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a b s t r a c t

Randomized techniques, based on computing small ‘‘sketch’’ synopses for each stream,

have recently been shown to be a very effective tool for approximating the result of a

single SQL query over streaming data tuples. In this paper, we investigate the problems

arising when data-stream sketches are used to process multiple such queries

intelligently sharing sketches among concurrent query evaluations can result in

substantial improvements in the utilization of the available sketching space and the

quality of the resulting approximation error guarantees. We provide necessary and

sufficient conditions for multi-query sketch sharing that guarantee the correctness of

the result-estimation process. We also investigate the difficult optimization problem of

determining sketch-sharing configurations that are optimal (e.g., under a certain error

metric for a given amount of space). We prove that optimal sketch sharing typically

gives rise to NP-hard questions, and we propose novel heuristic algorithms for finding

good sketch-sharing configurations in practice. Results from our experimental study

with queries from the TPC-H benchmark verify the effectiveness of our approach, clearly

demonstrating the benefits of our sketch-sharing methodology.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Traditional Database Management Systems (DBMS)
software is built on the concept of persistent data sets
that are stored reliably in stable storage and queried
several times throughout their lifetime. For several
emerging application domains, however, data arrive and
need to be processed continuously, without the benefit of
several passes over a static, persistent data image. Such
continuous data streams arise naturally, for example, in the
ll rights reserved.

-based multi-query

ings of EDBT 2004

.cornell.edu
network installations of large telecom and Internet service
providers where detailed usage information (call-detail-
records, SNMP/RMON packet-flow data, etc.) from differ-
ent parts of the underlying network needs to be
continuously collected and analyzed for interesting
trends. Other applications that generate rapid-rate and
massive volumes of stream data include retail-chain
transaction processing, ATM and credit card operations,
financial tickers, Web-server activity logging, and so on. In
most such applications, the data stream is actually
accumulated and archived in the DBMS of a (perhaps,
off-site) data warehouse, often making access to the
archived data prohibitively expensive. Further, the ability
to make decisions and infer interesting patterns on-line

(i.e., as the data stream arrives) is crucial for several
mission-critical tasks that can have significant dollar
value for a large corporation (e.g., telecom fraud detec-
tion). As a result, there has been increasing interest in
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designing data-processing algorithms that work over
continuous data streams, i.e., algorithms that provide
results to user queries while looking at the relevant data
items only once and in a fixed order (determined by the
stream-arrival pattern).

Given the large diversity of users and/or applications
that a generic query-processing environment typically
needs to support, it is evident that any realistic stream-
query processor must be capable of effectively handling
multiple standing queries over a collection of input data
streams. Given a collection of queries to be processed over
incoming streams, two key effectiveness parameters are
(1) the amount of memory made available to the on-line
algorithm and (2) the per-item processing time required by
the query processor.

Memory, in particular, constitutes an important con-
straint on the design of stream processing algorithms
since, in a typical streaming environment, only limited
memory resources are made available to each of the
standing queries. In these situations, we need algorithms
that can summarize the data streams involved in concise
synopses that can be used to provide approximate answers

to user queries along with some reasonable guarantees on
the quality of the approximation. Such approximate, on-
line query answers are particularly well-suited to the
exploratory nature of most data-stream processing appli-
cations such as, e.g., trend analysis and fraud/anomaly
detection in telecom-network data, where the goal is to
identify generic, interesting or ‘‘out-of-the-ordinary’’
patterns rather than provide results that are exact to the
last decimal.

Example 1.1. Consider a fault-management application
running in a large IP-network installation that provides
client applications (e.g., Web browsers) on host machines
with access to application servers (e.g., Web servers, SAP,
Oracle) through paths of IP routers and switches. During
operation, network entities continuously generate streams
of alarms to signal a variety of abnormal conditions. For
example, a client application that cannot connect to a
server typically generates an alarm which contains
(in addition to other attributes), a timestamp and an
alarm_type. The timestamp is essentially the time at which
the alarm is generated by the end application and is of a
sufficiently coarse granularity (e.g., seconds or minutes) to
enable meaningful cross-correlation with other network
events. The alarm_type indicates the reason for the alarm
which could range from the client connection to the server
timing out, to simply a daemon process dying on the host
machine. Similarly, each network element (router or
switch) can also generate a variety of alarms with similar
attributes in the event of a link outage to a neighboring
element, excessive congestion, disproportionate number
of packet errors at an interface, and so on.

These alarm streams are routed to the fault-analysis

platform running at a central Network Operations Center

(NOC) and are typically archived in an alarm warehouse

for off-line analysis. One of the primary goals of fault-

analysis software is to be able to quickly pinpoint the root

cause of an observed fault in the network. Fast root-cause
inference, in turn, depends crucially on the ability to

effectively correlate the observed streams of alarm signals

from various network entities based on their attribute

values. For instance, suppose we are interested in knowing

if the frequent occurrence of similar (i.e., same alarm_type)

problems at routers R1 and R2 (e.g., link outage) is

responsible for the inability of client application C to

connect to a server. To answer this question, we would

like to estimate the number of times C, R1, and R2 produce

alarm signals with identical timestamps and alarm types;

a large number of such events would allow us to safely

establish this correlation. Similarly, we are also interested

in knowing whether problems observed at router R1 are

correlated with similar problems observed at a third

router R3; this, again, gives rise to a similar count-

estimation query. More concretely, if C, R1, R2, and R3

denote the alarm data streams for the four network

entities, then we would like to estimate the result of

the following two SQL join queries Q1;Q2 over the

four streams: Q1 ¼ ‘‘SELECT COUNT FROM C, R1, R2

WHERE C:timestamp ¼ R1:timestamp AND C:timestamp ¼

R2:timestamp AND R1:alarm_type ¼ R2:alarm_type’’ and

Q2 ¼ ‘‘SELECT COUNT FROM R2;R3 WHERE R2:timestamp ¼

R3:timestamp AND R2:alarm_type ¼ R3:alarm_type’’. Of

course, given the stringent resource constraints and high

volume of event arrivals at the NOC, processing such

stream queries is feasible only if it is guaranteed to

consume limited memory and CPU cycles.

1.1. Prior work

The recent surge of interest in data-stream computa-
tion has led to several (theoretical and practical) studies
proposing novel one-pass algorithms with limited mem-
ory requirements for different problems; examples in-
clude: quantile and order-statistics computation [1,2];
distinct-element counting [3–5]; frequent itemset count-
ing [6,7]; estimating frequency moments, join sizes, and
difference norms [8–11]; data clustering and decision-tree
construction [12,13]; estimating correlated aggregates
[14]; and computing one- or multi-dimensional histo-
grams or Haar wavelet decompositions [15,16]. All these
papers rely on an approximate query-processing model,
typically based on an appropriate underlying synopsis
data structure. (A different approach, explored by the
Stanford STREAM project [17], is to characterize a sub-
class of queries that can be computed exactly with
bounded memory.) The synopses of choice for a number
of the above-cited papers are based on the key idea of
pseudo-random sketches which, essentially, can be thought
of as simple, randomized linear projections of the
underlying data vector(s) [18]. Dobra et al. [19] demon-
strated the utility of sketch synopses in computing
provably-accurate approximate answers for a single SQL
query comprising (possibly) multiple join operators—the
current work is the extension to multiple SQL queries.

None of these earlier research efforts has addressed the
more general problem of effectively providing accurate
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approximate answers to multiple SQL queries over a
collection of input streams. Of course, the problem of
multi-query optimization (that is, optimizing multiple
queries for concurrent execution in a conventional DBMS)
has been around for some time, and several techniques for
extending conventional query optimizers to deal with
multiple queries have been proposed [20,21]. The corner-
stone of all these techniques is the discovery of common
query sub-expressions whose evaluation can be shared
among the query-execution plans produced. Very similar
ideas have also found their way in large-scale, continuous-
query systems (e.g., NiagaraCQ [22]) that try to optimize
the evaluation of large numbers of trigger conditions. As
will become clear later, however, approximate multi-
query processing over streams with limited space gives
rise to several novel and difficult optimization issues that
are very different from those of traditional multi-query
optimization.
1.2. Our contributions

In this paper, we tackle the problem of efficiently
processing multiple (possibly, multi-join) concurrent
aggregate SQL queries over a collection of input data
streams. Similar to earlier work on data streaming [8,19],
our approach is based on computing small, pseudo-
random sketch synopses of the data. We demonstrate
that, in the presence of multiple query expressions,
intelligently sharing sketches among concurrent (approx-
imate) query evaluations can result in substantial
improvements in the utilization of the available sketching
space and the quality of the resulting approximation error
guarantees. We provide necessary and sufficient condi-
tions for multi-query sketch sharing that guarantee the
correctness of the resulting sketch-based estimators. We
also attack the difficult optimization problem of deter-
mining sketch-sharing configurations that are optimal
(e.g., under a certain error metric for a given amount of
space). We prove that optimal sketch sharing typically
gives rise to NP-hard questions, and we propose novel
heuristic algorithms for finding effective sketch-sharing
configurations in practice. More concretely, the key
contributions of our work can be summarized as follows.
�
 Multi-query sketch sharing: concepts and conditions. We
formally introduce the concept of sketch sharing for
efficient, approximate multi-query stream processing.
Briefly, the basic idea is to share sketch computation
and sketching space across several queries in the
workload that can effectively use the same sketches
over (a subset of) their input streams. Of course, since
sketches and sketch-based estimators are probabilistic
in nature, we also need to ensure that this sharing does
not degrade the correctness and accuracy of our
estimates by causing desirable estimator properties
(e.g., unbiasedness) to be lost. Thus, we present
necessary and sufficient conditions (based on the
resulting multi-join graph) that fully characterize such
‘‘correct’’ sketch-sharing configurations for a given
query workload.
�
 Novel sketch-sharing optimization problems and algo-

rithms. Given that multiple correct sketch-sharing
configurations can exist for a given stream-query
workload, our processor should be able to identify
configurations that are optimal or near-optimal; for
example, under a certain (aggregate) error metric for
the workload and for a given amount of sketching
space. We formulate these sketch-sharing optimization
problems for different metrics of interest, and propose
novel algorithmic solutions for the two key sub-
problems involved, namely: (1) space allocation: deter-
mine the best amount of space to be given to each
sketch for a fixed sketch-sharing configuration under
two different metrics, average error and maximum
error; and (2) join coalescing: determine an optimal
sketch-sharing plan by deciding which joins in the
workload will share sketches. For the space allocation
problem with the average error metric, we show
that the allocation problem is NP-hard but a provable
good approximation can be obtained by rounding
the solution of the continuous problem. To solve
the continuous problem we employ optimization
theory tools to provide an efficient custom solution
based on reductions to Network Flow problems.
The space allocation problem under the maximum
metric turns out to be much simpler—it can be solved
exactly essentially in linear time. Solutions to these
two problems are used to provide heuristic approx-
imations to the join coalescing problem, problem that
is NP-hard.

�
 Implementation results validating our sketch-sharing

techniques. We present the results from an empirical
study of our sketch-sharing schemes with several
synthetic data sets and multi-query workloads based
on the TPC-H benchmark. Our results clearly demon-
strate the benefits of effective sketch-sharing over
realistic query workloads, showing that significant
improvements in answer quality are possible com-
pared to a naive, no-sharing approach. Specifically, our
experiments indicate that sketch sharing can boost
accuracy of query answers by factors ranging from 2–4
for a wide range of multi-query workloads.
2. Streams and random sketches

2.1. Stream data-processing model

We now briefly describe the key elements of our
generic architecture for multi-query processing over
continuous data streams (depicted in Fig. 1); similar
architectures (for the single-query setting) have been
described elsewhere (e.g., [19,15]). Consider a workload
Q ¼ fQ1; . . . ;Qqg comprising a collection of arbitrary
(complex) SQL queries Q1; . . . ;Qq over a set of relations
R1; . . . ;Rr (of course, each query typically references a
subset of the relations/attributes in the input). Also, let jRij

denote the total number of tuples in Ri. In contrast to
conventional DBMS query processors, our stream query-
processing engine is allowed to see the data tuples in
R1; . . . ;Rr only once and in fixed order as they are
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Fig. 1. Stream multi-query processing architecture.

Table 1
Notation

Symbol Semantics

Ri Input data stream ði ¼ 1; . . . ; rÞ

Ri :Aj jth attribute of relation Ri

Q Query workload comprising queries fQ1 ; . . . ;Q qg

Q Generic query in Q

E Generic equi-join condition

n Number of equi-join constraints in E

JðQ Þ (JðQÞ) Join graph(s) for query Q (set of queries QÞ

v1 ; . . . ; vk Join-graph vertices

AðvÞ Attributes of vertex v that appear in E

Xv atomic sketch for vertex v

Q ðvÞ Set of queries attached to vertex v

JðQÞ family of (possible) join graphs for queries Q

VðQiÞ Subset of vertices used in query Qi

MQi
Number of iid copies of estimator XQi

for Qi

WQi WQi
¼

8Var½XQi
�

E½XQi
�2

, a constant for each query Qi

A. Dobra et al. / Information Systems 34 (2009) 209–230212
streaming in from their respective source(s). Backtracking
over the data stream and explicit access to past data
tuples are impossible. Further, the order of tuple arrival
for each relation Ri is arbitrary and duplicate tuples can
occur anywhere over the duration of the Ri stream. (Our
techniques can also readily handle tuple deletions in the
streams.) Hence, our stream data model assumes the most
general ‘‘unordered, cash-register’’ rendition of stream
data considered by Gilbert et al. [15] for computing
one-dimensional Haar wavelets over streaming values
and, of course, generalizes their model to multiple, multi-
dimensional streams since each Ri can comprise several
distinct attributes.

Our stream query-processing engine is also allowed a
certain amount of memory, typically significantly smaller
than the total size of the data set(s). This memory is used to
maintain a set of concise synopses for each data stream Ri.
The key constraints imposed on such synopses are that:
(1) they are much smaller than the total number of tuples in
Ri (e.g., their size is logarithmic or polylogarithmic in jRij)
and (2) they can be computed quickly, in a single pass over
the data tuples in Ri in the (arbitrary) order of their arrival.
At any point in time, our query-processing algorithms can
combine the maintained collection of synopses to produce
approximate answers to all queries in Q.

For ease of reference, Table 1 summarizes some of the
key notational conventions used in this paper. Detailed
definitions are provided at the appropriate locations in
the text.
1 Without loss of generality, we assume that each attribute domain

domðAÞ is indexed by the set of integers f1; . . . ; jdomðAÞjg, where jdomðAÞj

denotes the size of the domain.
2.2. Approximating single-query answers with pseudo-

random sketch summaries

The basic technique: binary-join size tracking [8,9].
Consider a simple stream-processing scenario where
the goal is to estimate the size of a binary join of two
streams R1 and R2 on attributes R1:A1 and R2:A2,
respectively. That is, we seek to approximate the result
of query Q ¼ COUNTðR1tR1 :A1¼R2 :A2

R2Þ as the tuples of R1

and R2 are streaming in. Let domðAÞ denote the domain of
an attribute A 1 and f RðiÞ be the frequency of attribute
value i in R:A. (Note that, by the definition of the equi-join
operator, the two join attributes have identical value
domains, i.e., domðA1Þ ¼ domðA2Þ). Thus, we want to
produce an estimate for the expression Q ¼

P
i2domðA1Þ

f R1
ðiÞf R2

ðiÞ. Clearly, estimating this join size exactly
requires at least OðjdomðA1ÞjÞ space, making an exact
solution impractical for a data-stream setting. In their
seminal work, Alon et al. [8,9] propose a randomized
technique that can offer strong probabilistic guarantees on
the quality of the resulting join-size estimate while using
only logarithmic space in jdomðA1Þj.

Briefly, the basic idea of their scheme is to define a
random variable XQ that can be easily computed over the
streaming values of R1:A1 and R2:A2, such that (1) XQ is an
unbiased (i.e., correct on expectation) estimator for the
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target join size, so that E½XQ � ¼ Q; and (2) XQ ’s variance
(VarðXQ Þ) can be appropriately upper-bounded to allow
for probabilistic guarantees on the quality of the Q

estimate. This random variable XQ is constructed on-line
from the two data streams as follows:
�

the
Select a family of four-wise independent binary random

variables fxi : i ¼ 1; . . . ; jdomðA1Þjg, where each xi 2

f�1;þ1g and P½xi ¼þ1� ¼ P½xi ¼�1� ¼ 1
2 (i.e., E½xi� ¼ 0).

Informally, the four-wise independence condition
means that for any 4-tuple of xi variables and for any
4-tuple of f�1;þ1g values, the probability that the
values of the variables coincide with those in
the f�1;þ1g 4-tuple is exactly 1

16 (the product of the
equality probabilities for each individual xi). The crucial
point here is that, by employing known tools (e.g.,
orthogonal arrays) for the explicit construction of small
sample spaces supporting four-wise independent ran-
dom variables, such families can be efficiently con-
structed on-line using only Oðlog jdomðA1ÞjÞ space [9].P

�
 Define XQ ¼ X1 � X2, where Xk ¼ i2domðA1Þ

f Rk
ðiÞxi, for

k ¼ 1;2. Note that each Xk is simply a randomized
linear projection (inner product) of the frequency
vector of Rk:Ak with the vector of xi’s that can be
efficiently generated from the streaming values of Ak as
follows: start with Xk ¼ 0 and simply add xi to Xk

whenever the ith value of Ak is observed in the stream.

The quality of the estimation guarantees can be
improved using a standard boosting technique that main-
tains several independent identically distributed (iid)
instantiations of the above process, and uses averaging
and median-selection operators over the XQ estimates to
boost accuracy and probabilistic confidence [9]. (Indepen-
dent instances can be constructed by simply selecting
independent random seeds for generating the families
of four-wise independent xi’s for each instance.) We
use the term atomic sketch to describe each randomized
linear projection computed over a data stream. Letting
SJkðk ¼ 1;2) denote the self-join size of Rk:Ak (i.e.,
SJk ¼

P
i2domðAkÞ

f Rk
ðiÞ2), the following theorem [8] shows

how sketching can be applied for estimating binary-join
sizes in limited space. (By standard Chernoff bounds, using
median-selection over Oðlogð1=dÞÞ of the averages com-
puted in Theorem 1 allows the confidence in the estimate
to be boosted to 1� d, for any pre-specified do1.)

Theorem 1 (Alon et al. [8]). Let the atomic sketches X1 and

X2 be as defined above. Then E½XQ � ¼ E½X1X2� ¼ Q and

VarðXQ Þp2 � SJ1 � SJ2. Thus, averaging the XQ estimates over

OððSJ1SJ2=Q2�2Þ log 1
dÞ i.i.d. instantiations of the basic scheme,

guarantees an estimate that lies within a relative error of �
from Q with probability at least 1� d.

Single multi-join query answering [19]. In more recent
work, Dobra et al. [19] have extended sketch-based
techniques to approximate the result of a general, multi-
join aggregate SQL query over a collection of streams.2
2 [19] also describes a sketch-partitioning technique for improving

quality of basic sketching estimates; this technique is essentially
More specifically, they focus on approximating a multi-
join stream query Q of the form: ‘‘SELECT COUNT FROM

R1;R2; . . . ;Rr WHERE E’’, where E represents the conjunc-
tion of n equi-join constraints of the form Ri:Aj ¼

Rk:AlðRi:Aj denotes the jth attribute of relation Ri). (The
extension to other aggregate functions, e.g., SUM, is fairly
straightforward [19].) Their development also assumes
that each attribute Ri:Aj appears in E at most once; this
requirement can be easily achieved by simply renaming
repeating attributes in the query. In what follows, we
describe the key ideas and results from [19] based on the
join-graph model of the input query Q, since this will
allow for a smoother transition to the multi-query case
(Section 3).

We assume that all Ri are distinct, and that each Ri:Aj

appears in E at most once. Note that this can be easily
achieved by renaming duplicate relations and relation,
attribute pairs in the query; thus, two different relation
names in the query may correspond to the same under-
lying relation stream, and the same attribute in a relation
may occur in E with different names. For instance, the
query SELECT COUNT FROM R1;R1 WHERE R1:A1 ¼ R1:A1,
after relation renaming becomes SELECT COUNT FROM

R1;R2 WHERE R1:A1 ¼ R2:A1 (here R1 and R2 refer to the
same underlying relation stream). Similarly, attribute
renaming causes the query SELECT COUNT FROM

R1;R2;R3 WHERE R1:A1 ¼ R2:A1 ^ R2:A1 ¼ R3:A1 to be trans-
formed to the following new rewritten query: SELECT

COUNT FROM R1;R2;R3 WHERE R1:A1 ¼ R2:A1 ^ R2:A2 ¼ R3:A1

(here R2:A1 and R2:A2 refer to the same underlying
attribute of relation R2).

Given stream query Q, we define the join graph of Q

(denoted by JðQ Þ), as follows. There is a distinct vertex v

in JðQ Þ for each stream Ri referenced in Q (we use RðvÞ to
denote the relation associated with vertex v). For each
equality constraint Ri:Aj ¼ Rk:Al 2 E, we add a distinct
undirected edge e ¼ hv;wi to JðQ Þ, where RðvÞ ¼ Ri and
RðwÞ ¼ Rk; we also label this edge with the triple
hRi:Aj;Rk:Al;Qi that specifies the attributes in the corre-
sponding equality constraint and the enclosing query Q

(the query label is used in the multi-query setting). Given
an edge e ¼ hv;wi with label hRi:Aj;Rk:Al;Qi, the three
components of e’s label triple can be obtained as
AvðeÞ;AwðeÞ, and Q ðeÞ. (Clearly, by the definition of equi-
joins, domðAvðeÞÞ ¼ domðAwðeÞÞ.) Note that there may be
multiple edges between a pair of vertices in the join
graph, but each edge has its own distinct label triple.
Finally, for a vertex v in JðQ Þ, we denote the attributes of
RðvÞ that appear in the input query (or, queries) as AðvÞ;
thus, AðvÞ ¼ fAvðeÞ : edge e is incident on vg.

The result of Q is the number of tuples in the cross-
product of R1; . . . ;Rr that satisfy the equality constraints in
E over the join attributes. Similar to the basic sketching
method [8,9], the algorithm of Dobra et al. constructs an
unbiased, bounded-variance probabilistic estimate XQ for
Q using atomic sketches built on the vertices of the join
(footnote continued)

orthogonal to the multi-query sketch-sharing problem considered in this

paper, so we do not discuss it further.
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graph JðQ Þ. More specifically, for each edge e ¼ hv;wi in
JðQ Þ, their algorithm defines a family of four-wise
independent random variables xe

¼ fxe
i : i ¼ 1; . . . ; jdom

ðAvðeÞÞjg, where each xe
i 2 f�1;þ1g. The key here is that

the equi-join attribute pair AvðeÞ;AwðeÞ associated with
edge e shares the same x family; on the other hand,
distinct edges of JðQ Þ use independently generated x
families (using mutually independent random seeds). The
atomic sketch Xv for each vertex v in JðQ Þ is built as
follows. Let e1; . . . ; ek be the edges incident on v and, for
i1 2 domðAvðe1ÞÞ; . . . ; ik 2 domðAvðekÞÞ, let f vði1; . . . ; ikÞ denote
the number of tuples in RðvÞ that match values i1; . . . ; ik in
their join attributes. More formally, f vði1; . . . ; ikÞ is the
number of tuples t 2 RðvÞ such that t½AvðejÞ� ¼ ij, for
1pjpk(t½A� denotes the value of attribute A in tuple t).
Then, the atomic sketch at v is Xv ¼

P
i12domðAvðe1ÞÞ

� � �P
ik2domðAvðekÞÞ

f vði1; . . . ; ikÞ
Qk

j¼1 x
ej

ij
. Finally, the estimate for

Q is defined as XQ ¼
Q

v Xv (that is, the product of the
atomic sketches for all vertices in JðQ Þ). Note that each
atomic sketch Xv can be efficiently computed as tuples of
RðvÞ are streaming in; more specifically, Xv is initialized to
0 and, for each tuple t in the RðvÞ stream, the quantityQk

j¼1x
ej

t½AvðejÞ�
is added to Xv.

Example 2.1. Consider query Q ¼ SELECT COUNT FROM

R1;R2;R3 WHERE R1:A1 ¼ R2:A1 AND R2:A2 ¼ R3:A2. The join
graph JðQ Þ is depicted in Fig. 2, with vertices v1, v2, and
v3 corresponding to streams R1, R2, and R3, respectively.
Similarly, edges e1 and e2 correspond to the equi-join
constraints R1:A1 ¼ R2:A1 and R2:A2 ¼ R3:A2, respectively.
(Just to illustrate our notation, Rðv1Þ ¼ R1;Av2

ðe1Þ ¼ R2:A1

and Aðv2Þ ¼ fR2:A1;R2:A2g.) The sketch construction
defines two families of four-wise independent random

families (one for each edge): fxe1

i g and fxe2

j g. The

three atomic sketches Xv1
;Xv2

, and Xv3
(one for

each vertex) are defined as Xv1
¼
P

i2domðR1 :A1Þ
f v1
ðiÞ

xe1

i ,Xv2
¼
P

i2domðR2 :A1Þ

P
j2domðR2 :A2Þ

f v2
ði; jÞ xe1

i xe2

j , and Xv3
¼P

j2domðR3 :A2Þ
f v3
ðjÞ xe3

j . The value of the random variable

XQ ¼ Xv1
Xv2

Xv3
gives the sketching estimate for the

result of Q.

Dobra et al. [19] demonstrate that the random variable
XQ constructed above is an unbiased estimator for Q,
and prove the following theorem which generalizes the
earlier result of Alon et al. to multi-join queries. (SJv ¼P

i12domðAvðe1ÞÞ
� � �
P

ik2domðAvðekÞÞ
f vði1; . . . ; ikÞ

2 is the self-join
size of RðvÞ.)

Theorem 2.2. Let Q be a COUNT query with n equi-join

predicates such that JðQÞ contains no cycles of length 42.
Then, E½XQ � ¼ Q and using sketching space of OðVar½XQ ��

logð1=dÞ=Q2
� �2Þ, it is possible to approximate Q to within a

relative error of � with probability at least 1� d, where

Var½XQ �p22nQ
vSJv.
Fig. 2. Example query join graph.
3. Sketch sharing: basic concepts and problem
formulation

In this section, we turn our attention to sketch-based
processing of multiple aggregate SQL queries over streams.
We introduce the basic idea of sketch sharing and
demonstrate how it can improve the effectiveness of the
available sketching space and the quality of the resulting
approximate answers. We also characterize the class of
correct sketch-sharing configurations and formulate the
optimization problem of identifying an effective sketch-
sharing plan for a given query workload.

3.1. Sketch sharing

Consider the problem of using sketch synopses for the
effective processing of a query workload Q ¼ fQ1; . . . ;Qqg

comprising multiple (multi-join) COUNT aggregate
queries. As in [19], we focus on COUNT since the extension
to other aggregate functions is relatively straightforward;
we also assume an attribute-renaming step that ensures
that each stream attribute is referenced only once in each
of the Qis (of course, the same attribute can be used
multiple times across the queries in Q).

An obvious solution to our multi-query processing
problem is to build disjoint join graphs JðQiÞ for
each query Qi 2 Q, and construct independent atomic
sketches for the vertices of each JðQiÞ. The atomic
sketches for each vertex of JðQiÞ can then be combined
to compute an approximate answer for Qi as described in
[19] (Section 2.2). A key drawback of such a naive solution
is that it ignores the fact that a relation Ri may appear in
multiple queries in Q. Thus, it should be possible to reduce
the overall space requirements by sharing atomic-sketch
computations among the vertices for stream Ri in the join
graphs for the queries in our workload. We illustrate this
in the following example.

Example 3.1. Consider queries Q1 ¼ SELECT COUNT FROM

R1, R2, R3 WHERE R1:A1 ¼ R2:A1 AND R2:A2 ¼ R3:A2 and
Q2 ¼ SELECT COUNT FROM R1, R3 WHERE R1:A1 ¼ R3:A2.
The naive processing algorithm described above would
maintain two disjoint join graphs (Fig. 3) and, to compute a
single pair ðXQ1

;XQ2
Þ of sketch-based estimates, it would

use three families of random variables (xe1 ; xe2 , and xe3 ),
and a total of five atomic sketches (Xvk

; k ¼ 1; . . . ;5).

Instead, suppose that we decide to re-use the atomic

sketch Xv1
for v1 also for v4, both of which essentially

correspond to the same attribute of the same stream

(R1:A1). Since for each i 2 domðR1:A1Þ; f v4
ðiÞ ¼ f v1

ðiÞ, we get

Xv4
¼ Xv1

¼
P

i2domðR1 :A1Þ
f v4
ðiÞxe1

i . Of course, in order to
Fig. 3. Example workload with sketch-sharing potential.
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correctly compute a probabilistic estimate of Q2, we also

need to use the same family xe1 in the computation of Xv5
;

that is, Xv5
¼
P

i2domðR1 :A1Þ
f v5
ðiÞxe1

i . It is easy to see that

both final estimates XQ1
¼ Xv1

Xv2
Xv3

and XQ1
¼ Xv1

Xv5

satisfy all the premises of the sketch-based estimation

results in [19]. Thus, by simply sharing the atomic

sketches for v1 and v4, we have reduced the total number

of random families used in our multi-query processing

algorithm to two (xe1 and xe2 ) and the total number of

atomic sketches maintained to four.

Let JðQÞ denote the collection of all join graphs in
workload Q, i.e., all JðQiÞ for Qi 2 Q. Sharing sketches
between the vertices of JðQÞ can be seen as a transforma-
tion of JðQÞ that essentially coalesces in vertices belong-
ing to different join graphs in JðQÞ. (We also use JðQÞ to
denote the transformed multi-query join graph.) Of
course, as shown in Example 3.1, vertices v 2JðQiÞ and
w 2JðQjÞ can be coalesced in this manner only if RðvÞ ¼

RðwÞ (i.e., they correspond to the same data stream) and
AðvÞ ¼AðwÞ (i.e., both Qi and Qj use exactly the
same attributes of that stream). Such vertex coalescing
implies that a vertex v in JðQÞ can have edges from
multiple different queries incident on it; we denote the
set of all these queries as Q ðvÞ, i.e., Q ðvÞ ¼ fQ ðeÞ :

edge e is incident on vg. Fig. 4(a) pictorially depicts
the coalescing of vertices v1 and v4 as discussed in
Example 3.1. Note that, by our coalescing rule, for each
vertex v, all queries in Q ðvÞ are guaranteed to use exactly
the same set of attributes of RðvÞ, namely AðvÞ; further-
more, by our attribute-renaming step, each query in Q ðvÞ

uses each attribute in AðvÞ exactly once. This makes it
possible to share an atomic sketch built for the coalesced
vertices v across all queries in Q ðvÞ.

Estimation with sketch sharing. Consider a multi-query
join graph JðQÞ, possibly containing coalesced vertices
(as described above), and a query Q 2 Q. Let VðQ Þ

denote the (sub)set of vertices in JðQÞ attached to a
join-predicate edge corresponding to Q; that is, VðQ Þ ¼

fv : edgeje is incident on v and Q ðeÞ ¼ Qg. Our goal is to
construct an unbiased probabilistic estimate XQ for Q

using the atomic sketches built for vertices in VðQ Þ.
The atomic sketch for a vertex v of JðQÞ is constructed

as follows. As before, each edge e 2JðQÞ is associated
with a family xe of four-wise independent f�1;þ1g
random variables. The difference here, however, is that
edges attached to node v for the same attribute of RðvÞ

share the same x family; this, of course, implies that the
number of distinct x families for all edges incident on v is
Fig. 4. Multi-query join graphs JðQÞ for Example 3.1. (a) Well-f
exactly jAðvÞj (each family corresponding to a distinct
used attribute of RðvÞ). Furthermore, all distinct x families
in JðQÞ are generated independently (using mutually
independent seeds). For example, in Fig. 4(a), since
Av1
ðe1Þ ¼ Av1

ðe3Þ ¼ R1:A1, edges e1 and e3 share the same
x family (i.e., xe3 ¼ xe1 ); on the other hand, xe1 and xe2 are
distinct and independent. Assuming A ¼ fA1; . . . ;Akg and
letting x1; . . . ; xk denote the k corresponding distinct x
families attached to v, the atomic sketch Xv for node v is
simply defined as Xv ¼

P
ði1 ;...;ikÞ2A1�����Ak

f vði1; . . . ; ikÞ
Qk

j¼1x
j
ij
.

The final sketch-based estimate for query Q is the product
of the atomic sketches over all vertices in VðQ Þ, i.e.,
XQ ¼

Q
v2VðQ Þ Xv. For instance, in Example 3.1 and Fig. 4(a),

XQ1
¼ Xv1

Xv2
Xv3

and XQ2
¼ Xv1

Xv5
.

Correctness of sketch-sharing configurations. The XQ

estimate construction described above can be viewed as
simply ‘‘extracting’’ the join (sub)graph JðQ Þ for query Q

from the multi-query graph JðQÞ, and constructing a
sketch-based estimate for Q as described in Section 2.2.
This is because, if we were to only retain in JðQÞ vertices
and edges associated with Q, then the resulting subgraph
is identical to JðQ Þ. Furthermore, our vertex coalescing
(which completely determines the sketches to be shared)
guarantees that Q references exactly the attributes AðvÞ of
RðvÞ for each v 2 VðQ Þ, so the atomic sketch Xv can be
utilized.

There is, however, an important complication that our
vertex-coalescing rule still needs to address, to ensure
that the atomic sketches for vertices of JðQÞ provide
unbiased query estimates with variance bounded as
described in Theorem 2.2. Given an estimate XQ for query
Q (constructed as above), unbiasedness and the bounds on
Var½XQ � given in Theorem 2.2 depend crucially on the
assumption that the x families used for the edges in JðQ Þ
are distinct and independent. This means that simply
coalescing vertices in JðQÞ that use the same set of
stream attributes is insufficient. The problem here is that
the constraint that all edges for the same attribute
incident on a vertex v share the same x family may (by
transitivity) force edges for the same query Q to share
identical x families. The following example illustrates this
situation.

Example 3.2. Consider the multi-query join graph JðQÞ
in Fig. 3.2(b) for queries Q1 and Q2 in Example 3.2. (JðQÞ
is obtained as a result of coalescing vertex pairs v1; v4 and
v3; v5 in Fig. 3.) Since Av1

ðe1Þ ¼ Av1
ðe3Þ ¼ R1:A1 and

Av3
ðe2Þ ¼ Av3

ðe3Þ ¼ R3:A2, we get the constraints xe3 ¼ xe1

and xe3 ¼ xe2 . By transitivity, we have xe1 ¼ xe2 ¼ xe3 , i.e.,
all three edges of the multi-query graph share the same x
ormed join graph. (b) Join graph that is not well formed.
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family. This, in turn, implies that the same x family is used
on both edges of query Q1; that is, instead of being
independent, the pseudo-random families used on the
two edges of Q1 are perfectly correlated! It is not hard to
see that, in this situation, the expectation and variance
derivations for XQ1

will fail to produce the results of
Theorem 2.2, since many of the zero cross-product terms
in the analysis of [8,19] will fail to vanish.

As is clear from the above example, the key problem is
that constraints requiring x families for certain edges
incident on each vertex of JðQÞ to be identical, can
transitively ripple through the graph forcing much
larger sets of edges to share the same x family. We
formalize this fact using the following notion of (transitive)
x-equivalence among edges of a multi-query graph JðQÞ.

Definition 3.3. Two edges e1 and e2 in JðQÞ are said to be
x-equivalent if either (1) e1 and e2 are incident on a
common vertex v, and Avðe1Þ ¼ Avðe2Þ, or (2) there exists
an edge e3 such that e1 and e3 are x-equivalent, and e2 and
e3 are x-equivalent.

Intuitively, the classes of the x-equivalence relation
represent exactly the sets of edges in the multi-query join
graph JðQÞ that need to share the same x family; that is,
for any pair of x-equivalent edges e1 and e2, it is the case
that xe1 ¼ xe2 . Since, for estimate correctness, we require
that all the edges associated with a query have distinct
and independent x families, our sketch-sharing algo-
rithms only consider multi-query join graphs that are
well-formed, as defined below.

Definition 3.4. A multi-query join graph JðQÞ is well-

formed iff, for every pair of x-equivalent edges e1 and e2

in JðQÞ, the queries containing e1 and e2 are distinct,
i.e., Q ðe1ÞaQ ðe2Þ.

It is not hard to prove that the well-formedness
condition described above is actually necessary and
sufficient for individual sketch-based query estimates
that are unbiased and obey the variance bounds of
Theorem 2.2. Thus, our shared-sketch estimation process
over well-formed multi-query graphs can readily apply
the single-query results of [8,19] for each individual query
in our workload.

3.2. Problem formulation

Given a large workload Q of complex queries, there can
obviously be a large number of well-formed join graphs
for Q, and all of them can potentially be used to provide
approximate sketch-based answers to queries in Q. At the
same time, since the key resource constraint in a data-
streaming environment is imposed by the amount of
memory available to the query processor, our objective is
to compute approximate answers to queries in Q that are
as accurate as possible given a fixed amount of memory M

for the sketch synopses. Thus, in the remainder of this
paper, we focus on the problem of computing (1) a well-
formed join graph JðQÞ for Q, and (2) an allotment of the
M units of space to the vertices of JðQÞ (for maintaining
iid copies of atomic sketches), such that an appropriate
aggregate error metric (e.g., average or maximum error)
for all queries in Q is minimized.

More formally, let mv denote the sketching space (i.e.,
number of iid copies) allocated to vertex v (i.e., number
of iid copies of Xv). Also, let MQ denote the number of
iid copies built for the query estimate XQ . Since
XQ ¼

Q
v2VðQ ÞXv, it is easy to see that MQ is actually

constrained by the minimum number of iid atomic
sketches constructed for each of the nodes in VðQ Þ; that
is, MQ ¼minv2VðQÞfmvg. By Theorem 2.2, this implies that
the (square) error for query Q is equal to WQ=MQ , where
WQ ¼ 8Var½XQ �=E½XQ �

2 is a constant for each query Q

(assuming a fixed confidence parameter d). Our sketch-
sharing optimization problem can then be formally stated
as follows.

Problem statement. Given a query workload Q ¼
fQ1; . . . ;Qqg and an amount of sketching memory M,
compute a multi-query graph JðQÞ and a space allotment
fmv : for each node v inJðQÞg such that one of the follow-
ing two error metrics is minimized:
�
 average query error in Q ¼
P

Q2QðWQ=MQ Þ
�
 maximum query error in Q ¼ maxQ2QfWQ=MQ g
subject to the constraints: (1) JðQÞ is well-formed; (2)P
vmvpM (i.e., the space constraint is satisfied); and (3)

for all vertices v in JðQÞ, for all queries Q 2 Q ðvÞ;MQpmv.

The above problem statement assumes that the
‘‘weight’’ WQ for each query Q 2 Q is known. Clearly, if
coarse statistics in the form of histograms for the stream
relations are available (e.g., based on historical informa-
tion or coarse a priori knowledge of data distributions),
then estimates for E½XQ � and Var½XQ � (and, consequently,
WQ ) can be obtained by estimating join and self-join sizes
using these histograms [19]. In the event that no prior
information is available, we can simply set each WQ ¼ 1;
unfortunately, even for this simple case, our optimization
problem is intractable (see Section 4).

In the following section, we first consider the sub-
problem of optimally allocating sketching space (such that
query errors are minimized) to the vertices of a given,
well-formed join graph JðQÞ. Subsequently, in Section 5,
we consider the general optimization problem where we
also seek to determine the best well-formed multi-query
graph for the given workload Q. Since most of these
questions turn out to be NP-hard, we propose novel
heuristic algorithms for determining good solutions in
practice. Our algorithm for the overall problem (Section 5)
is actually an iterative procedure that uses the space-
allocation algorithms of Section 4 as subroutines.

4. Space allocation problem

In this section, we consider the problem of allocating
space optimally given a well-formed join graph J ¼JðQÞ.
We first examine the problem of minimizing the average
error in Section 4.1, and then the problem of minimizing
the maximum error in Section 4.2.
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this particular convex optimization problem. General solutions for

convex optimization problems, e.g., interior point methods [23], tend

to be slow in practice and would be especially problematic in this

context since we need to solve such optimization problems in the inner

loop of the algorithm for sketch sharing.
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4.1. Minimizing the average error

We address the following more general average-error

integer convex optimization problem in this subsection, for
an arbitrary convex strictly decreasing function F:

min
X
Q2Q

WQFðMQ Þ (1)

8Q 2 Q : MQ40 (2)

8v 2 J; 8Q 2 Q ðvÞ : MQpmv (3)X
v2J

mv ¼ M (4)

In the above formulation, variables MQ and mv correspond
to the space allocated to query Q 2 Q and vertex v 2 J,
respectively, and if we wish to minimize the average
(square) error, then FðMQ Þ ¼ 1=MQ .

Theorem 4.1. If F is convex and strictly decreasing with a

singularity in 0, then solving the average-error convex

optimization problem is NP-complete. This is true even if

WQ ¼ 1 for all Q 2 Q.

Proof. We show a reduction from k-clique. A k-clique is a
fully connected subgraph containing k nodes. This
problem is known to be NP-hard (Garey and Johnson).
Let G ¼ ðV ; EÞ be an instance of the k-clique problem. For
every vertex v 2 V we introduce a relation Rv with a single
attribute A. For every edge e ¼ ðv1; v2Þ 2 E we introduce a
query Qe that is the size of the join with join constraint
Rv1

:A ¼ Rv2
:A. Thus, the set Q ðvÞ ¼ fQeje ¼ ðv; �Þ 2 Eg.

Furthermore, we set We the weight corresponding to
query Qe to 1 and the total memory M ¼ nþ k with
n ¼ jV j. We now show that there exists a clique of size k in
G iff there exists a memory allocation strategy for the
constructed problem with cost at most B ¼ ðjEj � KÞFð1Þ þ
KðFð1Þ �Fð2ÞÞ where K ¼ kðk� 1Þ=2.

Since FðxÞ is 1 in 0 we have to allocate at least one

memory word for every vertex. If we have a k-clique in the

graph G then by allocating the remaining k memory words

the decrease in the optimization function is KFð2Þ thus

the final value is B. Conversely, if we can decrease the

value of the criterion from jEjFð1Þ to at least B by

allocating k more memory words to k vertices it has to

be the case that K edges (joins) use two memory words

instead of one, thus the k edges form a k-clique. To see this

observe that since FðxÞ is convex and strictly decreasing

pðFð1Þ �Fð2ÞÞ4Fð1Þ �Fðpþ 1Þ so by allocating more

than one extra memory word to some vertices we

decrease the value of the criterion less than linearly per

edge and we decrease the number of edges quadratically

so it is impossible to reduce the value of the criterion by

KðFð1Þ �Fð2ÞÞ (in order to meet bound B) if we allocate

more than one extra memory word for k of the

vertices. &

Since this problem is NP-hard, let us first examine its
continuous relaxation, i.e., we allow memory to be
allocated continuously although in reality we can only
allocate memory in integer chunks. Thus, we allow the
MQ s and mvs to be continuous instead of requiring them
to be integers. We call this problem the average-error

continuous convex optimization problem. In this case, we
have a specialized convex optimization problem, and in
the following, we show how we can use results from the
theory of convex optimization to find an optimal con-
tinuous solution.3 We then present a method to derive a
near-optimal integer solution by rounding down (to
integers) the optimal continuous MQ and mv values. In
what follows, we first solve the continuous optimization
problem, then we present the approximation result of the
rounded solution.

A roadmap. Since solving the continuous optimization
problem has significant technical contributions, we first
outline a roadmap for the process of designing the
solution. The standard technique to approach convex
optimization problems is to formulate the Karush–Kuhn–
Tucker (KKT) optimality conditions. The KKT conditions
are a generalization of the Lagrange multiplier method to
accommodate inequality constrains along with the equal-
ity constraints allowed by Lagrange multiplier method.
The conditions for inequalities express the fact that either
the inequality is strict and thus does not matter for the
optimal solution or the inequality is satisfied by equality
and the condition influences the optimum. As is the case
for Lagrange multiplier method, a solution to the Lagrange
conditions together with these extra conditions provide
an optimal solution for the optimization problem when
the objective function is convex and the region described
by the conditions is convex as well. For simple problems,
the fact that an inequality is important (it becomes
equality) or irrelevant (strict inequality) can guessed and
the KKT conditions become just regular Lagrange condi-
tions and the optimum, quite often, can be found
analytically. Unfortunately, there is no standard way to
solve the KKT conditions since the solution is problem
dependent. Separate strategies might have to get devised
for each type of problem. This is the reason why general
solvers do not solve directly the KKT conditions. Deciding
which conditions are important and which are not is
nontrivial for the problem at hand. A strategy that works
reasonably if only a handful of inequality constraint are
present is to try all combinations of relevant/irrelevant for
each inequality constraint, solve the Lagrange problem
and see if the solution satisfy the inequalities. For a large
number of inequality constraints, as is the case for this
problem, this is prohibitively expensive. The key idea for
an efficient algorithm to find the relevant/irrelevant
constraints is to introduce equivalent classes over nodes
Q and v, equivalence classes that form a partitioning of the
Q ; v space as depicted in Fig. 5. All the inequality
constraints between elements within the same class are
relevant and become equality constraints. All inequality
constraints between elements in two different classes
become strict inequality constraints and can be ignored.



ARTICLE IN PRESS

Fig. 6. Cut through the space that keeps equivalence classes intact.

Fig. 5. Partitioning of the join graph into equivalence classes.

Fig. 7. Algorithm ComputeSpace.
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Thus, if the correct partitioning in equivalent classes is
determined, the problem becomes a Lagrange multiplier
problem and a correct solution is readily obtained. To find
the membership of the equivalence classes a number of
technical results need to be derived to reveal the
interactions between the classes and their elements. The
final result is an procedure that uses specific max-flow
problems to produce a cut through the Q ; v space that
does keeps the equivalence classes intact, as depicted in
Fig. 6. By using this procedure, a divide-and-conquer
algorithm, Fig. 7, can be devised to solve the optimization
problem. Before we delve in the formal treatment of the
problem, we provide a short description of the role of each
technical result provided:
�
 KKT conditions characterize the optimal solution.
Finding a solution for this conditions provides the
solution.

�
 The �-components are the equivalence classes over the

space Q ; v. These equivalence classes are the key to
solve the KKT condition.

�
 Lemma 2 provides properties of the �-components. Part

(a) and (d) describe interactions between �-compo-
nents, part (b) provides a test to determine if a candidate
set is an �-component, and part (c) provides the
connection between the optimization problem and the
�-components (i.e., how to obtain the optimal solution
once the composition of the �-components is known).
4 Any optimization problem can be easily written in this canonical
�
way.
Lemma 3 provides necessary and sufficient conditions
based on a Max-Flow problem for a candidate set to be
an �-component. The lemma provides an algorithmic
way to recognize �-components.

�
 Lemma 4 proves that Algorithm SelectEdges finds

cuts throughout the space like the one depicted in Fig. 6.

�
 Theorem 5 puts all the results together and shows that

the Algorithm ComputeSpace correctly solves the
optimization problem.

With this roadmap in mind, we can delve into the
technical treatment of the problem.

The KKT conditions for convex optimization problems. The
KKT conditions are necessary and sufficient optimality
conditions for convex optimization problems. They are the
generalization of the Lagrange conditions—the Lagrange
multipliers method works only for optimization problems
with equality constraints—and they allow inequality con-
straints as well as equality constraints. The strength of the
KKT conditions is that they provide a set of equations with
the property that any solution gives the optimum solution
of the optimization problem—in most cases there are an
infinity number of solutions of the KKT conditions even
though the optimum solution is usually unique. The KKT
conditions and examples of their use are provided in most
convex optimization books—see for example [24].

Before we write the KKT conditions for our problem,
we briefly review the conditions for the general case.
Assume we have to solve the following general4 optimiza-
tion problem:

min
x1 ;...;xn

f ðx1; . . . ; xnÞ

8i 2 f1 : kg giðx1; . . . ; xnÞ ¼ 0

8j 2 f1 : lg hjðx1; . . . ; xnÞp0
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where x1; . . . ; xn are the variables whose value has to be
determined, f ðx1; . . . ; xnÞ is the optimization function that
needs to be minimized under the equality constraints
expressed by functions g1ðÞ; . . . ; gkðÞ and the inequality
constraints expressed by functions h1ðÞ; . . . ;hlðÞ. The set of
points that satisfy both the equality and inequality
constraints is assumed to be convex, i.e., if two points
are in the set, all points on the line segment between the
two points are in the set. Under these conditions, any
solution of the set of equations below, called the KKT
conditions, give the unique global optimum of the convex
optimization problem. For a proof of this fact and more
details, see for example [24]. To express the KKT
conditions, a multiplier li is introduced for each equality
constraint giðÞ ¼ 0 and another set of multipliers mj is
introduced for each inequality constraint hjðÞp0. Now, if
we define function L, called the Lagrangian, as:

Lðx1; . . . ; l1; . . . ;m1; . . .Þ ¼ f ðx1; . . . ; xnÞ

�
Xk

i¼1

lkgiðx1; . . .Þ �
Xl

j¼1

lkhjðx1; . . .Þ

then the KKT conditions are

8i 2 f1 : ng
qL
qxi
¼ 0

8i 2 f1 : kg li40; giðx1; . . .Þ ¼ 0

8j 2 f1 : lg mjhjðx1; . . .Þ ¼ 0,

mjX0; hjðx1; . . .Þp0

The first two conditions come from the Lagrange
multiplier method but the third set of conditions are
specific to KKT method only. The condition mjhjðx1; . . .Þ ¼ 0
expresses the fact that either mj ¼ 0, case in which
the condition does not influence the optimum, or
hjðx1; . . .Þ ¼ 0, in which case the inequality is satisfied
with equality. As we mentioned above, if a correct guess is
made which multipliers mj have to be 0 and which not, the
problem becomes a regular Lagrange multiplier problem.
The difficulty is finding a correct guess for which the
optimum of the resulting Lagrange multiplier problem
satisfies all the conditions hjðx1; . . .Þp0. Thus, a specialized
solution of the KKT conditions consists in the guess of the
zero multipliers and solving the resulting Lagrange
multipliers problem. There is no general method to
efficiently guess the zero multipliers; the structure of the
problem needs to be exploited to find efficient methods
for the guess.

To formulate the KKT conditions for the problem at
hand, we first observe that if we set MQ ¼ mv ¼ M=jJj, we
have a solution to the average-error continuous optimiza-
tion problem; this solution may not be optimal, but it
satisfies Eqs. (2)–(4). In addition, since F is strictly convex
and the set of feasible solutions is convex, the problem has
a single global optimum which we refer to as the optimal

solution.
We can characterize the optimal solution completely

through the KKT conditions [24]. The Lagrangian has the
following form:

Lðmv;Q ; lÞ ¼
X
Q2Q

WQFðMQ Þ �
X
v2J

X
Q2Q ðvÞ

mv;Q ðmv �MQ Þ

� l M �
X

mv

� �
This results in the following set of KKT conditions:

8Q 2 Q: WQF0ðMQ Þ þ
X

v2VðQ Þ

mv;Q ¼ 0

solve
qL

qMQ
¼ 0

� �

8v 2 J: �
X

Q2Q ðvÞ

mv;Q þ l ¼ 0 solve
qL

qmv
¼ 0

� �

8Q 2 Q; 8v 2 J: mv;Q � ðmv �MQ Þ ¼ 0X
v2J

mv ¼ M

8Q 2 Q; 8v 2 J: mv;QX0; l40

Since l40 we can rewrite the KKT conditions as follows
(substituting m̄v;Q for mv;Q=l):

8Q 2 Q: �WQF0ðMQ Þ ¼ l �
X

v2VðQÞ

m̄v;Q (5)

8v 2 J:
X

Q2QðvÞ

m̄v;Q ¼ 1 (6)

8Q 2 Q; 8v 2 J: m̄v;Q � ðmv �MQ Þ ¼ 0 (7)

X
v2J

mv ¼ M (8)

8Q 2 Q; 8v 2 J: m̄v;QX0 (9)

Note that the above KKT conditions are necessary and
sufficient, that is, a solution for our continuous convex
optimization problem is optimal if and only if it satisfies
the KKT conditions.

Characterizing the optimal solution. The KKT conditions
enable us to identify structural properties of the
optimal solution. Let us first introduce some notation.
A component C is a subset of Q [ J. For a component
C, define VðCÞ ¼ fv : v 2 ðC \ JÞg, Q ðCÞ ¼ fQ : Q 2 ðC \ QÞg,
EðCÞ ¼ fðv;Q Þ : v 2 VðCÞ;Q 2 Q ðCÞ \ Q ðvÞg, and define
WðCÞ ¼

P
Q2Q ðCÞWQ . We consider a special set of compo-

nents determined by the optimal solution that we call �-
components. We define a relation � between v 2 J and
Q 2 Q as follows: v � Q iff ðmv ¼ MQ ^ Q 2 Q ðvÞ) in the
optimal solution. If we take the symmetric transitive
closure of � we obtain an equivalence relation that
partitions J [ Q into a set of components C ¼ fC1; . . . ;Ccg

which we call �-components. Each �-component C 2 C
has an associated memory allocation MðCÞ, i.e., since C

is a �-component, 8v 2 VðCÞ;mv ¼ MðCÞ and 8Q 2

Q ðCÞ;MQ ¼ MðCÞ.

Lemma 2. The set C of �-components has the following

properties:
(a)
 Let C;C 0 2 C and CaC0. Then 8v 2 VðCÞ; 8Q 2 Q ðC0Þ, it is

the case that m̄v;Q ¼ 0 ^MðCÞXMðC0Þ.
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(b)
 For any �-component C,

8Q 2 Q ðCÞ: WQ �
jVðCÞj

WðCÞ
¼
X

v2VðCÞ

m̄v;Q (10)

8v 2 VðCÞ:
X

Q2QðvÞ\Q ðCÞ

m̄v;Q ¼ 1 (11)
(c)
 The memory allocation for the �-components satisfies

the following two equations:

8C 2 C: �WðCÞF0ðMðCÞÞ ¼ ljVðCÞj (12)

X
C2C

MðCÞ � jVðCÞj ¼ M (13)
(d)
 8C;C0 2 C : MðCÞoMðC0Þ iff WðCÞ=jVðCÞjoWðC0Þ=jVðC0Þj
Proof. (a) Suppose that, for v 2 VðCÞ and Q 2 Q ðC0Þ,
Eqs. (5)–(9) have a solution with m̄v;Q40. Eq. (7) implies
that mv ¼ MQ which in turn implies that v � Q , and as a
result, C ¼ C0 by the definition of a �-component. This
leads to a contradiction, and thus m̄v;Q ¼ 0. Further,
suppose that MðCÞoMðC0Þ, which implies that mvoMQ .
However, we again have a contradiction because Q 2 Q ðvÞ,
and as a result, MQpmv in the optimal solution (due to
Eq. (3)).

(b) Consider a �-component C. Due to part (a), we can

rewrite Eqs. (5) and (6) as follows:

8Q 2 Q ðCÞ: �WQ
F0ðMðCÞÞ

l
¼

X
v2VðQ Þ\C

m̄v;Q (14)

8v 2 VðCÞ:
X

Q2QðvÞ\C

m̄v;Q ¼ 1 (15)

If we sum Eq. (14) over all Q 2 Q ðCÞ, and we sum Eq. (15)

over all v 2 VðCÞ, we obtain the following two equations:

�WðCÞ
F0ðMðCÞÞ

l
¼
X

Q2Q ðCÞ

X
v2VðQ Þ\C

m̄v;Q (16)

X
v2VðCÞ

X
Q2Q ðvÞ\C

m̄v;Q ¼ jVðCÞj (17)

Now we immediately have �F0ðMðCÞÞ=l ¼ jVðCÞj=WðCÞ,

which when substituted into Eqs. (14) and (15) completes

the proof.

(c) For a given C 2 C, we sum Eq. (5) over all Q 2 Q ðCÞ.

We then use the result from Eq. (17) and obtain Eq. (12).

Since for a �-component C we know that 8v 2 VðCÞ;

mv ¼ MðCÞ, Eq. (8) can be rewritten as Equation (13).

(d) First, note that �1=F0ðMðCÞÞ is proportional to

WðCÞ=jVðCÞj by Eq. (12). Since function F0 is negative

and strictly decreasing, �1=F0 is positive and strictly

increasing. Thus MðCÞoMðC0Þ implies �1=F0ðMðCÞÞo�
1=F0ðMðC 0ÞÞ which gives the result. &

Once we have identified the set C of �-components (for
the optimal solution), then part (c) of Lemma 2 tells us
how to allocate memory optimally to the various
components C 2 C, and also, its vertices and queries since
mv ¼ MQ ¼ MðCÞ for all v 2 VðCÞ and Q 2 Q ðCÞ. Thus, we
simply need to compute the set C, and parts (a), (b), and
(d) of Lemma 2 guide us in identifying this set. We now
give a result that allows us to efficiently check whether
Part (b) in Lemma 2 is true for a candidate �-component
C; this result is Lemma 3. Note that the other parts can
be checked in a straightforward way. Before we state
Lemma 3, let us introduce some notation.

Let us define the flow graph F of a component C as
follows: FðCÞ is a directed graph with capacities on the
edges. The vertices of FðCÞ are the elements of C plus
two designated vertices s and t. FðCÞ contains the
following edges: (1) 8v 2 VðCÞ, edge ðs; vÞ with capacity 1,
(2) 8v 2 VðCÞ; 8Q 2 Q ðvÞ \ Q ðCÞ, edge ðv;Q Þ with capacity
1, and (3) 8Q 2 Q ðCÞ, edge ðQ ; tÞ with capacity WQ �

jVðCÞj=WðCÞ.
Now, a flow from s to t assigns a positive real value to

each edge in FðCÞ such that (1) the flow value for each
edge does not exceed the edge’s capacity, and (2) for each
vertex, the flow is conserved, that is, the sum of the flows
along incoming edges is equal to the sum of the flows
along outgoing edges. The maximum flow is one for which
the flow out of s is maximum (note that due to flow
conservation, this is also the flow into t). Given a flow, we
refer to a vertex v 2 VðCÞ as saturated if the flow entering v

is equal to the capacity of edge ðs; vÞ, which is 1. Similarly,
vertex Q 2 Q ðCÞ is said to be saturated if the flow out of Q

equals the capacity of ðQ ; tÞ, which is WQ � jVðCÞj=WðCÞ. We
call vertices that are not saturated as simply unsaturated

vertices.

Lemma 3. Let C be a component, and let FðCÞ be its flow

graph. Eqs. (10) and (11) have a solution if and only if there is

a flow between s and t of size jVðCÞj.

Proof. First, observe that in order the flow from s to t to
have size jVðCÞj, all vertices v 2 VðCÞ and Q 2 Q ðCÞ have to
be saturated. Since Eqs. (10) and (11) are exactly the flow
conservation equations whenever the flow from s to t is
exactly jVðCÞj, the equations have a solution if and only if
the maximum flow from s to t is jVðCÞj. &

Note that we can implement the check in Lemma 3
efficiently with any max-flow algorithm, for example the
Ford–Fulkerson Algorithm [25].

Algorithm for finding optimal solution. We are now in a
position to present our algorithm for determining the set
C of �-components that characterize the optimal solu-
tion, and which can then be used to compute the optimal
values for MQ and mv using Lemma 2(c). At a very
high level, our optimal space computation procedure
(see Fig. 7) starts with the initial component C ¼ J [Q
and the set of edges E ¼ EðCÞ. In each iteration of the
outermost loop, it deletes from E a subset E0 of edges
between pairs of distinct �-components, until the final set
of �-components is extracted into C. The procedure
SelectEdges computes the set of edges E0 deleted in
each iteration, and in the final step, C is used to compute
the optimal memory allocation MQ (by solving Eqs. (12)
and (13)) that minimizes the error

P
Q WQFðMQ Þ.

We now turn our focus to Algorithm SelectEdges,
which uses Lemmas 2 and 3, to identify the edges
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between �-components in C that should be deleted. In the
algorithm, MF is a max-flow solution of the flow graph
FðCÞ of C, and SF and SB are the sets of vertices reachable
in C from unsaturated v and Q vertices, respectively.
Note that when computing the vertex set SF(SQ ), an edge
ðv;Q Þ is traversed in the direction from Q to v (v to Q)
only if MFðv;Q Þ40. In Lemma 4 below, we shown that
all edges returned by SelectEdges in Step 4 are between
�-components.

Let C1; . . . ;Cl be the �-components in C. Note that C is
connected with respect to EðCÞ, and since, as we
show below, SelectEdges only returns edges between
�-components, C contains only entire �-components. Let
us define two different sets To and T4 of �-components
that contain all �-components Ci in C for which ðWðCiÞ=

jVðCiÞjÞoðWðCÞ=jVðCÞjÞ, and ðWðCiÞ=jVðCiÞjÞ4ðWðCÞ=jVðCÞjÞ,
respectively. Further, let E0 ¼ fðv;Q Þ : v 2 VðCÞ ^ Q 2 Q ðCÞ \

Q ðvÞ ^ ððQ 2To^ veToÞ _ ðQeT4 ^ v 2T4ÞÞg.
We now present Fig. 7 that computes a solution to the

KKT conditions. To prove that the algorithm is correct, we
now prove in Lemma 4 a property about Fig. 8, a
subroutine of Fig. 7. Recall that C ¼ C1; . . . ;Cc is the set
of �-components of the optimal solution.

Lemma 4. Consider an invocation of Algorithm Select-

Edges with component C. Then the following properties hold.
(a)
 If E0 ¼ ;, then C contains exactly one �-component.

(b)
 The following is true for sets SF and SB computed in the

body of the algorithm.[
Ci2To

Ci ¼ SF (18)

[
Ci2T4

Ci ¼ SB (19)
(c)
 Algorithm SelectEdges returns exactly the set E0.
Fig. 9. Algorithm Forward-Mark.
Proof. (a) If E0 ¼ ;, then for every �-component Ci in C,
WðCiÞ=jVðCiÞj ¼WðCÞ=VðCÞ. Thus, due to Lemma 2(c), all
MðCiÞ are equal in the optimal solution, and since C is
connected with respect to EðCÞ, it follows that all vertices
in C belong to a single �-component.

(b) We prove Eq. (18) in part (b) in four steps. (The proof

of Eq. (19) is similar.) In the following, we use the symbols

v and Q generically to refer to vertices in VðCÞ and Q ðCÞ,

respectively.

Step 1: There cannot be an edge ðv;Q Þ in the flow graph

FðCÞ such that v 2To and QeTo. This is because, due to

Lemma 2(d), we would get mvoMQ in the optimal

solution, which is not feasible.
Fig. 8. Algorithm SelectEdges.
Step 2: All Q 2To and all veTo are saturated, and for

every edge ðv;Q Þ in FðCÞ such that veTo and Q 2

To;MFðv;Q Þ ¼ 0 in the max-flow solution. Consider any

component Ci in To. We know that ðWðCiÞ=jVðCiÞjÞo
ðWðCÞ=jVðCÞjÞ, and so for each Q vertex in Ci, the capacity

WQ ðjVðCÞj=WðCÞÞ of edges ðQ ; tÞ in FðCÞ is less than

WQ ðjVðCiÞj=WðCiÞÞ. Note that from Lemma 3, we know

that with ðQ ; tÞ edge capacities set to WQ ðjVðCiÞj=WðCiÞÞ, all

Q vertices in To can be saturated with the incoming flow

into To. Thus, due to Step 1 above, since there is no flow

out of To, (with smaller ðQ ; tÞ edge capacities) we get

that in MF all Q vertices in To are saturated, and To

contains at least one unsaturated v vertex. By a symmetric

argument, for every Ci not in To, since ðWðCiÞ=jVðCiÞjÞX

ðWðCÞ=jVðCÞjÞ, we can show that all the incoming flow into

vertices veTo can be pushed out of Q vertices not in To.

Thus, in the max-flow solution MF, there cannot be any

flow along edge ðv;Q Þ, whereveTo and Q 2To, since

pushing any such flow out of a Q vertex not in To would

increase the total flow from s to t beyond MF. Thus, it

follows that in MF, all v vertices not in To are saturated.

Step 3: Now let us consider the set SF computed by

Forward-Mark (Figs. 9 and 10). Clearly, since only To

contains unsaturated v vertices, there are no out-edges

from a vertex v 2To (due to Step 1), and incoming edges

into a vertex Q 2To have a flow of 0 (due to Step 2),

vertices that do not belong to To will not be added to SF .

Thus, we only need to show that all the vertices in To

will be added to SF . We do this in the next step.

Step 4: Suppose that S0F is the subset of v and Q vertices

in To that do not belong to SF . Clearly, all the v vertices in

S0F must be saturated (since otherwise, they would have
Fig. 10. Algorithm Backward-Mark.
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Fig. 11. Example trace of Algorithm ComputeSpace. (a) Iteration 1. (b)

Iteration 2.

5 If MQo1, then we can avoid MQ from being rounded down to 0 by

pre-allocating 1 unit of memory to every Q 2 Q and v 2 J. Thus, we would

then choose FðMQ Þ to be 1=ð1þMQ Þ instead of 1=MQ , and the available

memory to be M � jJj.
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been added to SF). Similarly, we can show that there is no

flow out of S0F in the max-flow MF. We show that there

must be an edge into a Q vertex in S0F from a v vertex in SF;

but this would cause the Q vertex to be added to SF , and

thus lead to a contradiction. Suppose that there is no ðv;Q Þ

edge from SF to S0F . Then, this would imply that if the

capacity of each ðQ ; tÞ edge for Q 2 S0F were increased, it

would not be possible to saturate all the Q vertices in S0F
with the incoming flow into To, and this violates Lemma

3. The reason for not being able to saturate all Q vertices in

S0F is that every v vertex in S0F is already saturated, there is

no outgoing flow from S0F in MF, and there are no incoming

edges into S0F from SF . Thus, SF contains all vertices in To.

(c) Part (c) follows directly from Part (b) above and the

set of ðv;Q Þ edges returned in Step 4 of SelectEdges. &

Theorem 5. Algorithm ComputeSpace computes the opti-

mal solution to the average-error continuous convex optimi-

zation problem in at most OðminfjQj; jJjg � ðjQj þ jJjÞ3Þ steps.

Proof. There can be at most minfjQj; jJjg �-components in
C, and by Lemma 4(c), each call to SelectEdges with
component C causes the �-components in To and T4 to
become disconnected. Thus, SelectEdges is invoked at
most 2 minfjQj; jJjg times, and since the time complexity of
each invocation is dominated by OððjQj þ jJjÞ3Þ, the number
of steps required to compute the max-flow for compo-
nents containing at most jQj þ jJj vertices, the time com-
plexity of ComputeSpace is OðminfjQj; jJjg � ðjQj þ jJjÞ3Þ. By
Lemma 4(a), ComputeSpace terminates only if C contains
individual �-components. Thus, solving the equations
in Lemma 2(c), we can compute the optimal solution and
its error. &

In the following example, we trace the execution of
ComputeSpace for a join graph J.

Example 6. Consider a join graph J with vertices
v1; . . . ; v5. Let Q ¼ fQ1;Q2;Q3g and let VðQ1Þ ¼ fv1; v2; v4g,
VðQ2Þ ¼ fv2; v3g and VðQ3Þ ¼ fv4; v5g. Also, let WQ1

¼

WQ2
¼ 3 and WQ3

¼ 9. The flow graph FðCÞ for the initial
connected component C with which SelectEdges in-
voked (in the first iteration of ComputeSpace) is depicted
in Fig. 11(a). Each edge in the figure is labeled with its
capacity and the max-flow that can be pushed along the
edge. For instance, the capacity for the edge out of Q1 is
WQ1
ðjVðCÞj=WðCÞÞ ¼ 3 5

15 ¼ 1, whereas the capacity for
the outgoing edge from Q3 is equal to WQ3

ðjVðCÞj=

WðCÞÞ ¼ 9 5
15 ¼ 3. Also, all vertices except for v3 and Q3

are saturated. Further, the sets SF ¼ fv1; v2; v3;Q1;Q2g

(reachable from v3, but not traversing 0-flow edges from
a Q vertex to a v vertex) and SB ¼ fv4; v5;Q3g (reachable
from Q3, but not traversing 0-flow edges from a v vertex to
a Q vertex). Thus, since Q1 2 SF and v4 2 SB, edge ðv4;Q1Þ is
returned by SelectEdges and deleted from the edge
set E. In the second iteration, ComputeSpace invokes
SelectEdges with the following two connected compo-
nents: C1 ¼ fv1; v2; v3;Q1;Q2g and C2 ¼ fv4; v5;Q3g. The
edge capacities and max-flows for each component is
shown in Fig. 11(b). For instance, the capacity for the edge
out of Q1 is WQ1

ðjVðC1Þj=WðC1ÞÞ ¼ 3 3
6 ¼ 3=2, whereas the
capacity for the outgoing edge from Q3 is equal to
WQ3
ðjVðC2Þj=WðC2ÞÞ ¼ 9 2

9 ¼ 2. Since there are no unsatu-
rated vertices, SF ¼ SB ¼ ; and SelectEdges returns
no edges, thus causing ComputeSpace to terminate
and return the space allocation for C ¼ fC1;C2g. Solving
Eqs. (12) and (13), we get MðQ1Þ ¼ MðQ2Þ ¼ mv1

¼ mv2
¼

mv3
¼ MðC2Þ ¼ M=6 and MðQ3Þ ¼ mv4

¼ mv5
¼ MðC2Þ ¼

M=4.

The final remaining step is to go from the optimal
continuous solution to a near-optimal integer solution, by
rounding down each MQ returned by Algorithm Compute-

Space. Clearly, by rounding down each MQ to the biggest
integer less than or equal to MQ , our near-optimal solution
still satisfies Eqs. (2)–(4).5 In addition, we can show
that the average-error for the rounded down solution is
not too far from the average-error for the optimal integral
solution.

Theorem 7. The average-error of the rounded optimal

continuous solution is no more than ð1þ 2jJj=MÞ times the

average-error of the optimal integral solution. (Note that for

optimizing average-error, we choose FðMQ Þ ¼ 1=MQ .)

Proof. Suppose that C ¼ fC1; . . . ;Ccg is the set of
�-components. Then, solving Eqs. (12) and (13), we get
that each

MðCiÞ ¼
MP

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðCjÞ � jVðCjÞj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðCiÞ

jVðCiÞj

s

Thus, the average error for the continuous optimal
solution is given by

X
Q

WQ

MQ
¼
X

j

WðCjÞ

MðCjÞ
¼
ð
P

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðCjÞ � jVðCjÞj

p
Þ
2

M
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Now, the error for the rounded down solution isP
Q WQ=bMQ c ¼

P
j WðCjÞ=bMðCjÞc. Since

1

bMðCjÞc
p

2þMðCjÞ

MðCjÞ
2

we can derive the following (after substituting for MðCjÞ):

X
Q

WQ

bMQc
p 1þ

2jJj

M

� �X
Q

WQ

MQ

Thus, the theorem follows since the average error for the
optimal continuous solution cannot be more than the
average error for the optimal integral solution. &

4.2. Minimizing the maximum error

We now turn our attention to the problem of allocating
space to the vertices of J to minimize the maximum query
error; that is, we seek to minimize the quantity maxQ2Q

fWQ=MQ g, subject to the constraints: (1)
P

vmvpM and
(2) MQ ¼ minv2VðQ Þfmvg. Fortunately, this turns out to be a
much simpler problem than the average-error case—we
can actually solve it optimally using a simple algorithm
that relies on fairly standard discrete-optimization
techniques [24].

To see this, we first perform a simple transformation of
our objective to obtain an equivalent max–min problem.
Clearly, our problem is equivalent to maximizing

minQ2QfMQ=WQ g subject to the same constraints for
MQ ;mv. Since, MQ ¼ minv2VðQ Þfmvg, some simple rewriting
of the objective function gives

min
Q2Q

MQ

WQ

� �
¼ min

Q2Q

minv2VðQÞfmvg

WQ

� �

¼ min
v

mv min
Q2Q ðvÞ

1

WQ

� �

¼ min
v

mv

maxQ2Q ðvÞWQ

� �

Since maxQ2Q ðvÞWQ is a constant for a given vertex v, the
above transformation shows that our maximum-error
problem is basically equivalent to a linear max–min
optimization which can be solved optimally using stan-
dard techniques [24]. A simple (optimal) algorithm is to
first compute the optimal continuous solution (where
each mv is simply proportional to maxQ2Q ðvÞWQ ), round
down each mv component to the nearest integer, and
then take the remaining space spjJj and allocate one extra
unit of space to each of the nodes with the s smallest
values for mv=maxQ2QðvÞWQ . The complexity of this
procedure is OðjJj log jJjÞ and a proof of its optimality can
be found in [24].

5. Computing a well-formed join graph

In the previous section, we showed that for a given

well-formed join graph JðQÞ, computing the optimal
space allocation to the vertices of JðQÞ such that the
average error is minimized, is an NP-hard problem
(Theorem 4.1). The optimization problem we are inter-
ested in solving is actually more general, and involves
finding a join graph that is both well-formed and for
which the query error is minimum. Unfortunately, this
problem is tougher than the space allocation problem that
we tackled in the previous section, and is thus NP-hard
for the average error case. Further, even though we
optimally solved the space allocation problem for the
maximum error case (see previous section), the joint
problem of finding a well-formed graph for which the
maximum query error is minimized, is NP-hard. In fact,
even for the simple case when WQ ¼ 1 for all queries, the
joint problem is NP-hard. The reason for this is that
when all queries have the same weight, then the
maximum error is minimized when MQ for all queries in
JðQÞ are equal. This implies that, in the optimal solution,
the memory M is distributed equally among vertices of the
join graph, and the joint problem reduces to that of
finding a well-formed join graph JðQÞ with the minimum
number of vertices—this problem is NP-hard due to the
following theorem.

Theorem 8. The problem of finding a well-formed join graph

JðQÞ with the minimum number of vertices is NP-

complete.

Proof. We show a reduction from the vertex cover
problem, an instance of which seeks to find vertex cover
of size k for a given graph G ¼ ðV ; EÞ. For an instance of the
vertex cover problem, we construct an instance of our
problem of finding the smallest well-formed join graph in
JðQÞ as follows. For each vertex v 2 V , there is a relation
Rv, and for every edge e ¼ ðu; vÞ in E, there are three
relations Re;Re;u, and Re;v. Our query set Q contains the
following three queries per edge e ¼ ðu; vÞ in E: Qe ¼

SELECT COUNT FROM Ru;Rv WHERE Ru:A1 ¼ Rv:A1, Qe;u ¼

SELECT COUNT FROM Ru;Re;Re;u WHERE Ru:A1 ¼ Re:A2^

Re:A3 ¼ Re;u:A3, and Qe;v ¼ SELECT COUNT FROM Rv;Re;Re;v

WHERE Rv:A1 ¼ Re:A3 ^ Re:A2 ¼ Re;v:A2. Fig. 12(a) depicts
the join subgraph for the three queries Qe;Qe;u, and Qe;v

corresponding to edge e ¼ ðu; vÞ. In the figure, all vertices
for the same relation are coalesced in the join graphs
JðQeÞ;JðQe;uÞ and JðQe;vÞ, and each vertex is labeled
with its corresponding relation. Each edge is labeled with
its corresponding triple, and edges for different queries
are represented using different types of lines. Observe that
for an edge e ¼ ðu; vÞ 2 E, relation Re only appears in
queries Qe;u and Qe;v, and for a vertex v 2 V , relation Rv

appears in queries Qe and Qe;v for every edge e incident on
v in G.

The key observation we make is that the join subgraph

for edge e in Fig. 12(a) is not well formed. The reason for

this is that due to the common attributes Ru:A1;

Rv:A1;Re:A2 and Re:A3, all edges are forced to share the

same x family. Consequently, the x families for the edges

belonging to queries Qe;u and Qe;v are identical. Now

consider one of the relations Ru or Rv, say Rv. Suppose we

do not coalesce the vertices for Rv in JðQeÞ and JðQe;vÞ,

causing the resulting join subgraph for e to be well-

formed, as shown in Fig. 12(b). The reason for this is that
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Fig. 13. Algorithm CoalesceJoinGraphs.
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Fig. 12. Join subgraph for edge e in G.
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only the x family for the edge pair incident on Re and

associated with attribute Re:A2 (or alternately, Re:A3) are

forced to be the same, and these belong different queries

Qe;u and Qe;v. In the following, we show that G has a vertex

cover of size k if and only if there exists a well-formed join

graph containing no more than jV j þ 3jEj þ k vertices.

Suppose that V 0 is a vertex cover for G of size k. Then we

construct the well-formed join graph J by coalescing

vertices in JðQeÞ;JðQe;uÞ and JðQe;vÞ for all e 2 E as

follows. For each edge e 2 E, coalesce all vertices for

relation Re in J, and for every vertex veV 0, coalesce all

vertices for relation Rv in J. For each vertex v 2 V 0, coalesce

all vertices for Rv and belonging to queries Qe into one

vertex, and coalesce the remaining vertices for Rv (and

belonging to queries Qe;v) into a separate vertex. Since for

each edge e ¼ ðu; vÞ 2 E, one of u or v is in V 0 (say v),

the resulting join subgraph for edge e in J is as shown in

Fig. 12(b). Thus, as we argued earlier, edges for queries Qe;u

and Qe;v are not forced to share the same x family. Also, J

contains at most jV j þ 3jEj þ k vertices: 3jEj vertices for

relations Re;Re;u, and Re;v; jV j � k vertices for relations

Rv; v 2 V � V 0, and 2k vertices for relations Rv; v 2 V 0.

On the other hand, suppose there exists a well formed

join graph J containing no more than jV j þ 3jEj þ k

vertices. Then, clearly, for each e ¼ ðu; vÞ in E, there must

be two vertices for one of Rv or Ru since otherwise J would

contain the subjoin graph in Fig. 12(b), and thus cannot be

well formed (note that while it is possible that J contains

two vertices for Re, the same effect can be achieved by two

vertices for Ru or Rv). Thus, if we define V 0 to be the set of

vertices in V such that J contains more than one vertex for

Rv, then V 0 is a vertex cover for G. Further, jV 0jpk since J

contains a total of jV j þ 3jEj þ k vertices, and in J there are

3jEj vertices per edge e 2 E (for Re;Re;u;Re;v), and at least

one vertex for each v 2 V . &

In Fig. 13, we present a greedy heuristic for computing a
well formed join graph with small error. Algorithm
CoalesceJoinGraphs, in each iteration of the outermost
while loop, merges the pair of vertices in J that causes the
error to be minimum, until the error cannot be reduced
any further by coalescing vertices. Algorithm Compute-

Space, is used to compute the average (Section 4.1) or
maximum error (Section 4.2) for a join graph. Also, in
order to ensure that graph J always stays well formed, J is
initially set to be equal to the set of all the individual join
graphs for queries in Q. In each subsequent iteration, only
vertices for identical relations that have the same
attribute sets and preserve the well-formedness of J are
coalesced. Note that checking whether graph J0 is well
formed in Step 10 of the algorithm can be carried out very
efficiently, in time proportional to the number of edges in
J0. Well-formedness testing essentially involves partition-
ing the edges of J0 into equivalence classes, each class
consisting of x-equivalent edges, and then verifying that
no equivalence class contains multiple edges from the
same join query. Also, observe that CoalesceJoin-

Graphs makes at most OðN3
Þ calls to ComputeSpace,

where N is the total number of vertices in all the join
graphs JðQ Þ for the queries, and this determines its time
complexity as OðN3minfjQj; jJjg � ðjQj þ jJjÞ3Þ.
6. Experimental study

In this section, we present the results of an experi-
mental study of our sketch-sharing algorithms for proces-
sing multiple COUNT queries in a streaming environment.
Our experiments consider a wide range of COUNT queries
based on the TPC-H benchmark, and with synthetically
generated data sets. The reason we use synthetic data sets
is that these enable us to measure the effectiveness of our
sketch sharing techniques for a variety of different data
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distributions and parameter settings. The main findings of
our study can be summarized as follows.
�
 Effectiveness of sketch sharing. Our experiments with
the TPC-H query workload indicate that, in practice,
sharing sketches among queries can significantly
reduce the number of sketches needed to compute
estimates. This, in turn, results in better utilization of
the available memory, and much higher accuracy for
returned query answers. For instance, for the TPC-H
query set, the number of vertices in the final coalesced
join graph returned by our sketch-sharing algorithms
decreases from 34 (with no sharing) to 16. Further,
even with WQ ¼ 1 (for all queries Q), compared to
naive solutions which involve no sketch sharing, our
sketch-sharing solutions deliver improvements in
accuracy ranging from a factor of 2–4 for a wide range
of multi-query workloads.

�

Table 2
Workload queries

Q1 1;2 Q9 1 Q 17 8;9 Q25 2;7

Q2 4;5 Q10 6;7 Q 18 5;9 Q26 1;6
Benefits of intelligent space allocation. The errors in the
approximate query answers computed by our sketch-
sharing algorithms are smaller if approximate weight
information WQ ¼ 8Var½X�=E½X�2 for queries is avail-
able. Even with weight estimates based on coarse
statistics on the underlying data distribution (e.g.,
histograms), accuracy improvements of up to a factor
of 2 can be obtained compared with using uniform
weights for all queries.

Thus, our experimental results validate the thesis of this
paper that sketch sharing can significantly improve the
accuracy of aggregate queries over data streams, and that
a careful allocation of available space to sketches is
important in practice.

6.1. Experimental testbed and methodology

Algorithms for answering multiple aggregate queries. We
compare the error performance of the following two
sketching methods for evaluating query answers.
Q3 3;4;5 Q11 5;8 Q 19 6;8 Q27 3;8

Q4 4;5;8 Q12 10 Q 20 7;8 Q28 1;2;3

Q5 4;5;8;9 Q13 4 Q 21 8 Q29 2;3;4
�

Q6 2 Q14 3 Q 22 6

Q7 5 Q15 3;4 Q 23 7

Q8 9 Q16 5;8 Q 24 2;3
No sketch sharing. This is the naive sketching technique
from Section 2.2 in which we maintain separate
sketches for each individual query join graph JðQ Þ.
Thus, there is no sharing of sketching space between
the queries in the workload, and independent atomic
sketches are constructed for each relation, query pair
such that the relation appears in the query.

�

Fig. 14. Relations, join attributes and equi-join constraints for TPC-H

schema.
Sketch sharing. In this case, atomic sketches for
relations are reused as much as possible across queries
in the workload for the purpose of computing
approximate answers. Algorithms described in
Sections 4 and 5 are used to compute the well formed
join graph for the query set and sketching space
allocation to vertices of the join graph (and queries)
such that either the average-error or maximum-error
metric is optimized. There are two solutions that we
explore in our study, based on whether prior (approx-
imate) information on join and self-join sizes is
available to our algorithms to make more informed
decisions on memory allocation for sketches.
�
 No prior information. The weights for all join queries in
the workload are set to 1, and this is the input to our
sketch-sharing algorithms.

�
 Prior information is available. The ratio 8VarðXÞ=E½X�2Þ

is estimated for each workload query, and is used as
the query weight when determining the memory to be
allocated to each query. We use coarse one-dimen-
sional histograms for each relational attribute to
estimate join and self-join sizes required for weight
computation. Each histogram is given 200 buckets, and
the frequency distribution for multi-attribute relations
is approximated from the individual attribute histo-
grams by applying the attribute value independence
assumption.

Query workload. The query workloads used to evaluate
the effectiveness of sketch sharing consist of collections of
JOIN-COUNT queries from the TPC-H benchmark (Table 2).
Fig. 14 depicts a subset of the tables in the TPC-H schema,
and the edges represent the attribute equi-join relation-
ships between the tables. We did not consider the tables
NATION and REGION since the domain sizes for both are
very small (25 and 5, respectively). We consider three
query workloads, each consisting of a subset of queries
shown in Fig. 2. In the figure, each query is described in
terms of the equi-join constraints it contains; further,
except for equi-join constraints, we omit all other
selection conditions/constraints from the query WHERE
clause. The first workload consists of queries Q1 through
Q12, which are the standard TPC-H benchmark join
queries (restricted to only contain equi-join constraints).
In order to get a feel for the benefits of sketch sharing as
the degree of sharing is increased, we consider a second
query workload containing all the queries Q1 to Q29.
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Observe that workload 2 contains a larger number of
queries over the same relations, and so we expect to see
better improvements from sketch sharing for workload 2
compared to workload 1. Finally, workload 3 contains
queries Q6 to Q12 and Q28. We use this workload to
demonstrate the accuracy gains obtained as a result of
using nonuniform query weights. In our experiments, we
did not realize much benefit from taking into account
approximate query weights for workloads 1 and 2. This is
because both workloads contain queries with large
weights that are distributed across all the relations. These
heavy queries determine the amount of sketching space
allotted to the underlying relations, and the results
become very similar to those for uniform query weights.

Data set. We used the synthetic data generator from
[26] to generate the relations shown in Fig. 14. The data
generator works by populating uniformly distributed
rectangular regions in the multi-dimensional attribute
space of each relation. Tuples are distributed across
regions and within regions using a Zipfian distribution
with values zinter and zintra, respectively. We set the
parameters of the data generator to the following default
values: size of each domain ¼ 1024, number of regions ¼ 10,
volume of each region ¼ 1000–2000, skew across regions
ðzinterÞ ¼ 1:0, skew within each region (zintra) ¼ 0.0–0.5 and
number of tuples in each relation ¼ 10,000,000.

Answer-quality metrics. In our experiments we
use the square of the absolute relative error
(ðactual-approxÞ2=actual2) in the aggregate value as a
measure of the accuracy of the approximate answer for
a single query. For a given query workload, we consider
both the average-error and maximum-error metrics,
which correspond to averaging over all the query errors
and taking the maximum from among the query errors,
respectively. We repeat each experiment 100 times, and
use the average value for the errors across the iterations as
the final error in our plots.
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6.2. Experimental results

Results: sketch sharing. Figs. 15–18 depict the average
and maximum errors for query workloads 1 and 2 as the
sketching space is increased from 2K to 20K words. From
the graphs, it is clear that with sketch sharing, the
accuracy of query estimates improves. For instance, with
workload 1, errors are generally a factor of two smaller
with sketch sharing. The improvements due to sketch
sharing are even greater for workload 2 where due to the
larger number of queries, the degree of sharing is higher.
The improvements can be attributed to our sketch-sharing
algorithms which drive down the number of join graph
vertices from 34 (with no sharing) to 16 for workload 1,
and from 82 to 25 for workload 2. Consequently, more
sketching space can be allocated to each vertex, and hence
the accuracy is better with sketch sharing compared to no
sharing. Further, observe that in most cases, errors are less
than 10% for sketch sharing, and as would be expected, the
accuracy of estimates gets better as more space is made
available to store sketches.

Results: intelligent space allocation. We plot in Figs. 19
and 20, the average and maximum error graphs for two
versions of our sketch-sharing algorithms, one that is
supplied uniform query weights, and another with
estimated weights computed using coarse histogram
statistics. We considered query workload 3 for this
experiment since workloads 2 and 3 have queries with
large weights that access all the underlying relations.
These queries tend to dominate in the space allocation
procedures, causing the final result to be very similar to
the uniform query weights case. But with workload 3,
query Q29 has a considerably larger weight than other
queries in the workload (since it has three equi-joins), and
so our space allocation algorithms are more effective and
allocate more space to Q29. Thus, with intelligent space
allocation, even with coarse statistics on the data
12000 14000 16000 18000 20000

ory (words)

sketch sharing
no sharing

(workload 1).
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distribution, we are able to get accuracy improvements of
up to a factor of 2 by using query weight information.

Accommodating queries with selection predicates. In the
above experiments, the selection predicates have been
ignored since they are not explicitly supported by
sketches. In the case when a single query is evaluated,
the selection can be performed before the sketching of
the tuples, thus effectively incorporating the selection.
The same technique is possible when multiple queries
are present, but by doing so the opportunity for sharing is
reduced since the sketch of a relation cannot be
straightforwardly shared if different selection predicated
are used. Sharing is still possible though for the relations
without selection predicates. In the case of TPCH, only
the sketches for PARTSUP and LINEITEM can be shared.
While the sharing opportunities are reduced in this
case for TPCH, in other applications in which a large
number of queries are present but with few selection
predicates (processing networking data comes to mind),
significant sharing opportunities might still be present. An
interesting but nontrivial question is whether the
sketches can be shared when two different selection
predicates are required. We plan to address this issue in
future work.
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7. Concluding remarks

In this paper, we investigated the problems that arise
when data-stream sketches are used to process multiple

aggregate SQL queries concurrently. We provided neces-
sary and sufficient conditions for multi-query sketch
sharing that guarantee the correctness of the result-
estimation process, and we developed solutions to the
optimization problem of determining sketch-sharing con-
figurations that are optimal under average and maximum
error metrics for a given amount of space. We proved that
the problem of optimally allocating space to sketches such
that query estimation errors are minimized is NP-hard.
As a result, for a given multi-query workload, we
developed a mix of near-optimal solutions (for space
allocation) and heuristics to compute the final set of
sketches that result in small errors. We conducted an
experimental study with query workloads from the TPC-H
benchmark; our findings indicate that (1) compared to a
naive solution that does not share sketches among
queries, our sketch-sharing solutions deliver improve-
ments in accuracy ranging from a factor of 2–4, and (2)
The use of prior information about queries (e.g., obtained
from coarse histograms) increases the effectiveness of our
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memory allocation algorithms, and can cause errors to
decrease by factors of up to 2.
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