree may no longer be the optimal
subtree that satisfies the user-specified constraints.

In order to perform constraint-based pruning on a partial
tree Tp, and still ensure that only suboptimal nodes are
pruned, we adopt an approach that is based on the follow-
ing observation. (For concreteness, our discussion is based
on the case of size constraints.) Suppose U is the cost of
the cheapest subtree of size at most k of the partial tree
Tp. Note that this subtree may not be the final optimal
subtree, since expanding a node in T}, could cause its cost
to reduce by a substantial amount, in which case, the node
along with its children may be included in the final subtree.
U does, however, represent an upper bound on the cost of
the final optimal subtree Ty. Now, if we could also compute
lower bounds on the cost of subtrees of various sizes rooted
at nodes of T}, then we could use these lower bounds to de-
termine the nodes N in T}, such that every potential subtree
of size at most k (of the full tree T') containing N is guar-
anteed to have a cost greater than U. Clearly, such nodes
can be safely pruned from T}, since they cannot possibly be
part of the optimal subtree whose cost is definitely less than



procedure COMPUTECOSTUSINGCONST(Node N, integer 1):

1. if Tree[N, l].computed = true

2. return [Tree[N, [].realCost, Tree[N, {].lowCost]

3. elseifl <3 or Nis a “pruned’ or “not expandable” leaf

4. Tree[N, l].realCost := Tree[N, [].lowCost := C(S) + 1

5. else if N is a “yet to be expanded” leaf {

6. Tree[N, l].realCost := C(S) + 1

7. Tree[N, [].JowCost := lower bound on cost of subtree
cost rooted at N with at most / nodes

8. }else {

9. Tree[N, l]lowCost := Tree[N, l].realCost := C(S) + 1
10. for k1 :=1to! — 2 do {

11. k‘22=l—k‘1—1
12. [realCost1, lowCost1] :=
CoMPUTECOSTUSINGCONST(N1, k1)
13. [realCostsa, lowCosts] :=
CoMPUTECOSTUSINGCONST( N2, k2)
14. if realCost1 + Copist(IN) + 1 + realCosty <
Tree[N, [].realCost
15. Tree[N, l].realCost := realCost; + Cipiit (N)+
1 + realCost2
16. if lowCost1 + Cipiit(N) + 1 + lowCosta <
Tree[N, {].lowCost
17. Tree[N, l]JowCost := lowCost1 + Cspiit(N)+
1 + lowCosts
18}
19. }

20. Tree[N, l].computed := true
21. return [Tree[N, ].realCost, Tree[N, {].lowCost]

Figure 2: Algorithm for Computing Minimum
MDL-Cost Subtrees using Lower Bounds

or equal to U.

While it is relatively straightforward to compute U, we still
need to (1) estimate the lower bounds on cost at each node
of the partial tree T}, and (2) show how these lower bounds
can be combined with the upper bound U (in a “branch-
and-bound” fashion) to identify prunable nodes of T,. We
address these issues in the subsections that follow.

3.1 Computing Lower Boundson SubtreeCosts
To obtain lower bounds on the MDL cost of a subtree at
arbitrary nodes of T}, we first need to be able to compute
lower bounds for subtree costs at leaf nodes that are “yet
to be expanded”. These bounds can then be propagated
“upwards” to obtain lower bounds for other nodes of Tj.
Obviously, any subtree rooted at node N must have an MDL
cost of at least 1, and thus 1 is a simple, but conservative
estimate for the MDL cost of the cheapest subtree at leaf
nodes that are “yet to be expanded”. In our earlier work [9],
we have derived more accurate lower bounds on the MDL
cost of subtrees by also considering split costs.

3.2 Computing an Optimal Size-Constrained
Subtree

As described earlier, our integrated constraint-pushing strat-
egy involves the following three steps, which we now describe
in more detail: (1) compute the cost of the cheapest sub-
tree of size (at most) k of the partial tree T} (this is an
upper bound U on the cost of the final optimal tree T¥);
(2) compute lower bounds on the cost of subtrees of vary-

procedure PRUNEUSINGCONST(Node N, integer [, real B):
Mark node N
if B < Bound[N, [] return
for i :=1to !l do
if B > Bound[N, 1]
Bound[N, 3] := B

return
else if N is not a leaf node and [ > 3 {
for k1 :=1tol —2do{
0. ke =1—Fk —1
1 if Cspiit (N) + 14+ Tree[N1, ki].lowCost +
Tree[N2, k2].lowCost < B {

g~ A

12. B; := B — (Cspiit(N) + 1)— Tree[N2, k2].lowCost
13. B; := B — (Cspiit(N) + 1)— Tree[Ni, ki].lowCost
14. PRUNEUSINGCONST (N1, k1, B1);

15. PRUNEUSINGCONST (N2, k2, B2);

16. }

17.

18. }

Figure 3: Branch-and-Bound Pruning Algorithm

ing sizes that are rooted at nodes of the partial tree Tp;
and, (3) use the bounds computed in steps (1) and (2) to
identify and prune nodes that cannot possibly belong to the
optimal constrained subtree Ts. Procedure COMPUTECOS-
TUSINGCONST (depicted in Figure 2) accomplishes the first
two steps, while procedure PRUNEUSING CONST (depicted in
Figure 3) achieves step (3).

Procedure CoMPUTECOSTUSINGCONST distinguishes among
three classes of leaf nodes in the partial tree. The first class
includes leaf nodes that still need to be expanded (“yet to
be expanded”). The two other classes consist of leaf nodes
that are either the result of a pruning operation (“pruned”)
or cannot be expanded any further because they are pure
(“not expandable”). CoMPUTECOSTUSINGCONST uses dy-
namic programming to compute in Tree[N, [].realCost the
MDL cost of the cheapest subtree of size at most | that is
rooted at N in the partially-built tree. In addition, Com-
PUTECOSTUSINGCONST also computes in Tree[ N, [].lowCost
a lower bound on the MDL cost of the cheapest subtree with
size at most ! that is rooted at NV (if the partial tree were
expanded fully) — the lower bounds on the MDL cost of sub-
trees rooted at “yet to be expanded” leaf nodes are used for
this purpose. The only difference between the computation
of the real costs and the lower bounds is that, for a “yet to be
expanded” leaf node N, the former uses C'(S) + 1 while the
latter uses the lower bound for the minimum MDL-cost sub-
tree rooted at N. Procedure COMPUTECOSTUSINGCONST
is invoked with input parameters R and k, where R is the
root of T}, and k is the constraint on the number of nodes.
Again, note that U = Tree[R, k].realCost represents an up-
per bound on the cost of the final optimal subtree satisfying
the user-specified constraints.

Once the real costs and lower bounds are computed, the
next step is to identify prunable nodes N in T}, and prune
them. A node N in T}, is prunable if every potential subtree
of size at most k (after “yet to be expanded leaves” in T}, are
expanded) that contains node N is guaranteed to have an
MDL cost greater than Tree[R, k].realCost. Invoking proce-
dure PRUNEUSINGCONST (illustrated in Figure 3) with input

if Tree[N, l].lowCost > B or Tree[N, {].lowCost = C(S) +1



parameters R (root node of T}), k, and Tree[R, k].realCost
(upper bound on the cost of T) ensures that every non-
prunable node in T, is marked. Thus, after PRUNEUSING-
CONST completes execution, it is safe to prune all unmarked
nodes from 7}, since these cannot possibly be in the MDL-
optimal subtree Ty with size at most k.

Intuitively, procedure PRUNEUSINGCONST works by using
the computed lower bounds at nodes of T} in order to “prop-
agate” the upper bound (Tree[R, k].realCost) on the cost of
Tf down the partial tree T (Steps 12-15). Assume that
some node N (with children N; and N) is reached with a
“size budget” of [ and a cost bound of B. If there exists some
distribution of I among N; and N> such that the sum of the
corresponding lower bounds does not exceed B (Steps 9-
11), then N1 and N2 may belong the optimal subtree and
PRUNEUSINGCONST is invoked recursively (Steps 12-15) to
(a) mark N1 and N2 (Step 1), and (b) search for nodes that
need to be marked in the corresponding subtrees. Thus,
nodes N; and Ny will be left unmarked if and only if, for ev-
ery possible size budget that reached NV, no combination was
ever found that could beat the corresponding upper bound
B.

More formally, consider a node N’ in the subtree of T, rooted
at Np and let ! and B denote the size budget and cost upper
bound propagated down to N (parent of N1 and N»). We say
that N’ is prunable with respect to (N, 1, B) if every potential
subtree of size at most [ (after T} is fully expanded) that
is rooted at N and contains N’, has an MDL cost greater
than B. PRUNEUSINGCONST is based on the following key
observation: If N’ is not prunable with respect to (N, 1, B),
then, for some 1 < k1 <1—2,

1. Cspist(N) + 1+ Tree[Ni, ki]lowCost + Tree[Na, I —
k1 — 1].lowCost < B, and

2. N’ is not prunable with respect to (N1, k1, B—(Cspiit(N)+

1)— Tree[Nz, I — k1 — 1].lowCost ).

That is, if N’ is not prunable with respect to (IV, [, B) then
there exists a way to distribute the size budget [ along the
path from N down to N’ such that the lower bounds on the
MDL cost never exceed the corresponding upper bounds,
on all the nodes in the path. Obviously, N’ is not prunable
(i-e., should be marked) if it is not prunable with respect to
some triple (IV, I, B). Based on these observations, we can
formally prove that if a node in T}, is not prunable, then it is
marked by procedure PRUNEUSINGCONST. (The proof can
be found in [4].)

As an optimization, procedure PRUNEUSINGCONST main-
tains the array Bound|[] in order to reduce computational
overheads. Each entry Bound[NV, [] is initialized to 0 and is
used to keep track of the maximum value of B with which
PRUNEUSINGCONST has been invoked on node N with size
budget I’ > 1. The key observation here is that if a node
N’ in the subtree rooted at IV is not prunable with respect
to (N,l,B), then it is also not prunable with respect to
(N,U',B), for all B' > B, I' > l. Intuitively, this says that
if we have already reached node N with a cost bound B’
and size budget I, then invoking PRUNEUSINGCONST on N
with a smaller bound B < B’ and smaller size budget | <1’
cannot cause any more nodes under NV to be marked. Thus,

when such a situation is detected, our marking procedure
can simply return (Step 2).

4. CONCLUSIONS

In this paper, we have proposed a general framework that
enables users to specify constraints on the size and accuracy
of decision trees. The motivation for such constraints is
to allow the efficient construction of decision tree classifiers
that are easy to interpret and, at the same time, have good
accuracy properties. We have proposed novel algorithms for
pushing size and accuracy constraints into the tree-building
phase. Our algorithms use a combination of dynamic pro-
gramming and branch-and-bound techniques to prune early
(during the growing phase) portions of the partially-built
tree that cannot possibly be part of the optimal subtree
that satisfies the user-specified constraints. Enforcing the
constraints while the tree is being built prevents a signifi-
cant amount of effort being expended on expanding nodes
that are not part of the optimal subtree. Our proposed inte-
grated algorithms deliver significant performance speedups
that are, in many cases, in the range of two or three orders
of magnitude.

Acknowledgments: The work of Dongjoon Hyun and Kyuseok
Shim was partially supported by the Korea Science and Engi-
neering Foundation (KOSEF) through the Advanced Information
Technology Research Center (AITrc).

5. REFERENCES

[1] Hussein Almuallim. “An efficient algorithm for optimal

pruning of decision trees”. Artificial Intelligence,
83:346-362, 1996.

[2] Marko Bohanec and Ivan Bratko. “Trading Accuracy for
Simplicity in Decision Trees”. Machine Learning,
15:223-250, 1994.

[3] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and
Charles J. Stone. “Classification and Regression Trees”.
Chapman & Hall, 1984.

[4] Minos Garofalakis, Dongjoon Hyun, Rajeev Rastogi, and
Kyuseok Shim. “Efficient Algorithms for Constructing
Decision Trees with Constraints”. March 2000. Bell
Laboratories Tech. Memorandum.

[5] Johannes Gehrke, Venkatesh Ganti, Raghu Ramakrishnan,
and Wei-Yin Loh. “BOAT - Optimistic Decision Tree
Construction”. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data,
Philadelphia, Pennsylvania, May 1999.

[6] Manish Mehta, Jorma Rissanen, and Rakesh Agrawal.
MDL-based decision tree pruning. In Int’l Conference on
Knowledge Discovery in Databases and Data Mining
(KDD-95), Montreal, Canada, August 1995.

[7] J. R. Quinlan and R. L. Rivest. Inferring decision trees
using minimum description length principle. Information
and Computation, 1989.

[8] J. Ross Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufman, 1993.

[9] Rajeev Rastogi and Kyuseok Shim. “PUBLIC: A Decision
Tree Classifier that Integrates Building and Pruning”. In
Proceedings of the 24th International Conference on Very
Large Data Bases, pages 404-415, New York, USA, August
1998.

[10] J. Rissanen. Modeling by shortest data description.
Automatica, 14:465-471, 1978.

[11] John Shafer, Rakesh Agrawal, and Manish Mehta.
“SPRINT: A Scalable Parallel Classifier for Data Mining”.
In Proceedings of the 22nd International Conference on
Very Large Data Bases, Mumbai(Bombay), India,
September 1996.



