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Abstract—Medical data is sensitive personal data which, ac-
cording to GDPR and HIPAA, necessitates regulations concerning
their use. Anonymizing this data prior to research would allow
for broader access, due to a lower sensitivity. Privacy-aware data
synthesis has been proposed as a solution. However, current
algorithms face difficulties in synthesizing medical data while
maintaining privacy and utility. This is due to the structure
of medical data which consists of multiple interlinked tables
with high dimensional columns containing sequential aspects
of the patient trajectory. The resulting number of correlations
is intractable to model naively and, if relational correlations
are not accounted for, the resulting data has poor utility (e.g.,
leads to invalid patient trajectories). In this paper, we present
MARE, a relational synthesis algorithm which focuses on a set of
core correlations found in relational data while pruning others.
The resulting lower computational complexity allows MARE to
produce accurate relational data. We showcase that MARE can
synthesize multiple medical datasets, which contain sequential
aspects, while maintaining utility in form of inter-table and inter-
row correlations and privacy guarantees.

I. INTRODUCTION

Medical data are massively collected in routine clinical
practice for patient administration, quality control, and billing
purposes. Such data could serve secondary use in research
projects. However, due to its sensitivity and resulting regula-
tory restrictions (such as GDPR and HIPAA), it remains out
of reach. Anonymizing the data would lower the barrier to
access. Privacy-aware data synthesis is a potential solution.
However, current algorithms are not suited to the structure
of medical data, which either results in either intractable
computational complexity or loss of accuracy in important
inter-table distributions and constraints.

In this paper, we focus on Electronic Health Records (EHR),
which detail the trajectory of a patient in the medical system.
Most medical datasets contain such a structure, which can be
broadly classified as relational data. EHR data contain intricate
correlation structures that span across tables and between rows
within the same table, which have an intractable computational
complexity if modelled naively. For an inter-table example,
consider a prescriptions table containing a foreign key to
a doctor’s visit, which then contains a key to the patient’s
demographic information. We infer that there will exist a
strong correlation between the dosage information on the

prescriptions to both the doctor’s visit table (to either the
reason of visit or diagnosis) and to the patient’s demographic
information (e.g., weight, gender). Within the same table, if
there is an admission sequence for a patient, each admission
will be correlated to the previous ones.

Little work has been done in data synthesis SOTA to
analyze these correlations. Therefore, to model this data using
current work we could do one of two things: ignoring the
correlations and modelling rows as broadly independent of
each other or concatenating all patient data together into a
“super row”, which is provided to a synthesis algorithm. The
former results in data with subpar quality and explainability.
The latter causes a dimensionality explosion where current
algorithms are unable to run (the algorithms we surveyed with
few exceptions (e.g., [1]) can model up to around 30 columns,
where relational data have thousands of values).

In this paper we introduce the Differentially Private [2] algo-
rithm Markov-chain Approach for Recursive Events (MARE),
which produces semantically correct relational data while
maintaining important inter-table and inter-row correlations. It
utilizes a novel reasoning framework for modelling relational
data, which isolates a core set of correlations important in
medical data (parent-child, sequential, and associative) while
maintaining a reasonable computational complexity. Through
synthesizing two medical datasets based on MIMIC-IV [3] and
a private medical dataset in collaboration with Aalborg Uni-
versity Hospital, we showcase that MARE produces semanti-
cally correct relational data with a reasonable computational
footprint and strong privacy guarantees.

II. PROBLEM DEFINITION

Let D be a collection of tables with foreign key relationships
which describes a set of entities E. When a table B ∈ D
contains a foreign key to table A ∈ D, we refer to it as
the relationship RB→A. In that relationship, table rows (Bn)
of B that reference the same row (An) in A are its child
rows. Data synthesis is a process that receives the dataset
D and outputs an imitated collection of tables S sharing
important characteristics of D, without causing a significant
privacy exposure to members of E, either through inference
or membership attacks.



A way to quantify privacy exposure is Differential Privacy
(DP) [2], which is a mechanism for tracking the exposure of
individuals partaking in a data release.

Definition 2.1 (Differential Privacy): A stochastic function
K is ϵ-differentially private if for each pair of neighbouring
datasets D, D′ which differ by only one element and all V ⊆
Range(K) the following inequality holds:

P [K(D) ∈ V ] ≤ eϵ · P [K(D′) ∈ V ] (1)

The term ϵ is named the privacy budget and is used to quantify
the privacy exposure of releasing K(D).

Current literature on synthetic data generation uses two
broad approaches: Neural Networks (NN) [4], [5], and Prob-
abilistic Graphical Models (PGM) [6]–[9]. Both approaches
have a computational complexity that is O(n2) or higher of
the entity’s input size n, rendering them unable to process
relational data as a “super row”. In neural networks, if fully
connected layers are used (a prerequisite for unstructured data
and used in the referenced papers), the number of parameters
in the first two layers scales quadratically with the input
size (O(n2)). PGMs are not theoretically limited to O(n2).
However, this complexity is the case for all but one [1] of
the algorithms we surveyed. The “maximal parents” algorithm
in PrivBayes [8] scales exponentially with the input size
(O(2n)). The suggested workload for AIM [6] is all three-way
combinations of input columns (O(n3)). Finally, PrivMRF [7]
considers all two-way column combinations (O(n2)).

The alternative of omitting the modelling of correlations
between tables and rows, would result in the output data
not adhering to the correct joint distributions (e.g., patient
trajectories will be invalid). Therefore, it is essential for
synthesis algorithms to be aware of the correlations inherent in
relational data for producing accurate results. The first obstacle
is capturing correlations across tables (e.g., a patient admission
being correlated to the patient’s demographics). The second
obstacle is capturing correlations within tables (e.g., the second
admission of a patient being correlated to the first admission,
two drugs being co-prescribed).

III. REASONING FRAMEWORK

A. Dataset DAG

We begin by observing that foreign key relationships in a
dataset D form a Directed Acyclic Graph (DAG), where tables
of the Dataset are nodes and foreign key relationships are the
edges. Consider a dataset with tables A, B, C, D, E and
relationships RB→A, RC→B , RD→C and RE→C . This dataset
can be decomposed to the DAG shown in Figure 1, where table
D is shown a set of rows referencing the same row in Table C
(referred to as child rows). This DAG allows deriving useful
conclusions about D. For example, it is very likely that tables
A and B are correlated. To a lesser degree, tables A and C
may be correlated through their relationship to B. It is harder
to make a judgement about D and E, as they are both children
of C, and that means they can have different numbers of child
rows referencing the same row in C.

B. Correlation PDAG

The dataset DAG forms the basis for modelling the dataset.
However, for synthesis, an algorithm needs to know whether
two values in the dataset should be able to reference each
other during synthesis (i.e., they are potentially correlated). If
they should, the correlation can either be causal (i.e., column j
references i after i was generated) or statistical (i.e., columns
i and j are generated together).

Potential correlations expand the solution space and re-
sulting computational complexity. Therefore, the goal of this
framework is subtractive: capture important correlations, so
that the rest can be removed from the solution space. To model
the end result, we introduce the Correlation Partially Directed
Acyclic Graph (CPDAG), which is derived from the Dataset
DAG using a set of rules. In this graph, nodes are columns
of the dataset and edges showcase whether two columns can
reference each other while being synthesized. If edge i → j
is directional, it signifies that column j can reference i after
i has been generated. If the edge is bidirectional, then i and
j are generated together by a synthesis algorithm.

C. Correlation Cases

We convert the example dataset into a set of CPDAGs,
where we vary the relationship type table D to showcase
different correlation cases (Figure 1). For simplicity, columns
of tables A, B, C are grouped and E is omitted. In truncated
tables, columns have bidirectional edges between them and
directional edges to all columns of tables their table references.
Naive Case. First, assume that all correlations are possible,
which would induce a bidirectional edge between all columns
in all rows in the dataset. For the purposes of synthesis, this
graph is equivalent to each entity being concatenated into an
input “super row” and synthesized as is and showcases the
complexity problem. The resulting CPDAG has O((CN)2)
edges, where C is the number of columns and N the number
of rows an entity is expected to have in the dataset, which is
intractable for current synthesis algorithms.
Inter-table Correlations. An essential aspect of relational
data is the correlation between a row and the rows it references
(e.g., a prescription being correlated to the patient’s age). It is
important to be able to draw arbitrary correlations between a
row and any parent row it can be joined to. Therefore, given
table X which can be recursively joined to table Y , we add
directed edges from the columns of Y to the columns of X .
Using this rule, the resulting complexity is O(C(C + H)),
where C is the number of columns of the table generated and
H is the number of columns that are possible to reference from
parent tables. This is a significant reduction in complexity,
which still maintains important correlations.
Context Table. There are cases where a column induces a
specific pattern in a set of child rows. For example, a date
column where the first date defines the start of a series, and
the following dates are relative to it. If a synthesis algorithm
generates all dates independently, the solution space would
include a high number of invalid combinations (e.g., date i+1
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Fig. 1. An example dataset DAG modelled naively and by using CPDAG depending on correlation case

occurring before date i). Ideally, we would generate the first
date and generate offsets relative to it thereafter.

We introduce the concept of a context table, which acts as
a space for placing common information shared between child
rows, indexed to the parent table. For example, given a date,
we may define a custom encoding that places the first column
value in the context table and keeps an offset in the child
rows. We may also place synthesis metadata in it, such as the
number of child rows that should be generated.
Sequential Correlations. Sequences are common in relational
data (i.e., tables containing ordered event series). If the di-
rected correlations between the rows are not preserved, it will
result in situations where e.g., patients change spoken language
in every admission. For modelling sequences, we assume they
adhere to the properties of a Markov chain of order n. That
means that row i can only be potentially correlated to rows i−1
to i−n. In terms of synthesis, rows are generated sequentially,
with row i being able to reference rows i− 1 to i− n. In the
CPDAG, this is expressed by adding directed edges to each
row from the columns of up to the previous n rows. The order
n is set to small number (in Figure 1 2 is used) which strikes
a balance between computational complexity and preserving
correlations found in low-frequency event data (e.g., hospital
admissions but not financial tickers).
Associative Correlations. Finally, there is the case of as-
sociative entity tables, where a table creates associations
between two parent tables (e.g., a prescriptions table joins
table “doctor’s visit” to table “drugs”). We focus on a common
entity table case: where one of the two parent relationships
has a low domain and is public (e.g., drugs) and the other is
synthesized (e.g., “doctor’s visit”).

We identify four column types inherent in such a table: the
foreign key to the synthesized relationship (e.g., doctor’s visit
ID), the foreign key of the public relationship (e.g., drug ID or
name), a set of columns with values derived from the public
relationship (e.g., dosage), and a set of common columns
(e.g., prescribed time). The distinction of derived columns is
important, as it does not make sense to e.g., compare dosages
between different drugs or quantities of items between grocery
lists (1 loaf of bread is not comparable to 1 liter of milk).

For this relationship case, we create a context table with
one column per unique key of the public relationship. This
column is a boolean existence column if there are no derived
columns or a nullable version of the derived columns. We
iterate through the associative entity table, and fill in the

context columns of each parent row with the values from its
child rows. Common columns remain as part of the child table.
This allows modelling arbitrary correlations between unique
keys of the public relationship while forcing derived columns
to have different values depending on the public relationship.

IV. MARKOV-CHAIN APPROACH FOR RECURSIVE EVENTS

MARE is an orchestration algorithm that produces relational
synthetic data with an ensemble of tabular synthesis models. It
consists of two parts: first, a set of tabular models is fit to the
dataset, then, they are orchestrated to sample relational data.

We present MARE with a concrete medical example. This
example consists of five tables: “patients”, “lines”, “cycles”,
“prescriptions”, and “drugs”, resembling the form of an EHR
dataset shown on Figure 2, with its respective CPDAG on
the right. It contains patients undergoing cancer treatments,
which are based on multistep treatment plans, named lines. In
the Figure, groups of child rows referencing the same parent
are highlighted in blue. The dataset features the following
relationships: Rlines→patients and Rcycles→lines which are se-
quential, and the relationship Rprescriptions→cycles,drugs which
is associative. The table drugs is considered public so only the
foreign key column in prescriptions is kept. We extend the se-
quentiality of table “cycles” to context table of “prescriptions”,
allowing prescription lists to maintain correlations between
subsequent cycles. For managing computational complexity,
we choose Markov-chain orders of 1 for Rcycles→lines and
2 for Rlines→patients. The table Cycles contains a date which
forms a sequence. To model it better, we select a date encoding
that only maintains a day offset between cycle dates.

A. Fitting Algorithm
MARE topologically sorts the CPDAG and forms groups

where nodes in each group have bidirectional edges to each
other. A tabular model is dedicated to each group (where
each model may use a different tabular synthesis algorithm).
Each tabular model generates the columns of its group, while
referencing the columns that point to its columns. Where
appropriate, a join operation is performed to align the rows of
the columns to each other (e.g., when crossing from a parent
to a child table). To determine how many child rows should
be generated per parent for non-associative relationships (i.e.,
sequential and independent), we store a latent column in the
context table with the number of child rows to be generated.

In Figure 3, we show how the example dataset would be
modelled depending on child relationship type (independent,
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Fig. 3. Modelling different relationship types under CPDAG

sequential, associative). For relationships where the child rows
are independent, after separating common information in the
context table, the parent table columns are referenced as his-
tory. Sequential relationships are an extension of the previous
case, and additionally reference the previous n rows as history.
The number n refers to the order of Markov-chain that is used
to model the sequence. Finally, for associative relationships,
the associative table has a special structure which unrolls the
unique values of the public relationship.

B. Sampling Synthetic Data

The fitting algorithm results in an ensemble of models cap-
turing the dataset. Following, we coordinate model execution
to produce semantically correct relational data.

The order of sampling is derived from the CPDAG by
topological sorting. Then, depending on the table type, the
following rules are used. Models without parent relationships
(e.g., the “patients” table) are sampled once to produce n rows,
where n is the expected size of the table (i.e., the patient
number). Models of context table groups produce 1 row per
parent row: they receive the parent table and its history as
history, and produce one new row per received row. Finally,
models of child table groups are sampled based on the table’s

relationship type. For relationships without a special structure,
the context table of the relationship will contains a column
with the number of child rows that should be synthesized.

In sequential relationships, there is a sequential ordering
to the rows. As with independent relationships, the context
table contains a column with the number N of child rows
that will be generated. Each child row needs to reference up
to n previous rows while being generated (due to a Markov
Chain of order n), requiring the use of the following algorithm:
Begin with a history table that consists of the parent tables and
a FIFO queue with n table slots, and repeat the steps below.
On iteration i, filter the history table to only include rows r
where i < Nr. Then, feed the model with the current history
and produce 1 row per historical row. Save the resulting rows
and push them to the FIFO queue, where if i > n, the rows
of iteration i− n is discarded automatically. Repeat until the
history table becomes empty. Finally, concatenate and re-index
to form the child table.

In associative relationships, the context table that was gen-
erated contains a set of boolean existence columns or nullable
dependent columns for each key of the public relationship.
For each context row, the columns with true (if boolean) or



non-null (if nullable) values are unrolled to create partial child
rows containing the public relationship and derived columns.
Then, the child table model is sampled to fill in the missing
common columns. By allowing arbitrary correlations between
unique values, the sampling process maintains possible inter-
row associative correlations as well (e.g., medicine a can be
counter-indicated with medicine b).

V. ENSURING DIFFERENTIAL PRIVACY

As MARE analyzes dataset schema without access to data,
it is by definition differentially private. However, the models
it orchestrates access data. Given differentially private models,
for the output data to be differentially private we have to
distribute the privacy budget between models correctly. We
present a privacy accountant for MARE that distributes the
privacy budget between tables depending on their complexity.

In order for the privacy accountant to work, it needs to
scale the privacy budget based on the sensitivity of each
table. Therefore, we pose the requirement that the models
comply with the property of group differential privacy. An
algorithm that complies with group differential privacy meets
the following: an execution with a privacy budget of e on a
table where each entity may have up to n rows is identical to
an execution with a privacy budget of e/n where each entity
strictly has 1 row. PrivBayes [8] and PGMs that depend on
histograms comply with this property.
Measuring Sensitivity. To bound the sensitivity of child tables
in regard to the entities E, we define a maximum number of
rows that a relationship can contain per parent row and truncate
longer sequences. For associative and independent relation-
ships, the truncation may be done randomly. In sequential
relationships, either the end or the beginning of the sequence
can be cut, depending on what is considered important (e.g.,
for a mortality dataset, we would retain the end of a series).

Assume that table K has a sensitivity of 1 (e.g., it is the
patients table of a medical dataset). Given column group G,
which forms a path in the CDAG to K, we have the following:

SG,max =
∏

X∈G⇝K

|X|

where |X| is the maximum child rows a row of group X can
have with respect to its parent and SG,max is the theoretical
upper sensitivity. SG can be substituted with an upper bound
of rows of G in respect to K directly, which is lower:

SG = |G|K ≤ SG,max

Budget Distribution. Futhermore, we need a heuristic with
which to distribute the privacy budget, while taking into
account the complexity of each table based its column number,
history size, and row number. With a table with c columns
and h history columns, a model needs to fit c columns
while considering c + h correlations for each. Assuming the
correlation number is sublinear, we can use:

O(c, h) = c
√
c+ h

The number of rows increases complexity, as a larger num-
ber of rows requires more information to model. Assuming the
complexity of a table rises sublinearly with the row number
(e.g., square root), we have:

O(c, h, n) = c
√
c+ h

√
n

We normalize the table complexities to derive a ratio. Given
a privacy budget etotal and tables T ∈ D, we have:

eX = =
cT

√
cT + hT

√
nT∑

G∈D cG
√
cG + hG

√
nG

etotal

where eX is the privacy budget for table X , D is the dataset,
and etotal is the total privacy budget.
Privacy Accountant. We merge the above into a final privacy
accountant heuristic. Given the model of a table T in the
CPDAG, it is distributed eT privacy budget based on:

eT =
1∏

X∈G⇝K |X|
cT

√
cT + hT

√
nT∑

G∈D cG
√
cG + hG

√
nG

etotal

where K is a sensitive entity table (e.g., patients), and |X| is
the maximum number of child rows in table X .

VI. EXPERIMENTS

We evaluate the performance of MARE across three rela-
tional datasets with three to four tables which contain sequen-
tial and associative relationships. We conduct two experiments:
an ablation study that showcases MARE’s modelling of inter-
row and inter-table correlations and a privacy study which
varies the privacy budget to evaluate how it affects the resulting
data. PrivBayes [8] is used to generate the underlying tables.
Datasets. We use two disjoint datasets derived from MIMIC-
IV [3] (MIMIC has 25 tables and different tables are used in
each dataset) and a non-public dataset from the Medical On-
cology system (MedOnc) [10] of Aalborg University Hospital.
In sequential relationships, we use Markov Chains of order 2.

MIMIC-Core uses the core tables of MIMIC-IV which are
the Patients (300k rows, 4 columns), Admissions (431k rows,
15 columns), and Transfers (1.5M rows, 6 columns) tables.
The table Transfers contains a sequence of transfers per Ad-
mission, referencing the Admissions table and the Admissions
table contains a sequence of admissions, referencing a patient
in the Patients table. The Patients table contains summary
information about the patients (sex, age, and day-of-death) and
the Admissions table contains demographic information about
the patient during admission. The Transfers table contains the
in and out times of the transfer, event type, and the department.

MIMIC-ICU draws from the ICU dataset of MIMIC-IV to
create three tables: Patients (300k rows, 4 columns), Stays
(73k rows, 7 columns), and ICU chart events (300M rows,
11 columns). The Stays table contains the ICU admissions of
each patient, and the ICU chart events table contains time-
series data of the patient during their stay in the ICU. The
chart-events data contains biological measurements.

The MedOnc dataset contains four tables: Patients (15k
rows, 6 columns), Lines (30k rows, 3 columns), Treatment



updates (185k rows, 7 columns), and Prescriptions (660k rows,
7 columns). The Patients table has no upward relationship. The
Lines table contains the protocol of each treatment for each
patient and is a sequence with respect to the patient table. As
part of treatment, the patient undergoes doctor visits, at which
they are prescribed medicine. This is recorded in the Treatment
updates table, which has a sequential relationship to the Lines
table. Finally, the Prescriptions table contains the medicine
that was prescribed in an update and forms an associative
relationship with the Treatment updates table.
Evaluation Metrics. We evaluate the quality of the synthetic
data generated across two axes: the quality of the resulting
joint-distribution and the level of correlations in output data.
Metrics are calculated against column pairs in the dataset.
Three types of column pairs are considered: column pairs
from the same table (Intra-table in Figures), column pairs
where one column is from a child table and one from its
parents through joining (Inter-table), and column pairs where
one column is compared with a column from the row’s history
for all N previous rows, where N is the order of the table
(Sequential). The pairs are averaged per table, and then the
table average is averaged, ensuring equal contribution from
each table, regardless of its complexity. The output is one
number per pair type (Intra-table, Sequential, Inter-table).

To capture the deviation of the joint-distribution from the
original data, we use a normalized version of the Kullback-
Leibler (KL) divergence between the original and synthetic
data (values closer to 1 are more accurate), averaging it
between column pairs:

|KL(Corig, Csynth)| =
1

1 + KL(Corig, Csynth)

KL divergence is predominantly affected by individual col-
umn histograms, obscuring the effect of relational correlations.
Therefore, to measure whether synthesis captures relational
correlations, we use the Cramer’s V statistic, which is a
normalized version of the chi-squared statistic for categorical
data (0 is uncorrelated and 1 is perfectly correlated). Here, we
expect to match correlation values found in the original data.

A 20 % holdout set is used as a reference (“Ref”), as the
output an ideal synthesis algorithm would have. The separation
for the hold-out was performed on the patient level, ensuring
the holdout set and the training data are disjoint.
Experiments. We perform a privacy study and an ablation
study. For the privacy study, we enable both types of relation-
ships and create synthetic data for the privacy budgets of 1, 2,
5, 10, 100. In the ablation study, MARE first runs without
history and sequential correlations. Then, one of them is
enabled (“Inter” for parent relationships, “Seq” for sequential)
and both. For the MIMIC datasets, during ablation, we use a
privacy budget of 2. Since MedOnc has 10x less patients than
MIMIC-IV with a comparable complexity, we use a privacy
budget of 10 for ablation. The results are shown in Figure 4.
Privacy Study. We note that increasing the privacy budget has
a marginal effect in correlation quality, showcasing that MARE
can maintain correlation quality even at low privacy budgets if

the dataset is large. Inter-table correlations have a quality that
matches the baseline. MedOnc, as a much smaller and more
complex dataset, has higher privacy budget requirements.

Sequential correlations are more intricate and show a higher
degradation. We suspect the reason is that since in a sequence,
columns are often heavily correlated with their previous value
(e.g., married patient stays married), where the values may
flip due to noise in the marginals. For example, when a 2-way
marginal against a column and its previous value is measured,
it leads to a histogram size of n2, where n is the cardinality
of the column. Using a partial histogram with size less than
n2 is not possible with current PGM algorithms.

Kullback-Leibler divergence showcases that joint distribu-
tion is maintained well across all privacy budgets and even
exceeds the baseline reference (i.e. overfits) when using a high
enough privacy budget, e.g., 100.
Ablation. Here, we note that the sequential and inter-table
components have a great effect on the inter-row correlation
quality, and inter-table correlations match what is found in
the original data. Modelling inter-table correlations also has a
marginal effect on sequential correlations, hinting at the fact
that child rows are correlated in part through their parent rows.
While correlations do not reach the values of the reference
data in sequential and intra-table column pairs, they are
substantially higher than the baseline, showcasing that MARE
captures the appropriate correlations to a large extent.

With a conservative privacy budget, we see a contention
between Kullback-Leibler divergence and correlation quality.
Increasing the number of possible correlations has a slight neg-
ative effect on the joint-distribution quality, as the marginals
captured during sampling are larger and contain more noise.
However, while the difference in KL divergence is marginal,
the effect on correlations is substantial. This is caused by KL
being predominantly affected by individual histograms, which
degrade as we begin to consider more correlations.
Discussion. We showcase that MARE captures inter-row and
inter-table correlations and can produce usable synthetic data
with tangible privacy guarantees. After analyzing the output
synthetic data manually and through metrics, we note that
it maintains sequential and inter-table correlations to a large
extent while maintaining a usable joint-distribution quality.

At low privacy budgets, the output quality of the joint-
distribution is lower (histograms become noisy) in exchange
for better privacy. This is partly due to using PrivBayes [8]
for synthesis, which does not utilize post-processing tech-
niques such as mirror descent with belief propagation as in
PrivPGM [9]. Using mirror descent is a promising next step for
future work, alongside creating a structure learning algorithm
that can model high cardinality columns correlations better,
which are found in sequential and intra-table column pairs.

VII. RELATED WORK

In current SOTA, there are two broad approaches to generat-
ing tabular synthetic data: Neural Networks (PATE-GAN [5],
Med-GAN [11]) and Probabilistic Graphical Models (AIM [6],
PrivMRF [7], PrivPGM [9]).



0.8

0.9

1.0

M
IM

IC
C

o
r
e

Privacy, Mean KL Ablation, Mean KL

.05

.10

.15

Privacy, Cramer’s V Ablation, Cramer’s V

0.8

0.9

1.0

M
IM

IC
IC

U

.05

.10

.15
Intra-table

Sequential

Inter-table

Ref 1 2 5 10 100
Privacy Budget

0.2

0.4

0.6

M
e
d
O

n
c

Ref Base Inter Seq Both
Ablation Type

Ref 1 2 5 10 100
Privacy Budget

.05

.10

.15

Ref Base Inter Seq Both
Ablation Type

Fig. 4. Synthesis ablation & privacy study results

Simulacrum (https://simulacrum.healthdatainsight.org.uk/)
is a synthetic dataset by NHS which uses Bayesian net-
works and first-order Markov Chains (referencing one previous
event). The Bayesian networks that form the dataset were
handcrafted and to ensure privacy a number of histograms,
especially those containing a few patients, were shuffled or
removed. Simulacrum does not feature differential privacy
guarantees and, due to large permutations, has limited down-
stream utility (e.g., patients can be treated after their death).

PrivLava [12] is an algorithm that extends the tabular
synthesis algorithm PrivMRF to the relational domain. The
authors apply it to a census dataset where households are gen-
erated, and for each household their members are generated.
For inter-table correlations, PrivLava uses a single column
latent variable and conditions child rows to it. It does not
model intra-table correlations (e.g., sequences). As such, it is
not suitable for medical datasets.

HMA1, proposed under the system SDV [13], is a gen-
eralized approach for generating hierarchical synthetic data.
Underlying it is a statistical approach for generating data using
copulas. In a tabular setting, each input column is assumed to
be continuous, and the table is fit using copulas, which is then
performed recursively to produce relational data. Similar to
PrivLava, it does not model intra-table correlations.

VIII. CONCLUSION

In this paper, we presented MARE, a novel algorithm for
synthesizing relational data with differential privacy. MARE
achieves this by modelling and capturing essential correla-
tion types in relational data. Across experiments, we show
that MARE captures a significant amount of the correlations
present in the original data. For large datasets, this is the
case even at low privacy budgets (e.g., 2). Thus, MARE
gives data owners an avenue for producing relational synthetic
data. We release an open-source implementation of MARE
(https://github.com/pasteur-dev/pasteur), which can be used to
synthesize relational datasets by providing the dataset schema,
column types, and privacy budget. We highlight potential for

future work, including creation and use of tabular synthesis
algorithms that capture intricate correlations better with a
higher utility at low privacy budgets.

ACKNOWLEDGEMENTS & ETHICS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Skłodowska-Curie grant agreement No 955895.
The use of MedOnc was approved by the council of the
North Denmark Region (ID: 2023–007748) and the project
was according to the GDPR registered at the North Denmark
Region’s project inventory (ID: 2023–072).

REFERENCES

[1] Z. Zhang, T. Wang, N. Li, J. Honorio, M. Backes, S. He, J. Chen,
and Y. Zhang, “PrivSyn: Differentially Private Data Synthesis,” USENIX
Security, 2021.

[2] C. Dwork, “Differential privacy,” in ICALP. Springer, 2006.
[3] A. Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. A. Celi, and R. Mark,

“MIMIC-IV.”
[4] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,

“Modeling Tabular data using Conditional GAN,” in NeurIPS, 2019.
[5] J. Jordon, J. Yoon, and M. Van Der Schaar, “Pate-gan: Generating

synthetic data with differential privacy guarantees,” in ICLR, 2018.
[6] R. McKenna, B. Mullins, D. Sheldon, and G. Miklau, “AIM: An

Adaptive and Iterative Mechanism for Differentially Private Synthetic
Data,” 2022.

[7] K. Cai, J. Wei, X. Lei, and X. Xiao, “Data Synthesis via Differentially
Private Markov Random Fields,” VLDB, 2021.

[8] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao,
“PrivBayes: Private Data Release via Bayesian Networks,” ACM TODS,
2017.

[9] R. Mckenna, D. Sheldon, and G. Miklau, “Graphical-model based
estimation and inference for differential privacy,” in International Con-
ference on Machine Learning, 2019.

[10] L. Børty, R. F. Brøndum, H. S. Christensen, C. Vesteghem, M. Sev-
erinsen, S. P. Johnsen, L. H. Ehlers, U. Falkmer, L. Ø. Poulsen, and
M. Bøgsted, “Trends and drivers of pharmaceutical expenditures from
systemic anti-cancer therapy,” Eur. J. Health Econ.,” 853-865, 2023.

[11] K. Guo, J. Chen, T. Qiu, S. Guo, T. Luo, T. Chen, and S. Ren, “Medgan:
An adaptive GAN approach for medical image generation,” Comput.
Biol. Medicine, 2023.

[12] K. Cai, X. Xiao, and G. Cormode, “Privlava: Synthesizing relational
data with foreign keys under differential privacy,” PACMMOD, 2023.

[13] N. Patki, R. Wedge, and K. Veeramachaneni, “The Synthetic Data Vault,”
in IEEE DSAA, 2016.


