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Abstract— Knowledge of the up-to-date physical topology of an IP net-
work is crucial to a number of critical network management tasks, includ-
ing reactive and proactive resource management, event correlation, and
root-cause analysis. Given the dynamic nature of today’s IP networks,
keeping track of topology information manually is a daunting (if not im-
possible) task. Thus, effective algorithms for automatically discovering
physical network topology are necessary. Earlier work has typically con-
centrated on either (a) discovering logical (i.e., layer-3) topology, which im-
plies that the connectivity of all layer-2 elements (e.g., switches and bridges)
is ignored, or (b) proprietary solutions targeting specific product families.
In this paper, we present novel algorithms for discovering physical topol-
ogy in heterogeneous (i.e., multi-vendor) IP networks. Our algorithms rely
on standard SNMP MIB information that is widely supported by modern
IP network elements and require no modifications to the operating system
software running on elements or hosts. We have implemented the algo-
rithms presented in this paper in the context of a topology discovery tool
that has been tested on Lucent’s own research network. The experimen-
tal results clearly validate our approach, demonstrating that our tool can
consistently discover the accurate physical network topology in time that is
roughly quadratic in the number of network elements.

I. INTRODUCTION

Physical network topology refers to the characterization of
the physical connectivity relationships that exist among entities
in a communication network. Discovering the physical layout
and interconnections of network elements is a prerequisite to
many critical network management tasks, including reactive and
proactive resource management, server siting, event correlation,
and root-cause analysis. For example, consider a fault moni-
toring and analysis application running on a central IP network
management platform. Typically, a single fault in the network
will cause a flood of alarm signals emanating from different in-
terrelated network elements. Knowledge of element intercon-
nections is essential to filter out secondary alarm signals and
correlate primary alarms to pinpoint the original source of fail-
ure in the network [1], [2]. Furthermore, a full physical map of
the network enables a proactive analysis of the impact of link
and device failures. Early identification of single points of fail-
ure that could disrupt a large fraction of the user community
allows the network manager to improve the survivability of the
network (e.g., by adding alternate routing paths) before outages
occur.

Despite the critical role of topology information in enhanc-
ing the manageability of modern IP networks, none of the net-
work management platforms available on the market today of-
fers a general-purpose tool for automatic discovery of physical
IP network connectivity. Most systems (including HP’s Open-

View Network Node Manager and IBM’s Tivoli for AIX) fea-
ture an IP mapping functionality for automatically discovering
routers and subnets and generating a network layer (i.e., ISO
layer-3) topology showing the router-to-router interconnections
and router interface-to-subnet relationships. Building a layer-
3 topology is relatively easy because routers must be explicitly
aware of their neighbors in order to perform their basic function.
Therefore, standard routing information is adequate to capture
and represent layer-3 connectivity. Unfortunately, layer-3 topol-
ogy covers only a small fraction of the interrelationships in an IP
network, since it fails to capture the complex interconnections of
layer-2 network elements (e.g., switches and bridges) that com-
prise each subnet. As more switches are deployed to provide
more bandwidth through subnet microsegmentation, the por-
tions of the network infrastructure that are invisible to a layer-3
mapping will continue to grow. Under such conditions, it is ob-
vious that the network manager’s ability to troubleshoot end-to-
end connectivity or assess the potential impact of link or device
failures in switched networks will be severely impaired.

The lack of automated solutions for capturing physical (i.e.,
layer-2) topology information means that network managers are
routinely forced to manually input such information for each
management tool that they use. Given the dynamic nature and
the ever-increasing complexity of today’s IP networks, keeping
track of topology information manually is a daunting (if not im-
possible) task. This situation clearly mandates the development
of effective, general-purpose algorithmic solutions for automat-
ically discovering the up-to-date physical topology of an IP net-
work. An additional challenge in the design of such algorithms
is dealing with the lack of established, industry-wide standards
on the topology information maintained locally at each element
and the diversity of elements and protocols present in today’s
multi-vendor IP networks. The combination of these factors im-
plies that any practical solution to the problem of discovering
physical IP topology needs to deal with three fundamental diffi-
culties.
1. Limited local information. The algorithm should make only
minimal assumptions about the availability of information at the
elements; that is, it should only utilize information that most
managed elements are most likely to maintain locally. Further-
more, since layer-2 elements are not explicitly aware of their im-
mediate physical neighbors, inferring physical interconnections
at layer-2 is definitely not straightforward.
2. Transparency of elements across protocol layers. The algo-



rithm should correctly establish interconnections between net-
work elements operating at different layers of the ISO protocol
stack. This is not trivial, since layer-2 elements in switched sub-
nets are completely transparent to the layer-3 router(s) directing
traffic in and out of the subnets.
3. Heterogeneity of network elements. The discovery algorithm
should be able to gather topology information from heteroge-
neous network elements, making sure that the relevant data col-
lected in the elements of different vendors are accessed and in-
terpreted correctly.

A. Related Work

SNMP-based algorithms for automatically discovering
network layer (i.e., layer-3) topology are featured in
many common network management tools, such as HP’s
OpenView (www.openview.hp.com) and IBM’s Tivoli
(www.tivoli.com). Other commercially available tools
for discovering layer-3 network topology using SNMP include
Actualit’s Optimal Surveyor (www.actualit.com) and the
Dartmouth Intermapper (intermapper.dartmouth.edu).
In recent work, Siamwalla et al. [3] propose heuristics for infer-
ring layer-3 topology that employ only basic IP primitives (e.g.,
ping and traceroute).

Recognizing the importance of layer-2 topology, a num-
ber of vendors have recently developed proprietary tools and
protocols for discovering physical network connectivity. Ex-
amples of such systems include Cisco’s Discovery Protocol
(www.cisco.com) and Bay Networks’ Optivity Enterprise
(www.baynetworks.com). Such tools, however, are typi-
cally based on vendor-specific extensions to SNMP MIBs and
are not useful on a heterogeneous network comprising elements
from multiple vendors.

The only tool available on the market that claims to au-
tomatically discover physical topology in heterogeneous net-
works is Loran Technologies’ Kinnetics network manager
(www.loran.com). The details of their discovery algorithm
are proprietary and not available to us at the time of this writing.

B. Our Contributions

In this paper, we develop novel, practical algorithmic solu-
tions for the problem of discovering physical topology in het-
erogeneous IP networks. The practicality of our algorithms
stems from the fact that they rely solely on standard informa-
tion routinely collected in the SNMP Management Information
Bases (MIBs) [4], [5] of elements and they require no modifi-
cations to the operating system software running on elements
or hosts. More specifically, our topology discovery tool only
utilizes information from the address forwarding tables of ele-
ments capturing the set of Medium Access Control (MAC – i.e.,
layer-2) addresses that are reachable from each element inter-
face. The main algorithmic challenge that our tool faces is how
to “stitch” such (local) information together to identify inter-
connected router/switch interfaces and come up with a (global)
physical network topology. The issue of heterogeneity comes
into play when trying to access the address forwarding informa-
tion of elements from different vendors. Even though interna-
tional standards bodies have proposed a standard MIB design [6]

with uniformly defined and named variables for collecting ad-
dress forwarding data, this design is often not adhered to in com-
mercially available elements. As a consequence, our tool often
needs to gather the necessary information by accessing and in-
terpreting MIB variables stored in vendor-specific private MIBs
or custom-designed files.

Our algorithm for stitching local address forwarding infor-
mation together into a global network topology works perfectly
when (a) each switched domain (i.e., collection of switched
subnets connected to the “outside world” through one or more
layer-3 routers) consists of a single switched subnet, and (b) the
element address forwarding tables are complete; that is, they
contain the full set of MAC addresses in the subnet reachable
from each element interface. Unfortunately, these conditions
are rarely satisfied in modern IP networks, thus forcing our so-
lutions to deal with a number of complications that arise in prac-
tice.

� Switched domains usually comprise multiple subnets with el-
ements of different subnets often directly connected to each
other. This introduces serious problems, since it means that an
element can be completely invisible to its direct physical neigh-
bor(s). In fact, we prove that this situation gives rise to scenarios
under which no algorithm using only address forwarding infor-
mation can identify a unique physical topology. We do, how-
ever, propose an engineering solution that extends our approach
to multiple subnets and identifies a small set of candidate net-
work graphs which is guaranteed to contain the correct topol-
ogy. Furthermore, we provide a succinct characterization of a
broad class of networks for which our algorithm is guaranteed
to uniquely identify the accurate physical topology.� Element address forwarding tables typically employ an ag-
ing mechanism to evict infrequent destination MAC addresses
from the address cache; thus, the sets of MAC addresses found
in these tables are not necessarily complete. We develop two
distinct techniques to handle this problem. Our first technique is
based on generating extra network traffic across switches (using
the IP ping mechanism) to ensure that the address forwarding
tables are adequately populated. Our second method extends our
topology discovery algorithm so that interconnection decisions
are made based on incomplete information by employing some
reasonable approximations. Note that since it is very unlikely
to guarantee the completeness of address forwarding informa-
tion without an inordinate amount of extra traffic, a hybrid of
the two techniques is likely to work best in practice.� Virtual LANs (VLANs) allow IP network managers to com-
pletely break the linkage between the physical and logical net-
work by grouping the interfaces of the same physical network
element into different subnets. Our topology discovery algo-
rithm can readily handle VLANs if the VLAN interface group-
ings are known. (This information is available in most propri-
etary MIBs.)

We have implemented and run all our topology discovery al-
gorithms on Lucent’s research network at Murray Hill. Prelimi-
nary results look very encouraging and we are in the process of
conducting more extensive experiments.



C. Organization

The remainder of this paper is organized as follows. Sec-
tion II reviews necessary background information and presents
our system model. In Section III, we develop our algorithm
for discovering the physical topology of a single subnet. Sec-
tion IV then extends our algorithm to handle multiple subnets in
a switched domain and identifies a broad class of networks for
which our algorithm is guaranteed to discover the unique phys-
ical topology. In Section V, we discuss how our solution can
be extended to deal with incomplete information and VLANs.
Finally, Section VII concludes the paper.

II. BACKGROUND AND SYSTEM MODEL

In this section, we present necessary background information
and the system model that we adopt for the network topology
discovery problem. We refer to the domain over which topol-
ogy discovery is to be performed as the administrative domain.
We model the administrative domain communication network
as an undirected graph � . The nodes in the network correspond
to network elements that can be one of two types: routers and
switches1. A direct physical connection between a pair of in-
terfaces belonging to different network elements is modeled as
an edge between the corresponding nodes in � . The goal of our
algorithms is to discover the nodes and edges of � as accurately
as possible.

We define a switched domain to be the maximal set � of
switches such that there is a path in � between every pair of
switches in � , involving only switches in � . Figure 1 shows
the graph corresponding to an example administrative domain.
In Figure 1, R1, R2, and R3 are routers, while S1 through S5
are switches forming two distinct switched domains ( � S1, S2,
S3 � and � S4, S5 � ). We define a subnet as a maximal set of
IP addresses such that any two machines within a subnet can
communicate (at layer-3 or above) with each other without in-
volving a router. Typically, every network element within an
administrative domain is identified with a single IP address and
a subnet mask that defines the IP address space corresponding
to the element’s subnet. For example, IP address �	��

��������� ���
���
along with mask ��
�

� ��
�
�����
�
�� � identifies a subnet of network
elements with IP addresses of the form �	��

��������� ���
� � , where � is
any integer between � and ��
�� . Note that a switched domain can
comprise multiple different subnets and communication across
these different subnets must go through a router. For example,
in Figure 1, the switched domain � S4, S5 � contains only one
subnet while the switched domain � S1, S2, S3 � consists of
two subnets, one containing S1 and S3, and one containing S2.
Therefore, a packet from S1 to S2 will have to be routed through
R1 and R2, despite the existence of a direct physical connection
between S1 and S2.

Switches within a switched domain typically employ the
spanning tree protocol to determine unique forwarding paths
for each switch [7]. Our topology discovery algorithm is based
on the MAC addresses learned using backward learning [7] on
interfaces that are part of the switched domain spanning tree.

�
The algorithms in this paper can be used to discover topology of hosts and

other network elements such as hubs. However, for the sake of simplicity of
exposition, we do not consider hosts and hubs.

R1

S1 S2

S3

S4 S5R2

 R3

Fig. 1. Network graph for a typical administrative domain.

Therefore, it follows that we will not discover edges between
interfaces that are not active (i.e., are eliminated by the span-
ning tree protocol). In the remainder of the paper, we use � to
refer to the administrative domain graph with all such inactive
edges removed. We also assume that the structure of � remains
stable during the course of topology discovery.

We denote the ���! interface of a switch �#" by �$"&% . For each
interface �#"�% , the set of addresses that have been learned (by
backward learning) on that interface is referred to as the address
forwarding table corresponding to �'"&% and is denoted by ()"�% .
Therefore, (*"&% is the set of MAC addresses that have been seen
as source addresses on frames received at �'"�% . In the remainder
of the paper, the address set ( "&% is restricted to MAC addresses
of switches and routers only. We say ( "&% is complete if ( "�%
contains the MAC addresses of all switches and routers from
which frames can be received at �'"&% . If the switched domain
comprises only one subnet, then ( "&% corresponds to the set of
nodes in � that are reachable from � " via the interface � "&% by
a path in the switched domain spanning tree. In the case of
multiple subnets, however, the above is not necessarily true. For
example, in Figure 1, S3 will never receive a frame from S2
with S2 as the source MAC address. The reason is that, if S2
has to communicate with S3 then the packet from S2 is first sent
to R2, which in turn forwards it to R1 and, finally, R1 forwards
the frame to S3 with the source MAC address being that of R1
(even though the frame will pass through S2).

III. SINGLE SUBNET SWITCHED DOMAINS

In this section, we describe a topology discovery algorithm
under the following assumptions: (i) each switched domain con-
tains exactly one subnet, (ii) no VLANS are present in the ad-
ministrative domain, and (iii) the address forwarding tables are
complete. We first briefly describe how we discover the set of
switches and routers in the administrative domain which form
the nodes of � . We then describe our algorithm for discovering
the edges of � .

The basic idea behind discovering the set of routers in the ad-
ministrative domain is to repeatedly find the neighboring routers
of the currently known routers until no new routers are discov-
ered. We assume we know the IP address of at least one router,



say +-, , in the administrative domain to bootstrap this process2.
The neighboring routers of a router + are the set of routers that
are next hops for some destination in the ipRouteTable in
MIB-II [6] in + . Figure 2 outlines our algorithm for discovering
the set of routers in the administrative domain.

Procedure FindRouters( . � )
/* . � is the IP address of some known */
/* router in the administrative domain */
begin
routerSet := /0. �21
routersVisited := 3
while routerSet 45 3 do /

choose a router . from routerSet
routerSet := routerSet - /0. 1
if /0. 176 routersVisited

continue
routersVisited := routersVisited 89/0. 1:);-< .>= := next hops for . for some destination
routerSet := routerSet 8 :*;?< .@=1

end

Fig. 2. Finding the set of routers in the administrative domain.

The switches in the administrative domain are identified by
first discovering, for each interface of a router + , the subnet
that it is directly connected to or, equivalently, the set of IP ad-
dresses A to which it can perform direct delivery. This is ob-
tained by first obtaining the IP address of an interface of + using
the ipAddrTable in MIB-II. A is then computed by enumer-
ating the set of IP addresses in the subnet corresponding to the
IP address of an interface. This enumeration will take into ac-
count the subnet masks and the IP address formats. Once A is
computed, for each IP address in A , we determine whether it
is a switch by checking for the presence of the Bridge MIB [8].
Actually, both routers and switches contain the Bridge MIB and,
therefore, we use the value of the ipForwarding variable to
determine if an IP address belongs to a switch or a router. If
ipForwarding is equal to 1, then the element in question is
a router, otherwise it is a switch.

At this juncture, we have discovered the set of routers and
switches in the administrative domain, i.e., the nodes of � .
We next describe how to discover the interconnections between
switches and routers.

A. Discovering the edges in �
We discover the edges of � , one switched domain (in this

case, one subnet) at a time. Let B be the set of MAC addresses
corresponding to the switches and the routers of a subnet � . We
begin the description of our edge discovery algorithm with a
lemma that establishes a necessary and sufficient condition for
an interface of a switch to be connected to an interface of another
switch.

Lemma III.1: Interfaces �'"�% and �#CED are connected to each
other if and only if (*"&% 8 ()C0D>FGB and (*"&%>HI(*CED>FKJ .

Proof: If � "&% and � C0D are connected to each other
clearly, (*"&% H ()C0DLFMJ . Further, since the (*"&% ’s are complete,
N
We assume

:
is a connected graph, else we will need to know the identity

of one router in each connected component

(O"&% 8 (*C0D'FPB .
To prove the other direction, assume ( "�% 8 ( C0D FQB and

(O"&%RHI(*C0DOFSJ . Let if possible, �#"&% and �#C0D not be connected
to each other. Let T be the path from �#" to ��% in the spanning
tree. Recall that we assume all the ( "&% s are complete. There are
three cases to consider:
1. T contains both � "�% and � C0D : In this case, there exists an-
other switch �#U in T and therefore, it can not be the case that
(O"&% H (*C0D'FVJ .
2. T contains exactly one of �'"&% or �#CED : In this case, once again
it can not be the case that ( "&% H ( C0D FVJ .
3. T contains neither � "&% nor � CED : In this case, clearly
(O"&% 8 (*C0DXWFPB since it will not contain both �'" and �'C .Y

Lemma III.1 gives us the basis for a simple algorithm to dis-
cover connections between switches. However, we still need
to discover connections between routers and switches. We now
describe the condition for a router to be connected to a switch.
Before, we describe the condition, we need a definition.

Definition III.1: A leaf interface of a switch �'" is an interface
that is not connected to an interface of any other switch.

Y
Clearly, an interface � "&% for which there does not exist an-

other interface �'C0D , such that (*"�% and ()C0D satisfy the conditions
specified in Lemma III.1 is a leaf interface. We can now state a
necessary and sufficient condition for a router to be connected
to a switch.

Lemma III.2: A router + is connected to an interface �'"&% if
and only if � "�% is a leaf interface and ( "&% contains the MAC
address of + .

Figure 3 gives the pseudo-code for the edge discovery algo-
rithm based on Lemmas III.1 and III.2.

Procedure FindInterConnections( Z ��[ Z N\[^]^]_] Z�` , . �E[ . N	[_]^]_]^[ .>a )
/* Z �E[ Z N	[_]_]b]_[ Z ` are the switches of a subnet Z */
/* . �E[ . N	[_]b]_]^[ . a are the routers of the subnet Z */
begin
for each switch Z�c do

for each interface d of Z�c do /
If Z�c e has already been matched

continue
else /

If f>c e 8 fRgbh 5ji and f>c e H fRgbh 5 3
Match Z�c e with Z g2h
/* Z�c e and Z�g2h are connected */11

for each router . g do
for each switch Z�c do

for each interface d of Z�c do
If Z�c e is not matched and fRc e contains . g

Match Z�c e with .@g
/* Z�c e and .@g are connected */

end

Fig. 3. Interconnection between switches and routers.

IV. MULTIPLE SUBNET SWITCHED DOMAINS

As described in the previous section, for switched domains
containing a single subnet, the topology of switches is easy to



determine. Interfaces �#"&% and �'C0D are connected if and only if
the union ( "�%7k ( C0D contains all the nodes in the subnet and the
intersection ( "&%ml ( C0D is empty.

 

R1

R2

r1

r2
A11={R1}

S1

S2

S3

S11

S23

S12

S21

S22
S31

S32

S41

S4

A12= {S4}
A21= {S1,R1}
A22= {S3, S4}
A23={R2}
A31= {S1, S2,R2,R1}

A32= {S4}
A41= {S1,R1}
r1={S1,S4}
r2={S2,S3}

Fig. 4. Network containing multiple subnets.

Unfortunately, the assumption that switches in a switched do-
main are always from a single subnet may not always hold. For
example, consider the network depicted in Figure 4. Switches
� , and �on belong to subnet 1, while �#p and �$q belong to sub-
net 2. The algorithm from the previous section will not be able
to connect interfaces � p , to �', p , as it should. The reason for
this is that switches � p and � q do not show up in the address
forwarding table of switch � , . (Since �$p and �#q belong to a dif-
ferent subnet, frames originating at �'p and �#q to switch � , are
routed through + p .) Even if we were to consider a modification
of the previous algorithm in which two interfaces are connected
if the union of their address forwarding tables includes all the
switches in some subnet, the method would still not work. Since
(), p k ( p , , (), p k ( q , , and (r, p k ( n , contain all the switches
in subnet 1, the modified algorithm would find that interfaces
� p , , � q , , and � n , are all valid candidates for connecting to �@, p ,
which violates the condition that the interface matching must be
one-to-one.

In this section, we extend our solution for single subnets with
additional rules to account for cases when our algorithm finds
multiple interfaces that are potential candidates for connecting
to a single interface. The rules exploit properties of the span-
ning tree algorithm and enable us to narrow down the choice of
interfaces that can be connected to a given interface. We must
note, however, that the rules may not always be able to pinpoint
the exact topology of a network (although our expectation is that
such cases will be rare). In fact, we can show that there are cases
for which it is impossible to uniquely determine the topology of
switches, based only on address forwarding information.

Consider the two distinct network topologies depicted in Fig-
ure 5. Switches � , and �on belong to a single subnet, while
switches �$p and �$q both belong to different subnets. Clearly,
the address forwarding tables for switches in both topologies are
identical even though switch � p is connected to �>, in Figure 5(a)
and �$q is connected to � , in Figure 5(b). Thus, any algorithm

that relies only on address forwarding table information cannot
distinguish between the two topologies. Since it may be im-
possible to infer a unique topology based on the given informa-
tion, we restrict ourselves to finding a minimal set of candidate
topologies that contains the actual network topology.

S1 S2 S3 S4

R1 R2 R3

S1
S3 S2 S4

R1 R3 R2

a)

b)

s22 s31 s32 s41

s11 s41s21s31 s22s32

s11 s21A11={S4}
A21={S1,R1}
A22={S4}
A31={S1,R1}
A32={S4}
A41={S1,R1}

A11={S4}
A21={S1,R1}
A22={S4}
A31={S1,R1}
A32={S4}
A41={S1,R1}

Fig. 5. Networks for which unique topology cannot be determined.

A. Properties of Switched Domains Containing Multiple Sub-
nets

As mentioned earlier, the approach we adopt to discovering
the topology of switched domains containing multiple subnets
is to rule out interfaces that cannot be connected. In the fol-
lowing lemmas, we identify the conditions under which two in-
terfaces cannot be matched. The lemmas make use of the fol-
lowing property for switched domains containing multiple sub-
nets: Suppose �#" and �'C are two switches from different sub-
nets; then, (*"&% contains �'C if and only if there is a a node �os
from the same subnet as � C such that � s
t �u�u� t � "bt �	�u� t � C is a
path in the spanning tree. Let v "�%2CED denote the union ( "&%wk ( C0D .

Lemma IV.1: Let �#"�% and �#CED be different interfaces. If ()"&% l
(*CEDxWF9J , then interfaces �#"�% and �'C0D cannot be matched.

Proof: Suppose to the contrary that switch �os appears
in both ( "�% and ( C0D , and interfaces � "�% and � C0D are connected.
Then, there is a path from �ys to �$" via �'C and from ��s and �#C
via �$" . Furthermore, each of these paths belongs to the spanning
tree, which leads to a contradiction. Thus, if two interfaces have
non empty intersections they cannot be matched.

Y
Lemma IV.2: Let z be a subnet that contains at least two

switches �ys and �'{ . If (O"&% l (*C0D>FVJ and vw"�%2CED contains either
��s or �#{ but not both, then the interfaces �'"&% and �'C0D cannot be
matched.

Proof: Suppose that � "&% and � C0D are connected. Without
loss of generality, let �ys}|~(*"�% . Thus, there must be a path from
��s to �$" passing through �'C in the spanning tree. We consider
two cases:
1. The path from � { to � " in the spanning tree does not pass
through �#C : In this case, �'{ will belong to ()C0D since the path
in the spanning tree from �'{ to ��s will pass through �#" and �#C ,
and � { and � s belong to the same subnet z .



2. The path from �'{ to �$" in the spanning tree passes through
� C : In this case, since � s is in ( "&% , there must be a switch
�$� such that � s�t �u�	� t � C�t � "bt �	�u� t �$� is a path in the spanning
tree and � � also belongs to subnet z . Thus, it follows that
�#{ t �u�	� t �'C t �$" t �	�u� t � � will also be a path in the tree and �>{ will
belong to ( "�% also.
Thus, we have shown above that both �os and �'{ must belong to
v�"&%2C0D if �$"&% and �#C0D are connected, and so the interfaces cannot
be connected.

Y
Lemma IV.3: Let ( "&%-l ( C0D F�J and ( "&%-l ( s � F�J . If

v "&%2C0D = v "�%�s � and � " and � C belong to the same subnet which is
different from that of �os , then �#"�% and �'C0D cannot be matched.

Proof: Suppose �#"&% and �'C0D are connected. Note that
(*CED�FM(xs � since (*"�% l ()C0DOFMJ , (*"�% l (Ls � FMJ and vw"�%2CED =
v "&%�s � . Also, since � " and � C are from the same subnet, � " |�( C0D
and thus, � " |�( s � . Thus, there must exist a switch �'� belong-
ing to the same subnet as �#" such that �#" t �#C t �	�u� t ��s t �	�u� t � � is
a path in the spanning tree for the subnet. However, since �>" and
�#C belong to the same subnet, this implies that �>C�|�(xs � , which
leads to the following contradiction: � C |�( C0D . Y
B. Topology Discovery Algorithm

Our topology discovery algorithm initially assumes that every
candidate pair of interfaces is connected. It then applies the re-
sults of the lemmas presented in the previous subsection in order
to eliminate pairs of interfaces that cannot be matched. Thus, fi-
nally, for every interface, we are left with a set of interfaces that
the interface can be potentially connected to. This is output by
our algorithm. Note that, if after excluding pairs of interfaces
that cannot match, every interface matches only one other inter-
face, then our algorithm computes the unique physical topology
of the network.

From Lemmas IV.1, IV.2, and IV.3, it follows that for any pair
of interfaces � "�% and � C0D to match, the following must hold:
1. (O"&% l ()C0D is empty.
2. For every subnet z , either ( "&%xk ( C0D contains all nodes from
subnet z or none of them.
3. If �$"&% and �#C0D belong to the same subnet, then there does not
exist a switch �ys from a different subnet such that vm"&%2C0D>F�v�"&%�s �
and ( "�%7l ( s � F9J .

For all such pairs of potentially matching interfaces �>"�% and
� C0D satisfying the above conditions, we refer to unions v "&%2C0D
as valid unions. For a valid unions v "�%2CED , if � C0D does not oc-
cur in any other valid union, then we can conclude that �>"&% is
connected to �'C0D . As a result, we can eliminate all other valid
unions containing �#"&% . This follows since the set of valid unions
represent a superset of the actual connections in the network.
Also note that, since between any pair of switches there can be
at most one direct active connection, once we have connected
an interface of �#" with an interface of �'C , all other valid unions
containing both � " and � C can be eliminated.

Thus, the topology discovery algorithm for matching inter-
faces is as follows:
1. Generate the initial set of valid unions v .
2. Repeat the following step until no further valid unions can be
deleted from v .

2.1. If an interface �'C0D occurs in only one valid union vm"&%2C0D in
v , then (1) delete all valid unions containing � "�% from v except

for vw"&%2C0D , and (2) delete all valid unions vm"���CE� , ��WFI� , ��WFK� .
3. For every valid union v "�%2CED in v , output “ � "�% connected to
� C0D ”.

The connections output by the topology discovery algorithm
above are guaranteed to be a superset of the actual connections
in the network. As we pointed out earlier, for certain networks
(see Figure 5) it is impossible to accurately compute the net-
work topology. For such networks, our algorithm may not re-
turn a unique network topology; in other words, our algorithm
may output multiple possible connections for an interface, only
one of which is an actual connection (in the network). However,
for most practical network topologies, we expect our algorithm
to generate the precise topology information in which there is
a one-to-one mapping between interface pairs. The question of
what extra information (in addition to address forwarding infor-
mation) is required to guarantee a unique topology for arbitrary
networks remains open.

In the following example, we demonstrate that while the
topology discovery algorithm for the single subnet case (Sec-
tion III) cannot find the correct topology for the 2-subnet net-
work in Figure 4, our algorithm for multiple subnets will in fact
identify the correct network topology.

Example IV.1: Consider the network depicted in Figure 4.
Switches �', , � n and router +?, belong to subnet 1 while
Switches �#p , �$q and router +)p belong to subnet 2. There is
a single interface ( �>,2, ) that contains only +?, and a single inter-
face ( � pbq ) that contains only + p . Consequently, �@,b, is matched
with ��, . Similarly, � p2q is matched with + p . The remaining sets
of addresses ( "&% are listed below.

(), p � n
( p , �>, , +-,
(Op2p �#q , �on
( q , �>, , � p , +-, , + p
(Oq2p �$n
( n , �>, , +-,

Valid unions are as follows:

vm, pbp , �>, , � n , +-,
v�p2pbq , � , , �#p , �$q , �on , + , , +*p
v q2p^n , �>, , � n , +-,

Note that v7, pbq ,�FS���>, t � p t � n t +-, t + p � is not a valid union
(due to Lemma IV.2) since it contains switch � p but not � q
belonging to subnet 2. Furthermore, v , p^n , F���� ,�t �on t + , � is
also eliminated (due to Lemma IV.3) since v , p^n , F�v , p2p , and
switches �>, and � n belong to the same subnet, while �@, and � p
belong to different subnets. Since every interface occurs only
once in the above set of valid unions, �@, p is matched with � p , ,
�$p2p is matched with �#q , and �$q2p is matched with �$n , . Y
C. Characterization of Identified Topologies

In this section, we characterize a broad class of networks for
which the algorithm developed in the previous section is guar-
anteed to identify the unique physical topology. We refer to this
class of networks as ordered networks (formally defined below).
We also define a set ( of addresses to be legal if, for any subnet
z , ( contains either all or none of the addresses in z .



Definition IV.1: A network is an ordered network if it can be
arranged as a tree that satisfies the following two properties:
1. For every subtree in the network tree, for every subnet con-
tained in it, there exists a node belonging to the subnet elsewhere
in the network (not in the subtree).
2. For any two subtrees rooted at switches � " and � C in the net-
work, if the union of addresses in the two subtrees is legal, then
the switches �#" and �#C belong to the same subnet and their par-
ents also belong to the same subnet.Y

Let us denote a connection between interfaces �>"�% and �#C0D
such that � " is a parent of � C in the network tree by �
� "&%�t � C0D�� . We refer to a pair of subtrees as legal subtrees if
the union of addresses in the subtrees is legal. The first property
of ordered networks ensures that for a connection ���'"&% t �'C0D � ,
the address table ( "�% contains all the addresses in the subtree
rooted at � C . The second property, by requiring that roots and
parents of a pair of legal subtrees belong to the same subnet,
guarantees that valid unions which do not correspond to match-
ing connections are eliminated by our algorithm. Note that this
requirement is not too restrictive, since most networks will most
likely contain few pairs of legal subtrees. Furthermore, it is triv-
ially satisfied in networks that do not contain pairs of legal sub-
trees or networks in which every subnet occurs in more than two
distinct subtrees of the root.

The network depicted in Figure 4 is an ordered network. To
see this, consider the network arranged as the tree with switch
� p as the root, as shown in Figure 6. Note that for every subtree
in the network tree, there is a node belonging to a subnet in the
subtree elsewhere in the graph. For example, consider the sub-
tree rooted at �>, . Node � n belongs to the same subnet as �>, and
is not contained in the subtree. Also, the network satisfies the
second property of the ordered network definition. To see this,
note that the subtrees rooted at switches � , and �$n constitute
a pair of legal subtrees (since they contain all the addresses in
subnet 1), and the switches themselves as well as their parents
( �$p and �#q ) belong to the same subnet.

S2

S1

R1

S3

S4

R2

Fig. 6. Example of ordered network.

Theorem IV.1: The topology discovery algorithm presented
in Section IV identifies the accurate physical topology for or-
dered network graphs.

Proof: For ordered networks, for any connection �
� "&%�t � C0D�� , it is the case that ( "�% is the set of addresses that

appear in the subtree rooted at �>C . Also, ()C0D is the set of ad-
dresses belonging to subnets in � C ’s subtree that are not con-
tained in ( "&% . We refer to these addresses as the complement of
(O"&% and denote them by �(O"&% . Note that (*"�% k �(O"&% is legal. Thus,
(*CED>F��(O"&% and (*"�%)F��(*C0D .

In an ordered network, for any distinct pair of switch con-
nections ���#"�% t �#C0D � and ����s	{ t �$��� � , (O"&%�WF�(Lsu{ and
(*CED�WF (*��� . As a result, for the connection �V�'"&% t �#C0D � , there
can exist at most one other connection �¡� su{�t � ����� such that
( "&% F¡( ��� and ( C0D F¡( s	{ . In this case, the subtrees rooted at
�#C and �#� constitute a pair of legal subtrees. Furthermore, these
connections can result in the following four valid unions that
are all equal: v "&%2C0D^t v "&%�s	{�t v s	{_��� and v C0D¢��� . Of these, v "&%�su{ and
v CED¢��� will be deleted since � " and � s belong to the same sub-
net, and �#C and �$� also belong to the same subnet (due to the
second property of ordered networks). We need to show that the
valid unions v "&%2C0D and v su{^��� , however, will not be deleted. For
this, we need to show that � " and � C belong to different subnets
(a similar argument can be used to show that �os and �$� belong
to different subnets). If �'" is in the same subnet as �'C , then �#"
must belong to � C0D . However, since � C0D F£� s	{ , � " must be in
the subtree rooted at � � . This would mean that � C is in the sub-
tree rooted at �#� , and so �'C�|���s	{ , which is impossible since
�#C0D'FV��s	{ . Y

We must note that our topology discovery algorithm can find
the accurate topology for networks that may not be ordered. Fig-
ure 7 depicts one such network. In the figure, �R, , � q , �#¤ , and
+)p belong to subnet 1, �#p and + , belong to subnet 2, and �$n
and +*q belong to subnet 3. For every possible network tree, one
of subnets 2 or 3 will be entirely contained in a single subtree
and so the network cannot be ordered. Our algorithm, however,
will accurately discover the physical topology of the network.
Thus, the class of ordered networks is actually a subclass of the
class of networks for which our algorithm identifies the unique
physical topology.

S1 S2 S4 S5S3

R1 R2 R3

Fig. 7. Example of network that is not ordered.

V. EXTENSIONS

We now show how the algorithms that we presented in the
previous subsections can be extended to handle incomplete ad-
dress forwarding tables and VLANs.

A. Dealing With The Completeness Requirement

We have assumed thus far that each address forwarding table
( "&% is complete, i.e., it consists of all MAC addresses reachable
from � " through the interface � "&% . In practice, however, this is
highly unlikely to be true. The reason for this is that although
the (*"�% ’s are learned based on the source addresses in frames
received at the interface � "&% , these learned entries are aged (and



removed) by the switches. Therefore, unless a switch constantly
receives packets from a source at intervals smaller than the aging
interval (which is typically 5 minutes), the switch may delete the
entry corresponding to that source. Thus, the (r"&% ’s may not be
complete.

We present two complementary solutions to the above prob-
lem. The first solution attempts to keep the (r"�% ’s as complete as
possible while the second attempts to handle minor deviations
from completeness. These two together ensure that our algo-
rithms work in practice as borne out by our experiments with
the Bell Laboratories research network.

In our first solution, we try to ensure that the (r"�% ’s are as
complete as possible by generating constant traffic between any
pair of switches in the switched domain and, consequently, not
allowing the address forwarding table entries to age. The mech-
anism we use to generate traffic from a node ¥ to a node ¦
is to generate an ICMP (Echo Request) message from a net-
work management station to ¥ with the source address in the
ICMP packet set to the IP address of ¦ . This will cause ¥ to
respond to the Echo Request to ¦ . Making this work requires
a minor modification of publicly available code for generating
ICMP messages in order to build the appropriate IP header for
the ICMP Echo Request.3

Our second solution handles minor deviations from complete-
ness by choosing to match �'"�% with the interface �'C0D such that
( "&% H ( C0D FVJ and ( "&% 8 ( CED contains either no switches from
each subnet or a reasonably large fraction of the switches in the
subnet (this fraction can be user-defined).

B. Handling VLANs

Virtual LANs (VLANs) define multiple spanning trees within
a switched domain. A switch may belong to multiple VLANs
and effectively maintains address forwarding tables for each
VLAN that it is a part of. Frames belonging to a specific VLAN
are then forwarded by a switch using the forwarding tables for
the VLAN. If we have access to the address forwarding tables
for each VLAN, then we can run our algorithms individually
for each VLAN to generate the spanning tree for the VLAN.
We only need to be careful to restrict ourselves to the universe
of addresses consisting of only MAC addresses in the VLAN.
Even though standard SNMP MIBs do not provide information
on address forwarding tables for individual VLANs, this infor-
mation can be collected using proprietary MIBs (for example,
the Prominet MIB for Cajun Switches).

Our next example demonstrates that, even in the presence
multiple subnets and VLANs in a switched domain, and in the
absence of specific information on forwarding tables for each
VLAN, our topology discovery algorithm (Section IV) can iden-
tify the correct topology.

Example V.1: Consider the network depicted in Figure 8.
Switches � , , �on , and router + , belong to subnet 1; switches
� p , � q , and router + p belong to subnet 2; switches �'¤ , �$§ ,
¨
A potential problem with this approach arises when switches in the network

are connected through “out-of-band” interfaces since, in that case, the ICMP
messages sent between such switches would not populate the address forwarding
tables of “in-band” interfaces, as required by our algorithm. To deal with such
scenarios, our implementation relies on sending ICMP messages between hosts
in the same subnet as “out-of-band”-connected switches, to ensure that the “in-
band” interfaces are used.

R1 R2

R3

r1 r2

r3

s32

A13={S2,S4}
A14={S3}
A21={S5}
A22={S1,S3,R1,R2}
A23={S4,S6,R3}
A31={S2,R2}
A32={S6,R3}
A33={S5}
A41={S1,S5,R3}
A42={S6,R3}
A51={S6,R3}
A61={S5}

S1

S2

S5 S4 S6

S3

S11 S12

S13
S14

S22 S31

S21 S23

S51 S41 S42 S61 S62

S33

r1={S1,S4}
r2={S2,S3}
r3={S5,S6}

Fig. 8. Network containing VLANs and multiple subnets.

and router +)q belong to subnet 3. In addition, there are 3
VLANS, one for each subnet. The first VLAN consists of the
path +-, t �', t � p t � n , the second consists of the tree involving
router + p and switches �>, , � p and � q , and the third consists of
the path +)q t � §�t �#q t �$n t �#p t � ¤ . The address forwarding tables
for the interfaces without taking into account VLAN informa-
tion are shown in Figure 8.

There are single interfaces that contain only +?, , or + p , or + q .
Consequently, � , , �	p and �	q are matched respectively with � ,2, ,
�', p , and �$§ p and these interfaces are eliminated from further
consideration. The set of valid unions is as follows:

v , qbp2p � , , �#p , �$q , �on , + , , +*p
vm, n2q , � p , � q , + p
v�p , n0p � ¤ , � § , +)q
v p ,_¤E, �#¤ , �#§ , + q
v p2q^n , �>, , � n , �$¤ , �$§ , +-, , + q
v�q2p §E, � ¤ , � § , +)q
v q2q^n0p �#¤ , �#§ , + q
v�q2q ¤E, � ¤ , � § , +)q
v n0p §E, �#¤ , �#§ , + q

The valid unions vX, q2pbp , v7, n0q , , and v pbqbn , all contain inter-
faces that appear only once in the set of unions. Consequently,
� , q , � , n , and �#p2q are matched with �#pbp , �$q , , and �on , , respec-
tively. Thus, union v p , n2p is eliminated since � pbq is already
matched with � n , . Deletion of v p , n0p causes v p ,^¤0, to be se-
lected (since interface � p , appears only once). Thus, in the next
iteration, vwq2q ¤E, is deleted. In the final iteration, among the re-
maining unions, since interfaces � qbp and � q2q occur only once,
v q2p §0, and v qbqbn2p are retained, while v n0p §E, is eliminated. Thus,
the final set of valid unions yields the actual topology of the
network.

Y

VI. EXPERIMENTS

We have implemented the topology discovery algorithms pre-
sented in this paper and we have conducted several experiments
using parts of Lucent’s own research network. The main pur-
pose of these experiments was twofold. First, we wanted to test
the accuracy and correctness of our topology discovery tools in
a real-life networking installation. Second, we wanted to ver-



ify the practicality of our tools by obtaining measurements for
the running times of our algorithm for networks with multiple
network elements that are distributed over several subnets. For
the experiments presented in this section, we were mostly con-
cerned with network elements that are either routers or switches.

A. Implementation

We begin with a brief description of our implementation. A
basic issue that we needed to resolve was how to ensure the com-
pleteness of the address sets in the elements’ address forwarding
tables. In our implementation, we addressed this issue by appro-
priately modifying a standard ping program in a way that al-
lows our tool to submit pings from a given source address to a
given destination address. The modified ping program (termed
mping ) uses the raw socket option and, consequently, requires
root privileges to run. To obtain complete address sets for each
interface of each network element, we executed mpings across
any pair of network elements in the set of elements in the in-
put administrative domain. (For network elements connected
through an “out-of-band” (management) interface, we employed
mpings between hosts attached to these elements to populate
the “in-band” address forwarding tables.)

Even with such exhaustive mpinging, however, we did dis-
cover situations where our implementation could not achieve
complete address sets for certain interfaces. An example sce-
nario occurs when the destination network element simply inter-
changes the source and destination MAC addresses to acknowl-
edge an mping (as an optimization), instead of calling ARP
to generate a MAC address for the acknowledgement message.
In our experience with the system, however, such optimizations
were not employed very often. Furthermore, even when such
situations did occur and the address sets were incomplete, we
employed appropriate approximations to deal with deviations
from completeness (Section V-A). More specifically, our tool
chose as valid interface unions those for which (a) the address
set intersection was empty, and (b) the address set union v is
closest (among all other such unions) to the union of the sub-
nets containing the nodes in v . We found this approximation
technique to work very well in practice.

Figure 9 depicts a high-level view of our implementation ar-
chitecture. Users can submit a set of subnets for which a topol-
ogy map is to be generated. All network elements located in one
of the specified subnets are selected as input for the mpinging
process which works by generating mpings across all network
element pairs. Then, after some randomly selected time inter-
val, the input generation program is run to produce the address
sets for all element interfaces. Finally, our topology generation
algorithm is executed on the collected address sets.

B. Results

A primary goal of the experimental study with our topology
discovery tool was to ascertain the correctness and accuracy of
our algorithms in a real-life networking installation. Our results
verified the robustness of our methodology for multi-subnet ad-
ministrative domains, even in the presence of element interfaces
with incomplete address sets. The topology maps generated by
our tool were compared against the maps manually maintained
by local network administrators. For all administrative domains

select set of
nodes from 
database

PING Process
Wait time

Address set 
generation

topology
process

Ping Stop

Fig. 9. Implementation architecture.

tested, our tool generated the correct physical topology map. In
fact, there were several cases in which our tool discovered ele-
ment connections that were not present the network administra-
tors’ maps. In all such cases, the new interconnections discov-
ered by our tool were indeed proven to be correct by a thorough
check of the actual network topology. Figures 10 and 11 de-
pict the topology maps of two multi-subnet networks discovered
by our system. (Since these maps depict parts of Lucent’s pro-
prietary research network, we are using generic names for the
network elements.)

router1
router2

switch1

switch2

switch3

switch4 switch5

switch6

switch7

switch8

Fig. 10. Network with two subnets.

In Figure 10, switches ©	ª�«¬z_­u® , and ©	ª�«¬z_­u®�q as well as router
��¯�°�z_±�� p belong to the same subnet, while all remaining switches
and ��¯�°yz_±���, belong to a different subnet. For our test runs, we
found that the address sets that our algorithm collected for in-
terfaces on switches ©	ª�«¬z_­u®yp , ©	ª�«¬z_­u®�² , and ©	ª�«¬z_­u®�³ were not
complete. Nevertheless, the approximation heuristics employed
by our tool were sufficient to discover the correct network topol-
ogy. We should also note that the connection between switches



©	ª�«¬z_­u® p and ©uªO«´z_­	® q was in fact missing from the network ad-
ministrators’ manual map.
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Fig. 11. Network with more than two subnets.

Figure 11 depicts the physical topology map discovered by
our tool for a network with six distinct subnets composed as
follows:� Subnet-1: ©	ª�«¬z_­u® , .� Subnet-2: ©	ª�«¬z_­u® ¤ , ©	ª�«¬z_­u® ,2, , ©	ª�«¬z_­u® ,_µ , and ��¯�°yz_±�� , .� Subnet-3: ©	ª�«¬z_­u®�§ , ©	ª�«¬z_­u® ² , ©	ª�«¬z_­u® ³ , and ©	ª�«¬z_­u®�¶ .� Subnet-4: ©	ª�«¬z_­u®o,^¤ , ©	ª�«¬z_­u®o,^§ , ©	ª�«¬z_­u®o, ² , and ©	ª�«¬z_­u®o, ³ .� Subnet-5: ©	ª�«¬z_­u® , n and ��¯�°yz_±	��p .� Subnet-6: ©	ª�«¬z_­u® , p , ©	ª�«¬z_­u® , q , and ��¯�°yz_±	��q .

A second goal of our experimental study was to verify the
practicality of our topology discovery algorithm, by measuring
its running time requirements for various network sizes. In gen-
eral, we have discovered that our algorithm is sufficiently fast for
all practical purposes; for example, it requires approximately ���
seconds to generate a topology map for a network with �	��� ele-
ments. Furthermore, we found the running time of our algorithm
to be roughly quadratic in the number of elements in the input
network. We are currently in the process of optimizing the im-
plementation to further improve the running time requirements
of our tools.

VII. CONCLUSIONS

Automatic discovery of physical topology information plays
a crucial role in enhancing the manageability of modern IP net-

works. Despite the importance of the problem, earlier research
and commercial network management tools have typically con-
centrated on either (a) discovering logical (i.e., layer-3) topol-
ogy, which implies that the connectivity of all layer-2 elements
(e.g., switches and bridges) is ignored, or (b) proprietary solu-
tions targeting specific product families. In this paper, we have
developed novel, practical algorithms for discovering physical
topology in heterogeneous IP networks. The practicality of our
solution stems from the fact that it relies solely on local address
forwarding information routinely collected in the SNMP MIBs
of routers and switches. The main algorithmic challenge we
have addressed is how to cleverly “stitch” that information to-
gether into a global layer-2 topology. Our algorithms can han-
dle switched domains comprising one or more subnets and can
be readily extended to deal with incomplete information and
VLANs. Preliminary experimental results from an implemen-
tation of our topology discovery tools on Lucent’s research net-
work clearly validate our methodology, demonstrating the accu-
racy and practicality of the proposed algorithms. We are cur-
rently in the process of optimizing our implementation and con-
ducting more extensive experimental tests, and hope to be able
to report more detailed performance results in the near future.
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