Tree-Pattern Similarity Estimation for Scalable Content-based Routing

Raphaél Chand * Pascal Felber Minos Garofalakis
University of Geneva, Switzerland University of Neuchatel, Switzerland Intel Research Berkeley, USA
raphael.chand @ cui.unige.ch pascal.felber @unine.ch minos.garofalakis @intel.com

Abstract

With the advent of XML as the de facto language for
data publishing and exchange, scalable distribution of XML
data to large, dynamic populations of consumers remains
an important challenge. Content-based publish/subscribe
systems offer a convenient design paradigm, as most of the
complexity related to addressing and routing is encapsu-
lated within the network infrastructure. To indicate the type
of content that they are interested in, data consumers typi-
cally specify their subscriptions using a tree-pattern spec-
ification language (an important subset of XPath), while
producers publish XML content without prior knowledge
of any potential recipients. Discovering semantic commu-
nities of consumers with similar interests is an important
requirement for scalable content-based systems: such “se-
mantic clusters” of consumers play a critical role in the
design of effective content-routing protocols and architec-
tures. The fundamental problem underlying the discovery
of such semantic communities lay in effectively evaluating
the similarity of different tree-pattern subscriptions based
on the observed document stream. In this paper, we pro-
pose a general framework and algorithmic tools for estimat-
ing different tree-pattern similarity metrics over continuous
streams of XML documents. In a nutshell, our approach re-
lies on continuously maintaining a novel, concise synopsis
structure over the observed document stream that allows us
to accurately estimate the fraction of documents satisfying
various boolean combinations of different tree-pattern sub-
scriptions. To effectively capture different branching and
correlation patterns within a limited amount of space, our
techniques use ideas from hash-based sampling in a novel
manner that exploits the hierarchical structure of our docu-
ment synopsis. Experimental results with various XML data
streams verify the effectiveness of our approach.

1. Introduction

XML (eXtensible Markup Language) [24] has become
the dominant standard for data encoding and exchange.
Given the rapid growth of XML traffic on the Internet, the
effective and efficient delivery of XML documents is an im-

*This work was done while the author was at INRIA Sophia Antipolis,
France.

portant issue. As a consequence, there is growing interest in
the area of XML content-based filtering and routing, which
addresses the problem of effectively directing high volumes
of XML-document traffic to interested consumers based on
document contents.

Unlike conventional routing, where packets are routed
based on a limited, fixed set of attributes (e.g.,
source/destination IP addresses and port numbers), content-
based publish/subscribe systems route messages on the ba-
sis of their content and the interests of the message con-
sumers. Consumers typically specify subscriptions, indi-
cating the type of XML content that they are interested
in, using some XML pattern specification language (e.g.,
XPath [23]). For each incoming XML document, a content-
based router matches the document contents against the set
of subscriptions to identify and route the document to the
(sub)set of interested consumers. Therefore, the “destina-
tion” of an XML document is generally unknown to the data
producer and is computed dynamically based on the docu-
ment contents and the active set of subscriptions.

Traditional content routing systems are usually based on
a fixed infrastructure of reliable brokers that filter and route
documents on behalf of producers and consumers (e.g., [6]).
This routing process is a complex and time-consuming op-
eration, as it often requires the maintenance of large routing
tables on each router and the execution of complex filtering
algorithms (e.g., [1, 5, 12]) to match each incoming doc-
ument against every known subscription. The use of sum-
marization techniques (e.g., subscription aggregation [3, 4])
alleviates those issues, but at the cost of significant control
message overhead or a loss of routing accuracy.

Another approach to XML content routing consists in
gathering consumers with similar interests so as to form se-
mantic communities. Thereafter, messages can be quickly
disseminated within a community without incurring signif-
icant filtering cost [7]. Obviously, for such techniques to be
efficient, one need to organize consumers according to ade-
quate proximity metrics, i.e., by creating semantic commu-
nities that correctly map to the interests of the consumers.
One such metric is that of containment: a subscription p
contains another subscription g, or ¢ C p, if and only if any
message m that matches ¢ also matches p. However, this
metric is not adequate for building semantic communities

as it is asymmetric and evaluates to a boolean value, hence
producing tree (inclusion-based) topologies instead of clus-
ters. The challenge lies in the design of a proximity metric
that can determine with high accuracy whether distinct tree
pattern subscriptions are likely to represent the same set of
documents, and hence should be part of the same semantic
community.

media /
C‘D /. /‘/
l /‘/ 1. com;‘)oser
/\
IaLt C‘D i 1 last
"Mozart" ”M()‘mrt” "Mozart" C‘D "Mozart"
Pa Py Pc Pa
media
/\
book CcD
— T
author title composer title interpreter
A
first last ”Hal‘nlet” first last ”ReqL‘tiem” enstbIe
”Will‘ium " ”Shake,‘vpeare” ”W(}lf‘gang” ”MoLart " ”Berlim‘)r Phil."
T

Figure 1: Sample tree patterns (top) and XML tree (bottom).

In this paper, we specifically address the problem of
computing the similarity between sets of tree patterns
(which do not have containment relationships in the gen-
eral case). The objective is to evaluate the proximity be-
tween two given tree patterns (e.g., XPath expressions) in
the context of XML filtering, i.e., the probability that both
patterns yield the same result when applied against a given
XML document. Obviously, consumers with highly similar
subscriptions are good candidates for being part of the same
semantic community.

Example 1.1 Consider the two tree pattern subscriptions
Pa and py shown in Figure 1: p, specifi es documents with
a root element labeled “media” that has a child labeled
“CD”, which in turn has a grandchild labeled “last” with
a sub-element labeled “Mozart”; py specifi es documents
that have an element labeled “CD” (at any depth) with a
sub-element labeled “Mozart”. Here, the node labeled “*”
(wildcard) represents any label, while the node labeled “//”
(descendant) represents some (possibly empty) path.

The XML document T' shown in Figure 1 matches p, but
not py, because the sub-element labeled “Mozart” in T does
not have a parent element labeled “CD”. As a matter of
fact, it is unlikely that any XML document with the same
type descriptor (DTD) as 'T' matches py because the name of
the CD’s author is expected two levels deeper than specifi ed
in the pattern. A document matching p, is thus unlikely to

match py (and vice versa), and the patterns have therefore
low similarity.

Pattern p. specifi es documents that have an element la-
beled “CD” and an element labeled “Mozart” (both can
appear at any depth). The XML document T matches p.
and it trivially appears that p. contains p,—any document
that matches p, also matches p.—but the converse is not
true: a wide range of XML documents can match p. but not
Da. In particular, “Mozart” doesn’t need to be the com-
poser of a CD, but could be for instance the title of a book.
Therefore, while there is some similarity between p, and p.,
these patterns are clearly not equivalent.

Pattern pg specifi es documents that have an element la-
beled “composer” (at any depth) with a child labeled “last”
and a grandchild labeled “Mozart”. Formally, there is no
containment relationship between p, and pq although doc-
ument T matches both. Taking into account the XML doc-
ument type and assuming that T' shows all valid elements
(i.e., other XML documents of the same type will have the
same structure, with variations only in the cardinality of the
elements and the values at the leaves), then any document
that matches p, must also match pg and conversely: the “*”
in p, must correspond to “composer” while the “//” in pq
must correspond to the path “media/CD”. Therefore, both
patterns are equivalent with respect to T' and XML docu-
ments of the same type. (I

The similarity between two tree patterns p and ¢ can be
evaluated based on their selectivity. For instance, one can
estimate the probability P(p|q) that p matches a document
T given that ¢ matches 7T'. Existing solutions cannot be di-
rectly adapted for our problem, because they only address
single-path selectivity [8], only support exact match in tree
patterns (no “*” or “//’) [9], or do not accurately estimate
conjunctions [4].!

In contrast, the main focus of this paper is to accurately
evaluate the similarity of seemingly unrelated tree patterns
(e.g., patterns p, and pgy in Figure 1) using information de-
rived from a possibly infinite stream of XML documents.
Given the large volume of observed XML data, the key chal-
lenge is to incrementally maintain a concise, yet accurate
synopsis that allows us to effectively capture the correla-
tions of pattern occurrences across documents in the stream;
for instance, to estimate the fraction of documents contain-
ing both patterns p and ¢, rather than only p or q. To that
end, we propose a novel compact XML stream synopsis that
can accurately capture such cross-pattern correlations us-
ing stream-sampling techniques that exploit the hierarchi-
cal nature of XML documents. Our synopsis can be main-
tained incrementally over the document stream and employs
new pruning algorithms for maintaining an accurate picture
of the document correlations within a given space budget.

Note that support for conjunctions is necessary to accurately estimate
P(plg) = P(p A a)/P(q)-

We also present a simple recursive algorithm for estimat-
ing tree-pattern selectivities and similarities over our pro-
posed synopsis. We should stress that the usefulness of
our results is not limited to content-based routing, but also
extends to other application domains, such as approximate
XML queries involving tree patterns.

The rest of the paper is organized as follows. We first for-
mulate the problem in Section 2. We introduce the synopsis
structure in Section 3 and describe how it is used to com-
pute the similarity of tree pattern in Section 4. We evaluate
the effectiveness of our algorithms in Section 5 and discuss
related work in Section 6. Finally, Section 7 concludes.

2. Problem Formulation

Definitions. We use a subset of XPath for expressing tree-
structured XML queries. A tree pattern is an unordered
node-labeled tree that specifies constraints on the content
and the structure of an XML document. In this paper, we
mostly reuse the terminology and notation introduced in [4].
The set of nodes of a tree pattern p is denoted by Nodes(p),
where each node v € Nodes(p) has alabel, label(v), which
can either be a tag name, a “*” (wildcard that can corre-
spond to any tag), or a “//” (the descendant operator). A
descendant operator must have exactly one child that is ei-
ther a regular node or a “*”. We define a partial ordering <
on node labels such that if ¢ and a’ are tag names, then (1)
a=<*=//and (2) a < a' ifand only if a = a'.

The root node root(p) has a special label “/.”. We use
Subtree(v,p) to denote the subtree of p rooted at v, re-
ferred to as a sub-pattern of p, Children(v) to denote the
set of children of v, parent(v) to denote the parent of v,
and root(p) — v to denote the path from the root of p to
node v. XML documents are represented as node-labeled
trees, referred to as XML trees. The notation for Nodes,
Subtree, Children, parent, label, and root also applies
to XML trees.

Let T be a node-labeled XML tree with ¢ € Nodes(T),
and p be a tree pattern with v € Nodes(p) \ root(p). We
say that T" matches or satisfi esSubtree(v,p) at node ¢, de-
noted by (T,t) = Subtree(v,p), if the following condi-
tions hold: (1) if label(v) is a tag, then ¢ has a child node
t’ labeled label(v) such that for each child node v’ of v,
(T, 1) = Subtree(v’,p); (2) if label(v) = “*7, then ¢ has
a child node ' labeled with an arbitrary tag such that for
each child node v’ of v, (T,t) | Subtree(v’,p); and (3)
if label(v) = “//”, then t has a descendant node ¢’ (pos-
sibly ¢ = t) such that for each child v’ of v, (T,t') |E
Subtree(v', p).

Let T be an XML tree with ¢, = root(T), and p be a
tree pattern with v, = root(p). We say that T' matches or
satisfi esp, denoted by T' = p, if and only if the following
conditions hold for each child node v of v,.: (1) if label(v)
is a tag a, then ¢, is labeled with a and for each child node

v of v, (T,t.) E Subtree(v’,p); (2) if label(v) = “*7,
then ¢, may have any label and for each child node v’ of
v, (T,t,) | Subtree(v',p); (3) if label(v) = “//”, then
t, has a descendant node t' (possibly ¢ = ¢,) such that
T’ = p', where T" is the subtree rooted at ¢', and p’ is
identical to Subtree(v, p) except that *“/.” is the label for the
root node v (instead of label(v)). The reason for treating v,
differently from the rest of the nodes of p is illustrated by p.
in Figure 1: the node labeled “CD” may appear anywhere in
the XML document, including at the root, and it may or not
be an ancestor of the node labeled “Mozart”. This cannot be
expressed without our special root label ““/.” as tree patterns
do not allow a union operator.

It is worth mentioning that our tree patterns are graph
representations of a class of XPath expressions, which are
similar to the tree patterns that have been studied for XML
queries (e.g., [2, 27]).

Problem Statement. We can now state the tree pattern
similarity problem that we address in this paper as follows.
Consider two tree pattern subscriptions p and g. Let S and
D be the universe of all valid subscriptions and XML docu-
ments, respectively. We want to estimate the similarity be-
tween p and ¢, denoted by (p ~ ¢) and defined as a function
of 82 [0, 1] that returns the probability that p matches the
same subset of XML documents from D as q does. Depend-
ing on the proximity metric that we use to estimate similar-
ity, this relation may or may not be symmetric.

3. Summarizing the Document Stream

Given the large volume of streaming XML content, it is
clearly infeasible to maintain an accurate distribution of all
documents — the space requirements would be linear in the
size of the stream. Instead, our approach is to maintain a
concise, yet accurate synopsis that effectively captures the
path distribution of the XML document stream, and allows
us to estimate the fractions of documents satisfying differ-
ent patterns (i.e., tree pattern selectivities). Estimating pat-
tern similarity metrics makes the problem even more com-
plex: essentially, our methods need some space-efficient
means of capturing cross-pattern correlations across docu-
ments in the stream. In other words, given two tree patterns
p and ¢, our synopsis should allow us to effectively capture
potential correlations in the occurrence of p, ¢ in the stream-
ing documents. Note that, especially for “similar” patterns,
such correlations will be quite strong and naive indepen-
dence assumptions are likely to fail miserably.?

3.1. Building the Synopsis

As mentioned above, it is simply impossible to maintain
an accurate distribution for the complete XML-document

2In the presence of DTDs, we can obtain additional structural informa-
tion about the documents to enhance our synopsis. To simplify the exposi-
tion, in this paper, we assume no DTD information is available.

history H, in order to obtain accurate similarity estimates
for our tree patterns. Instead, our approach is to approxi-
mate H by a concise document synopsis structure, Hg, that
is built on-line as XML documents stream by. Our docu-
ment synopsis essentially has the same structure as an XML
tree, except for two key differences. First, the root node
of Hg has the special label “/.”. Second, each non-root
node ¢ in Hg is associated with a matching set, denoted
by S(t), that tracks the collection of documents that contain
the given node.

Intuitively, if I; /la/ - - - /1,, is the sequence of tag names
on nodes along the path from the root to ¢ (excluding the
label for the root), then S(t) represents the set of document
identifiers in H that contain a path “l; /l/ - - - /1,,” originat-
ing at the root. The purpose of the matching set information
stored within synopsis nodes is to capture cross-pattern cor-
relations that can be used during our selectivity estimation
process (Section 4). It is clear, however, that the size of this
information is in the order of the size of the stream, so it
needs to be effectively compressed — we discuss different
compression schemes later in this section.

Hg is incrementally maintained as XML documents
stream by. We briefly describe a straightforward mainte-
nance technique here, as the details may vary depending on
the specifics of the matching set representation. For each
arriving document 7', we first construct the skeleton tree T
for document 7. In the skeleton tree 1§, each node has
at most one child with a given tag. 7§ is built from T
by simply coalescing two children of a node in 7T if they
share a common tag. Clearly, by traversing nodes in 7" in a
top-down fashion and coalescing child nodes with common
tags, we can construct 7T from 7" in a single pass (using an
event-based XML parser). Next, we use T to update our
synopsis Hg as follows. For each path in T ending with
node ¢, let ¢’ be the last node on the corresponding unique
path in Hg (we add missing nodes if the path does not yet
existin Hg). We add the document identifier for 7" to S(t').

Example 3.1 Figure 2 shows several XML documents
Ty, ...,Ts, the skeleton trees of T1 and T3, and the result-
ing document synopsis. The synopsis contains information
about uncompressed matching sets (represented by a set of
document identifi ers). The frequency of a path from the
root to node t is given by |S(t)|, and the probability that
such a path is encountered in an XML document is given by
|S(¢)|/|H|. For instance, the probability of an occurrence
of path Ja/b/h”is 1/6 (it only appears in one of the 6 docu-
ments); we can also observe that elements ‘b”and ‘d”are
more frequent than ‘t’. The probability that an XML docu-
ment matches a tree pattern with more than one branch, or
with “*”and 7/”nodes, will be discussed later. (|

3.2. Compressing Matching Set Information

Given that we cannot afford to store information whose
size is in the order of the stream length, we need effective
methods of summarizing matching set information in our
synopsis nodes. We discuss three different alternatives for
matching set compression in what follows.

Counters. In its simplest form, a matching set can be
summarized as a simple counter that indicates the num-
ber of documents that contain the corresponding synopsis
node. This simple frequency-based approach (also pro-
posed in [4]) may work reasonably for estimating the se-
lectivity of single tree patterns; however, it fails to ef-
fectively capture cross-pattern correlations since it relies
on naive independence assumptions to handle conjunctions
(i.e., branching points in the patterns). Consider, for in-
stance, the tree pattern p =“a[b][d]” (a node “a” with two
descendants “b” and “d”) and the synopsis of Figure 2.
Using counters, one would estimate the probabilities of
paths “a/b” and “a/d” as 1/2, and multiply them to com-
pute the probability of p as 1/4; the correct value is 0 be-
cause elements “b” and “d” are mutually exclusive in the
XML documents. Similarly, the probability of tree pattern
p =“a[c/f][c/0]” would be under-evaluated as 1/9; its cor-
rect value is 1/3 because of the co-occurrence of elements
“” and “0” in the XML documents. The loss of precision
can grow larger with more complex tree patterns.

Fixed-Size Sample Sets. A second simple strategy con-
sists in using sampling over the document stream to ensure
that our synopsis only stores information about a (fixed-
size) random subset of the streaming documents. To ensure
that a uniform sample of documents is kept in the sets, the
probability of adding a document in the synopsis decreases
with its position in the stream. More precisely, using Vit-
ter’s reservoir-sampling scheme [22], given a desired sam-
ple size of s, the k" document in the stream is included
in the synopsis with probability min{1, s/k}; if there is no
sample slot available at the root node of the synopsis (i.e.,
k > s), a document identifier chosen uniformly at random
from the current sample is removed from all synopsis nodes
to make room for the new selected document. This strategy
guarantees that the paths from a (fixed-size) uniform ran-
dom sample of the document stream are used to maintain
the synopsis. The drawbacks of this approach is that it relies
on fairly coarse, document-level sampling, with a sampling
rate decided uniformly across all synopsis nodes. This typ-
ically implies that only information from a small number of
documents and paths is maintained, resulting in poor esti-
mates. The sampling space is also not uniformly utilized
across synopsis nodes, with most nodes holding only a few
elements. Furthermore, due to the coarse-grain sampling,
the given space budget for the synopsis may very well be
under-utilized at times, since new arrivals may cause several

a a a a a a
| | T T \ \
b b b c c d d d
e g e e f g e f h f o o f o f e q e e P e
N | AN | AN VAN | NN VAN |
k m k k m k n n n n n k m k m k m m
T1 Tz T3 T4 T5 TS
/. {1,2,3,4,5,6}
a a a {1,2,3,4,56)
/\
1‘) b c b (1,23} C {34} d (4,56}
e ¢} e f h f o en23 fes guza h@ f e o034 e (456} P {5 q {4
VN | | | SN \ \
k m k n n kK (1231 m{12 n {3} n 34 k@sy mase k@ m {4}
Skeleton of T Skeleton of T3 Document synopsis of 71, ..., Tg

Figure 2: Example XML documents (top) and the corresponding skeleton trees and document synopsis (bottom).

nodes in the synopsis to be deleted (when their matching set
becomes empty).

Per-Node Hash Samples. Our final, and more sophis-
ticated, scheme for compressing matching sets in our
document synopsis uses Gibbons’ distinct sampling tech-
nique [15] for maintaining a sample of distinct elements (of
a given target size) over a stream. Briefly, the main idea
is to employ a hash function h() that maps element identi-
fiers onto a logarithmic range of levels, such that each el-
ement maps to a level > [with probability 1/ 2! that is,
Problh(z) > 1] = % Thus, every element in the stream
maps to a level > 0, approximately 1/2 of the elements map
to a level > 1, and so on. Given a target sample size s, the
idea is to start with level = 0 (i.e., sampling every element
with probability 1); whenever the sample size exceeds s, set
the current level to (level +1) and sub-sample the current
set of sampled elements to keep only the ones mapping to
the current level and above (reducing the size of the hash
sample by approximately 1/2). In other words, the current
level determines the (appropriate power-of-two) sampling
probability for an element in the stream.

Our final compression method essentially maintains such
a bounded-size hash-sample signature of the S(t) sets at
each synopsis node t. More specifically, for each incom-
ing document 7', every root-to-leaf path in the document
skeleton T is mapped to a (unique) synopsis path, and the
document identifier of 7T is inserted in the hash sample for
the last node of that synopsis path.

It is important to note that updating S() only at the fi-
nal node of an incoming path is sufficient, since the full
matching set of a parent node in the document synopsis is
guaranteed to contain those of its children. A hash sample
of the full matching set at a node ¢ in the synopsis can be
computed by recursively unioning the hash samples across
all descendants of ¢. Unioning two hash samples is a sim-
ple operation: letting [; and Iy denote the current levels

of the two samples, the idea is to set the level of the out-
put sample to ! = max{ly, 2}, and sub-sample the higher
probability (lower-level) sample down to level [; an addi-
tional sub-sampling step with level = [+ 1 may be needed
if the size of the output exceeds the space budget s. Similar
schemes can be used for effectively estimating other expres-
sions (e.g., intersection, cardinality) over the matching sets
based on the maintained hash samples; more details can be
found in [15, 14]. These algorithms form a key part of our
selectivity-estimation procedure.

Unlike our earlier document-level sampling scheme, per-
node hash samples allow us to sample document identi-
fiers at a much finer granularity, essentially sampling the
identifiers “hitting” individual nodes in the synopsis based
on a per-node space budget. In general, this implies bet-
ter quality samples (and corresponding selectivity/similarity
estimates) that can effectively exploit the available space
budget for the document synopsis. At the same time, even
though the synopsis factorizes common paths in the docu-
ment stream to store the corresponding matching set sam-
ples, the volume of these paths could cause the size of
the synopsis to grow well beyond our available space bud-
get. Thus, effective techniques for synopsis pruning become
critical — we address this issue next.

3.3. Pruning the Document Synopsis

To keep the space requirements of our document synop-
sis under control, we now propose different techniques for
pruning the synopsis (i.e., removing nodes) while minimiz-
ing the loss of precision during selectivity evaluation. These
techniques should be combined during synopsis mainte-
nance to ensure that the size of the synopsis stays within
the available space budget.

Merging Same-Label Nodes. Our first pruning opera-
tion merges same-label nodes that have similar matching
sets, unioning their corresponding hash-sample summaries.
To minimize precision loss, same-label node pairs (say, ¢

and t') are selected in decreasing order of their (estimated)
matching set similarity, i.e., the ratio % as esti-
mated using the hash-sample summaries in ¢ and ¢’. The
final, merged node has the same label as ¢ and t’, and its
hash sample is computed as the intersection of the samples
of t and t' (i.e., S(¢) N S(t')). In general, this operation
transforms the document synopsis tree into a DAG, since
the merged nodes can have different parents located at dif-
ferent levels of the original synopsis. Also, note that the
final merged node satisfies the inclusion property for the re-
sulting parent-child matching sets: a node matches a subset
of the documents that its parents match.

Our node-merging scheme only considers merging ei-
ther same-label leaf nodes or same-label non-leaf nodes that
share the same children (i.e., their children have already
been merged). That way, we can merge complete subtrees
in a bottom-up pass starting from the leaves, without los-
ing structural information (i.e., introducing false label paths
in the synopsis). Note that, if the matching sets of merged
nodes are identical, the compression is essentially lossless.
Figure 3 (right subtree) illustrates an example merge of
same-label leaf nodes on the synopsis of Figure 2.

/. {1,2,3,4,5,6}

a {1,23,4,56}
b (1,23} c[fl[o[n]] (3,4 d {456}
(‘e {1,2,3} e {456} P {5} q {4}
I‘(12,3} m {4} Kk (4

Figure 3: Compressed synopsis after merging same-label
nodes (right subtree), folding nodes (middle subtree), and
deleting nodes (right subtree).

Folding Leaf Nodes. Our second compression technique is
based on discovering a parent-child pair of synopsis nodes
(say, t,, t), where the child node ? is a leaf and has a match-
ing set S(t) that is similar to that of its parent, i.e., the
(estimated) similarity ratio % is large. Note that
such pairs could be quite common, e.g., for children nodes
that are mandatory according to the underlying document
schema. Our compression scheme “folds” such leaf chil-
dren ¢ into the parent node ¢,. Letting [(¢), [(f,) denote
the labels of ¢ and ¢, respectively, we define the label of
the resulting folded node as I(t,)[l(¢)] to denote the nest-
ing of the child node previously under ¢,. We also set the
matching set hash sample for the resulting node equal to
the union of the hash samples for ¢ and ¢,. Note that, in
general, this operation can result in folded synopsis nodes
with labels nested at several levels (essentially, represent-
ing synopsis subtrees), and the matching sets at the folded
nodes capture the set of document identifiers that share all
the paths in these subtrees. Thus, our folding scheme allows
us to effectively compress the matching set information for

entire subtrees appearing in similar subsets of documents in
the stream. An example nested label is depicted in Figure 3
(middle subtree).

As previously, we apply folding operations across
parent-leaf child pairs in decreasing order of their set-
similarity ratio. In the case of synopsis leaves with multiple
parents (which may result from node merges), we estimate
the overall similarity score as the average of the similarity
ratios across all parent nodes, and fold the leaf node into all
its parents in the synopsis.

Deleting Low-Cardinality Nodes. Our final (and simplest)
technique for synopsis pruning is to remove leaf nodes that
have little influence on selectivity estimation. To that end,
we choose candidate leaf nodes ¢ that have small matching
sets; that is, the count |S(t)| is small. (In the case of sam-
ple summaries, this count can be easily estimated from the
maintained sample.) By repeating this process, entire parts
of the synopsis tree can be pruned. An example of low-
frequency node deletions over the synopsis of Figure 2 is
shown in Figure 3 (left subtree).

Note that, of the three pruning techniques presented
here, leaf-node deletions are the primary means for control-
ling synopsis size in the case of counter summaries. With
more detailed, sampling-based information stored in synop-
sis nodes, our first two pruning methods can provide signif-
icant space savings by compressing samples across nodes.

4. Estimating Tree Pattern Selectivity

We now describe how the selectivity of p, i.e., the prob-
ability P(p) that a document matches p, is computed using
the synopsis. The algorithm works independently of how
matching sets are stored in the synopsis (as complete sets
or as summaries), given that we can compute their union,
intersection, and cardinality.

The Selectivity Algorithm. Let p be a tree pattern. The
selectivity function SEL (Algorithm 1) parses recursively
nodes of p against nodes of the synopsis Hg. When exe-
cuted with the root nodes of Hg and p, the function returns
the set of document identifiers that satisfy p — or an ap-
proximation thereof.

Let u be a node of p and v a node of the synopsis such
that v marches u. Let Children(u) = {uj - - u,} be the
children of u in p and Children(v) = {v1 - - - v, } the chil-
dren of v in the synopsis. The root nodes of the synopsis
and p are denoted by 7 and 7, respectively (note that r, is
the node with label */” introduced in Section 2). Let S(v)
be the set of documents that contain path ry — v.

Intuitively, the algorithm tries to locate paths in Hg that
satisfy root-to-leaf paths of p (line 4), taking their unions
and, upon branching, the intersection over all children in
p (line 9). The < operator (line 1) allows a “*” node in
p to match any label in Hg. The process is slightly more

complex when encountering a “//”” node, because we try to
map it to paths of length 0 (line 12) or > 1 (line 13).

Some subtle modifications must be performed to the al-
gorithm when representing matching sets as counters (see
Section 3). Essentially, we replace respectively the union,
intersection, and cardinality of sets by the maximum, prod-
uct, and value of counters.

Algorithm 1 Recursive selectivity function: SEL (v, u)
1: if label(v) £ label(u) then

2: SEL(v,u) = @

3: elseif w is a leaf then

4: SEL(v,u) = S(v)

5: elseif label(u) # // then

6: if v is a leaf then

7: SEL(v,u) = &

8: else

9: SBL(v, u) = Ny/conitdren(u) Un’ eChitaren () SEL(Y u)
10: endif

11: else

12: 8o = N/ echitaren(uy SEL(V, u')
130 S>1 = Uurecnitaren(v) SEL(V'; u)
14: SEL(v,u) = So U S1

15: end if

{label(u) = //}

Algorithm 2 Selectivity function: P(p)
1: P(p) = [SEL(rs, 75)|/|S(rs)]

Note that, for tree patterns that contain “//” nodes, a
pair (v, u) of nodes from Hg and p can be evaluated more
than once. Although not shown in the algorithm, one can
trivially store the results of previous evaluations (e.g., in a
2-dimensional array) to avoid redundant computations and
guarantee a quadratic time complexity in O(|Hg| - |p|) time,
where | Hg| and |p| are the number of nodes in the synopsis
and in the tree pattern, respectively.

To estimate the selectivity of a tree pattern p, function P
(Algorithm 2) computes the ratio of the cardinality of the
set returned by SEL, invoked on the root nodes of Hg and
p, to the number of documents added to the synopsis.

Proximity Metrics. Using our selectivity function, we can
now evaluate the similarity between a pair of tree patterns
p and q using a given proximity metric. We describe below
three specific metrics that, we believe, make sense for the
estimation of (p ~ ¢q).

The first metric is the conditional probability of p given
q, computed as:
P(pAq)

P(q)

To estimate P(p A ¢), we construct a new tree by simply
merging the root nodes of p and q.

Our second metric is the mean of the conditional proba-
bilities of p and ¢, computed as:

Ma(p, q) = P(plqg) ; Plalp) _ P(pAg)- (P(pQ)—1 + P(q)_l).

The third metric that we consider is the ratio of the joint
probability to the union probability, computed as:

Ma(p, q) = DPAD PlpAa)
' P(pVq) P(p)+P(g) —PpAq)

Mi(p,q) = P(plg) =

Note that the M, and M3 metrics are symmetric, i.e.,
M.31(p, q) = M{2,3y(q, p), while M is not.

5. Evaluation

We now present the performance study that we con-
ducted to verify the effectiveness of our tree pattern simi-
larity evaluation algorithm.

5.1. Experimental Setup

Data sets. We have generated sets of XML documents with
IBM’s XML Generator [13] tool, using a uniform distribu-
tion for selecting element tag names. Each set, which we
denote by D, consists of 10,000 random documents with
approximately 100 tag pairs on average and up to 10 levels.

The tree patterns considered in this paper are expressed
using a subset of the standard XPath language. We have
generated realistic subscription workloads using a custom
XPath generator that takes a Document Type Descriptor
(DTD) as input and creates a set of valid XPath expres-
sions based on several parameters that control: the maxi-
mum height h of the tree patterns; the probabilities p, and
p,, of having a wildcard (“*”) and descendant (“//”) opera-
tors at a node of a tree pattern; the probability p, of having
more than one child at a given node; and the skew 6 of the
Zipf distribution used for selecting element tag names. For
our experiments, we have generated sets of distinct tree pat-
terns of various sizes, with h = 10, p, = 0.1, p,, = 0.1,
py=0.1,and § = 1.

We have experimented with two different DTDs: NITF
(News Industry Text Format) [10] and xCBL Order [26],
which contain 123 and 569 elements, respectively. For each
DTD, we have generated two different sets of XPath expres-
sions. The first set, denoted by Sp, contains 1, 000 positive
queries, i.e., each expression matches at least one document
in D. The second set, denoted by Sy, contains 1,000 ex-
pressions that match no documents in D.

For the NITF (xCBL) DTD, a tree pattern in .Sp matches
8.27% (36.17%) of the documents in D, on average. The
most selective pattern matches 0.01% (0.01%) of the docu-
ments in D, and the least selective 84.85% (100%).

Synopsis. We constructed the synopsis Hg from the set of
documents D. We have experimented with the three differ-
ent representations of the matching sets stored at the synop-
sis nodes that we presented earlier, namely: Counters, Sets,
and Hashes. For the latter two, we have experimented with
sets and hashes of different maximum sizes (i.e., the maxi-
mum number of entries that can be stored in a matching set
at a given node).

We have also experimented with different degrees of
compression of the synopsis g when using Hashes. We
have pruned the synopsis using the techniques presented in
Section 3. We refer to the compressed synopsis as H§. The
compression degree, «, is computed as: o = |Hg|/|Hg|,

where |Hg| is defined as the sum of the number of nodes,
the number of edges, the number of labels, and the total
number of entries of all hashes in Hg. Each of these el-
ements can fit in a 32-bit integer (e.g., edges can be rep-
resented as node indices, labels can be stored as hashed
strings, etc.).

It is important to note that the compression degree is not
computed relative to the original set of documents D from
which the synopsis is built. Indeed, we are interested in
evaluating the synopsis compression techniques and study
the loss of precision when using Hg instead of Hg. The
original synopsis Hg is already a compacted representation
of D, since it factorizes common paths in the documents.
This compaction ratio is not interesting because it depends
almost exclusively on the kind of documents used for the
experiments. For instance, the DBLP XML document [11]
has 7,991, 221 tag nodes that can be stored in a 137-nodes
synopsis, i.e., with a compaction ratio of 0.0017%. With our
data sets, we had average document compaction ratios of
36.3% for the NITF DTD and 0.082% for the xCBL DTD.

The different experimental parameters are summarized
in Table 1.

Symbol Name Value range
D Data set NITF, xCBL
S Tree patterns set Sp, SN
MS Matching sets format | Counters, Sets, Hashes
h Maximum hash size 50 < h < 10,000
k Maximum set size 50 < k < 10, 000
« Compression ratio 0<a<l

Table 1: Experimental parameters

Proximity metrics. To evaluate the three proximity metrics
M, Ms, and Ms; introduced in Section 4, we have com-
puted the subset D,, of documents of D that match each tree
pattern p. Thereafter, the exact values of P(p) and P(p A q)
have been computed as |D,|/|D| and |D, N D,|/|D]|, re-
spectively.

Error metrics. We have measured the accuracy of our se-
lectivity function using the same error metrics as in [9, 8].
Let P(p) be the exact value for the selectivity of p, and
P’(p) our estimate. For a positive query p, we define the
absolute relative error of the estimation of its selectivity as:
|P'(p) — P(p)|/P(p). We then define the average absolute
relative error to quantify the accuracy of positive queries as:
1 [P’ (p) — P(p)

ISpl &5 - P(p)

For negative queries, we use the root mean square error to
quantify the accuracy of their estimated selectivity:

Fugr = \J LS (Prp) - P@)?

1SN pESN

Erer =

For each of the proximity metrics M;, we have measured
the accuracy of the estimated tree pattern similarity as fol-
lows (M; is the exact value, M is our estimate):

1 S |M](p,q) — Mi(p, q)|

Brer(M;) =
M) =15 M;(p. q)

p,g€Sp

5.2 Results

Selectivity. We have studied the average absolute rela-
tive error of positive queries, for each representation of the
matching sets, when varying the maximum hash size i and
set size k. Note that i and k are upper bounds and may not
be representative of the total number of entries in matching
sets. Further, for a given value of k = h, the synopsis based
on sets is typically smaller than when using hashes because
the former stores information about at most & documents.

Results are shown in Figure 4. One can observe that
Hashes clearly outperforms the other approaches and is less
sensitive to the DTD. Unsurprisingly, the error decreases
with the maximum size of hashes and sets. A hash size of
1’000 entries is sufficient to reach a relative error of less
than 5%. Even a very small hash size of 250 entries (less
than 1 kB) produces an error as low as 10%. Note that the
accuracy of Counters is constant as it does not use variable-
size structures to represent matching sets.

We have then studied the root mean square error to quan-
tify the accuracy of negative queries. Results are shown in
Figure 5 (note that Sets and Hashes are not shown for the
xCBL DTD as they produced no error for negative queries).
One can see that all three methods most always identify neg-
ative queries and return a selectivity of O (the real selectiv-
ity). Again, Hashes outperforms the other approaches.

To better analyze the space requirements of the synopsis,
we have analyzed the accuracy of the selectivity estimation
as a function of the total size of the synopsis |Hg| (com-
puted as described above). The results, shown in Figure 6
for the XCBL DTD, enable us to perform a fairer evalua-
tion of the three approaches. Obviously, Counters have the
lowest space requirements (3’567, which should typically
be multiplied by 4 to obtain the size in bytes), but limited
accuracy. Hashes have better accuracy than Sets for a given
space budget. For instance, the relative error reaches 5% for
a size of less that 150’000 (approximately 600 kB) while
Sets need 4 times more space for this level of precision.

Proximity metrics. We have measured the average abso-
lute relative error of the estimated similarity with each of
the proximity metrics over a set of 5,000 random pairs of
tree patterns in Sp, for each representation of matching sets,
and when varying the maximum size of hashes and sets.
Results are shown in Figures 7, 8, and 9. One can observe
that all three metrics produce similar results, thus highlight-
ing the consistency of our selectivity estimation algorithm.
Obviously, accuracy is slightly lower than when estimat-
ing selectivity because errors add up when computing sim-
ilarity. Again, Hashes consistently outperforms the other
approaches and produce good estimations with relatively
small hashes (approximately 5% error for h = 2/500).

Compressed synopsis. We have finally measured the ac-
curacy of the estimated selectivity on a compressed synop-

Erel (%)

Figure 4: Average absolute relative error of pos-
itive queries.

Erel (%)

Figure 7: Average absolute relative error of prox-
imity metric M1 (p, q) = P(plq)-

80 | -3.8

% Hashes - XCBL -4
v Sets - XCBL @
30 Counters - XCBL -

Hashes - NITF —&—
| Sets - NITF —o— -4
| Counters - NITF —5— 42 B |
60 L| Hashes - xCBL & | e
¢ Sets - xCBL @ 44] 25 |
\ Counters - xCBL & . X&_A e
\ T 461 4 W
4" % a8
p g -5
52+t
20 — 1
e . — 5.4t
* o o 5.6
. o e — 58 : i
0 2000 4000 6000 8000 10000) 2000 4000

Maximal size of hashes/sets

negative queries.

Maximal size of hashes/sets

Figure 5: Logio of the root mean square error of

9 20 &+
s e
Hashes - NITF —a— { 4 15[°®
Sets - NITF —o— @
Counters - NITF —&— 1 10 & b4
Counters - xCBL &= | o u .
5 aa .
hea,
I I 0 L L Y L L Y
6000 8000 10000 0 200000 400000 600000 800000 1e+06

Size of synopsis

Figure 6: F,..; as a function of the total size of
the synopsis.

120

T T T T 120 T T
| Hashes - NITF —&— \
% - == |
L\ ounters - —a— | L
100 &? Hashes - xCBL -4 100
Sets - xCBL @
80 T \ Counters - XCBL @ | 80
g _ g
9
60 1 s 60
i
40 9 40
3 ~—_
20%%3 g] 20|
0 . : ; : = 0 . :
0 2000 4000 6000 8000 10000 0 2000 4000

Maximal size of hashes/sets

sis, for different ratios of compression «. For this experi-
ment, we only considered the Hashes approach and we fixed
the hash size k to a value of 1,000 entries. Compression
techniques have been applied as follows: first, folding leaf
nodes with the same matching set as their parents (lossless
compression); then, folding and deleting low-cardinality
nodes; finally, merging same-label nodes. We have obtained
good overall results in our experiments by applying pruning
operations in this order.

80 ——— 4.4
4
70 |
60 | A Eo-NITF —&—1 46
Eyo - XCBL ~-a

50 | Egor - NITF —o— | ~
9 : I
< 4t 48 g
ur >

30 b 2

20 + 5

10 t

- -5.2
90 100

%0 10 20 30 40 50 60 70 80
Compression ratio o

Figure 10: E,.; and E4, as a function of the compression ratio

of the synopsis.

Figure 10 illustrates the average absolute relative error of
positive queries F,..; and the root mean square error of neg-
atives queries E,, (note that the xCBL DTD produced no
error for negative queries). As expected, the error of pos-
itive queries decreases when « increases. The more com-
pressed the synopsis, the more mistakes the selectivity func-

Maximal size of hashes/sets

Figure 8: Average absolute relative error of prox-

imity metric M2 (p, q) = (P(plq) + P(q|p))/2.

Hashes - NITF —A— \\ ' ' Hashes “NITF —&—
Sets - NITF —&— 100 |/ Sets - NITF —6— 1
Counters - NITF —8— | Q Counters - NITF —&—
Hashes - xCBL & &) Hashes - xCBL &
Sets - xCBL @ 80 \ Sets - xCBL e
Counters - xCBL & 3 Counters - xCBL &
i
£ 60
s
w
40 |
l —~
20 o g
o,
L] @ \
: N 0) T S ’
6000 8000 10000 0 2000 4000 6000 8000 10000

Maximal size of hashes/sets

Figure 9: Average absolute relative error of prox-
imity metric M3(p,q) = P(p A q)/P(pV q).

tion does. For a synopsis compressed to 20% of its original
size, the relative error remains reasonably low (14.98%).

For negative queries, surprisingly, the error increases
with the compression ratio, but still remains extremely low.
The most logical explanation is that a highly compressed
synopsis has lost many of its initial nodes and, hence, the
selectivity function is less likely to contain paths that lead
to erroneously accepting a negative query.

6. Related Work

The similarity between data trees has been extensively
studied as a technique for linking data items in different
databases that correspond to the same real world objects.
The most widely used approach consists in computing the
“edit distance” between two trees, i.e., the minimum cost
sequence of edit operations (node insertion, node deletion,
and label change) that transform one tree into the other
(e.g., [20, 18]). In contrast, we study the similarity of XML
query trees, where similarity is not defined in terms of struc-
tural resemblance, but according to the set of documents
that match these queries. To the best of our knowledge, our
work is the first to study this problem.

Query transformations have been proposed in the con-
text of approximate matching. The idea is to rewrite
queries for faster evaluation or to take into account the vari-
ability among XML data conforming to the same schema
(e.g., [21, 16, 17, 19]). Some forms of tree patterns have
also been studied as queries for XML data [2, 25]. In partic-

ular, minimization algorithms for these patterns have been
developed in order to optimize pattern queries. These prob-
lems differ significantly from ours and the techniques pro-
posed to address them have little relevance here.

Other related work deals with the problem of XPath se-
lectivity estimation in XML databases. Chen et al. [8] pro-
pose the use of Pruned Suffix Tree (PST) summaries, where
atrie is used to encode the paths in the document and special
min-hash signatures within each node attempt to capture
branching correlations. Their selectivity estimation prob-
lem deals with the number of elements in a single document
that are discovered by an XPath expression; instead, we fo-
cus on pattern selectivities and similarities at the granularity
of entire documents containing the pattern(s). This makes
our summarization and estimation problems very different.
For instance, the parent-child inclusion properties for our
hash samples do not apply to the min-hash signatures of [8].

7. Conclusions

We have studied the problem of tree pattern similar-
ity, an important concept for building scalable XML dis-
tribution networks. We have proposed algorithms for accu-
rately evaluating the similarity between tree patterns by tak-
ing into account information derived from document histo-
ries, such as correlations and frequency distributions, and
using different proximity metrics. The principle of sim-
ilarity computation relies on incrementally maintaining a
novel, concise synopsis structure over the observed docu-
ment stream that allows us to accurately estimate the frac-
tion of documents satisfying different boolean combina-
tions of tree-patterns. Our techniques use ideas from hash-
based sampling in a novel manner that exploits the hierar-
chical structure of our document synopsis. Results from
an experimental evaluation demonstrate that our similarity
metric is very accurate and consistent. Although the algo-
rithms presented in this paper have been designed for cre-
ating semantic communities in peer-to-peer content-based
routing systems, they are of interest in their own right and
can prove useful in other domains, such as approximate
XML queries.

References

[1] M. Altinel and M. Franklin. Efficient Filtering of XML Doc-
uments for Selective Dissemination of Information. In Pro-
ceedings of VLDB, Sept. 2000.

[2] S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava.
Minimization of Tree Pattern Queries. In Proceedings of
SIGMOD, May 2001.

[3] A.Carzaniga, D. Rosenblum, and A. Wolf. Design and Eval-
uation of a Wide-Area Event Notification Service. ACM
Transactions on Computer Systems, 19(3):332-383, 2001.

(4]

(5]

(6]

(7]

(8]

(9]

(10]
(11]
[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]
(24]
[25]

(26]
(27]

C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Ras-
togi. Tree Pattern Aggregation for Scalable XML Data Dis-
semination. In Proceedings of VLDB, Aug. 2002.

C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Effi-
cient Filtering of XML Documents with XPath Expressions.
In Proceedings of ICDE, Feb. 2002.

R. Chand and P. Felber. XNet: A Reliable Content-Based
Publish/Subscribe System. In SRDS 2004, 23rd Symposium
on Reliable Distributed Systems, Florianopolis, Brazil, Oct.
2004.

R. Chand and P. Felber. Semantic Peer-to-Peer Overlays for
Publish/Subscribe Networks. In Proceedings of Euro-Par
2005, Sept. 2005.

Z. Chen, H. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan,
R. Ng, and D. Srivastava. Counting twig matches in a tree.
In Proceedings of ICDE, pages 595-604, 2001.

Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan. Se-
lectivity estimation for boolean queries. In Proceedings of
PODS, pages 216-225, 2000.

L. P. T. Council. News Industry Text Format.

DBLP. DBLP XML records.

Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient
and Scalable Filtering of XML Documents. In Proceedings
of ICDE, San Jose, CA, Feb. 2002.

A. Diaz and D. Lovell XML Generator.
http://www.alphaworks.ibm.com/tech/xmlgenerator, ~ Sept.
1999.

S. Ganguly, M. Garofalakis, and R. Rastogi. “Processing Set
Expressions over Continuous Update Streams”. In Proceed-
ings of SIGMOD, San Diego, California, June 2003.

P. B. Gibbons. “Distinct Sampling for Highly-Accurate An-
swers to Distinct Values Queries and Event Reports™. In Pro-
ceedings of VLDB, Roma, Italy, Sept. 2001.

Y. Kanza, W. Nutt, and Y. Sagiv. Queries with Incom-
plete Answers over Semistructured Data. In Proceedings of
PODS, May 1999.

Y. Kanza and Y. Sagiv. Flexible Queries Over Semistructured
Data. In Proceedings of PODS, May 2001.

P. Klein. Computing the Edit-Distance between Unrooted
Ordered Trees. In Proceedings of the 6th European Sympo-
sium on Algorithms, Aug. 1998.

T. Schlieder. Schema-Driven Evaluation of Approximate
Tree-Pattern Queries. In Proceedings of EDBT, Mar. 2002.
D. Shasha and K. Zhang. Simple Fast Algorithms for
the Editing Distance between Trees and Related Problems.
SIAM Journal on Computing, 18(6):1245-1262, 1989.

D. Shasha and K. Zhang. Approximate Tree Pattern Match-
ing. In Pattern Matching Algorithms, pages 341-371. Oxford
University Press, 1997.

J. S. Vitter. “Random Sampling with a Reservoir”. ACM
Trans. on Math. Software, 11(1):37-57, Mar. 1985.

W3C. XML Path Language (XPath) 1.0, Nov. 1999.

W3C. Extensible Markup Language (XML) 1.1, Feb. 2004.
P. Wood. Minimizing Simple XPath Expressions. In Pro-
ceedings of WebDB, May 2001.

xCBL. XML Common Business Library.

L. Yang, M. Lee, and W. Hsu. Efficient Mining of XML
Query Patterns for Caching. In Proceedings of VLDB, Sept.
2003.

