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Abstract milliseconds), and in terms of how many distributed morsitor
can be tracked simultaneously. The second limitation (as in
recently proposed large-scale monitoring systems [4,d]2, 2

is their lack of flexibility in detecting when a sophisticdte

In recent work, we proposed D-Trigger, a framework for tracking
global condition over a large network that allows us to detect anoma

lies while only collecting a very limited amount of data from dis- . o -
; . > . global conditionacross a set of distributed machines exceeds
tributed monitors. In this paper, we expand our previous work by

designing a new class of queries (conditions) that can be tracked foqcceptable levels. L . .
anomaly violations. We show how security violations can be de- 10 address the scalability issues, we designed D-Trigger,
tected over a time window dny size. This is important because @ general framework in prior work [9, 10] for global con-
security operators do not know in advance the window of time instraint tracking. The key to achieving scalability is touee
which measurements should be made to detect anomalies. We albe amount of data needed for anomaly detection. In [10],
present an algorithm that determines how each machine should filwe provided an example of a particular anomaly detector that
ter its time series measurements before back-hauling them to a cevhen re-designed to fit in our framework, could continue to
tral operations center. Our filte_r'_s are com_puted analy_tically suchychieve high detection accuracy while only using 10-20% of
that upper bounds on false_posnlve and missed detection rgtes affe original data. In this paper, we focus on the problem of
guaran_teed. In our evaluation, We.Sh.OW that botnet det_eCt'on Cahck of sophistication in the types of conditions that can be
bg carried out sqccgssfully over a distributed set of machines, Wh”?racked for violations

simultaneously filtering out 80 to 90% of the measurement data. . ) . . .

The new queries and their supporting algorithms that we
develop here, were designed in accordance with our frame-
work. This framework is described in Sec. 2, but we briefly
mention a few points here. To reduce the amount of data
transmitted through the network, we advocate engaging the
1 Introduction monitors in filtering their own data, and only sending the op-

erations center new data “as needed”. What data is needed
Network-wide anomaly detection systems rely on largeescal by which machine depends upon the global constraint being
distributed monitoring systems to collect, aggregate andracked. Because the operations center is doing the datecti
present information describing the status and performafnce and it now operates under a limited view of the global data,
the network under observation. Many types of networks, in4t can make mistakes. To bound these mistakes, the filtering
cluding server clusters, enterprise networks, ISPs, and se at the monitors needs to be done in coordination with the op-
sor networks, employ such systems to track the health oérations center. Our framework proposes that the filtereng b
their networks. Remote monitor sites are typically deptbye done in such a way that detection errors are bounded.
throughout the network and, thus, their data streams presen In order to enable broader and more flexible conditions for
information from multiple vantage points. The ensemble oftriggering, we introduce a new class of triggers, cattachu-
these monitors leads to the creation of numerous, large, anldtive triggers.These triggers allow one to detect cumulative
widely-distributed time-series data streams that areilcont  violations that are persistent over time and are spreadsero
ously monitored and analyzed for anomalous conditions, eidistributed set of machines. One of our main contributiens i
ther benign or malicious. In typical monitoring systems, al to enable such potential violations to be measured over time
the measurement data collected across the remote momitorswithout specifying a fixed window siz& priori. Our key en-
shipped to a data fusion center (i.e. a network operatioms ce abling insight is that the filter parameters needed to suppor
ter) for processing. The fusion center can raise alarmsighou these triggers can be viewed as analogous to queue sizes.
it detect anything abnormal. The motivation for such triggers comes from the follow-

Today’s distributed monitoring systems suffer from two ing. Current designs for large-scale monitoring systeroggo

important limitations. The first is scalability - both intes  solely oninstantaneousrigger conditions, where the goal is
of how fast detections can be made (i.e. it is desirable tdo fire the trigger as soon as the aggregate (@) of ob-
shrink the time scale from hours and minutes to seconds anskrvations (e.g., CPU utilization or number of message sen
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zombie e ; may not raise any serious alarms (e.g., intelligent boiprets
’ : I vent compromised machines from transmitting at their max-
imum level so as to evade detection). However, by track-
/ . | ing thesSuM of the number of simultaneous TCP connections
i Ogi’na‘g‘r’ | icim from these hosts to a given destination, the excess or @dkrlo
‘ ' : would be more easily revealedUpon detection ISPs could
block this unwanted traffic via filters on the gateways. In an
enterprise network the hosts could simply be disconnected.
In our experimental evaluation, we use real-life distréalit
() wenemprise data streams collected from PlanetLab IDS monitors. We
demonstrate that our schemes can easily guarantee target ac
Figure 1:Example: Distributed detection of botnet attacks. curacy levels of around 98% while typically sending lessitha
20% of the original time-series data (i.e., a communication

across distributed machines exceeds a pre-specified threstgduction of over 80%).
old. While such triggers are undoubtedly useful, they are

limited when it comes to monitoring distributed phenomena

that are inherentlypursty, such as network traffic and server 2 BaCkg round

load. Fixing appropriate instantaneous threshold coorati S . . .

for anomaly detection can easily lead to numerous false pOSvA_vi(;):ISI((:jigtlfittgluti::je%:)r;?t%?irrl]ngn?clise};m consists of 1:? of
itives and negatives. Exceeding a threshold for a shorbgeri a coo);dinator nod& . Each r%]onitor cgn?:?ril;ousi m?oduces
of time could very well be allowed as natural bursty behgvior . . ) . yPp

on the other hand, even violations that are small in magni-tlme series S|g|jals_i(t) on the variable(s) or c_ondltlon(s) e
tude could be harmful if they are allowedpersist over time lected for monitoring. Examples of a monitor's output in-

Persistent violations are better observed by measuririg act f::gse;;ilgg:e;?LiIrNVrslﬂ;e:tjf ?rZ%?:CZ?%izztn;tﬁr %f tDSI\CI)S
ity over a window of time. However, the task of selecting a P ' P por

. . . . T . and so on. These time series signals are sent to coordina-
particular window size over which something is measured is . 9 . .
r X. The coordinator acts as an aggregation and detection

a headache that has long plagued operators because a singfe

. . . oint, whose purpose is to track conditions across its mon-
window size cannot accommodate all of their needs. In ad: _p P . )
itors and to fire a trigger whenever some constraint on the

dition to ISPs, managers of distributed server systems have . o
found that measuring average server load using fixed size ggregate behavior ofasupset OT nod_es IS vu_)lateq. The coor
windows is unsatisfactory in that it is insufficient to idiépt mator_can aggrega_te the incoming time series signalgusin
good or bad system behavior [23]. any typical aggregation functlon - §uch${£M, AVG, MIN,

MAX, etc. We focus herein on the linear SUM aggregator be-

One could implement a cumulative trigger by naively : - .
: L .~ cause our goal is to enable the SUM aggregation over time-
pushing all of the monitoring data to the central operations _ . . ; :
. . . . varying windows, and because this aggregator is useful for
site. However, following the philosophy advocated in our

P botnets. In [9] we illustrated that our framework can suppor
framework, we design filtering schemes so as to accuratelyn . . .
. : 2 N ore complex correlation functions such as the top eigenval
detect cumulative trigger violations with limited data. rOu

: A . .~ _ues of the global measurements matrix.
second main contribution is thus an algorithm for computing . .
A : Our framework advocates a philosophy and provides de-
the filtering parameters at each local monitor. Based on our.

. iSjen guidelines for supporting anomaly detectors over such
analogy to queues, we use queueing theory as an analyﬂcFa

) . . arge-scale distributed monitoring systems. Our beli¢ha
tool. Our analytical solution provides guarantees that use ! .= .
. . , .+ _many anomaly detection applications can be successful with
supplied target false alarm and missed detection ratewiill

met. These user-supplied target error rates enable theoffad out backhaulingll of the monitored data. Because our ap-

; SO lications are focused on anomaly detection, most of the tim
between reducing communication overhead and alarm deteﬁ-1 T N N .
tion accuracy e traffic will be “normal” and there is no need to send such

. . data to the fusion center. The goal is thus to send only the
We apply our algorithms in the context of botnet detec- g y

i depicted depicted in Fia. 1. In botnet attacks. miali monitoring data that is “needed” for the anomaly detector
ion zs epicte i 3pIC eh.'n '9£ B n botne éll acks, 1p o ! ﬁno work properly. To achieve this, we propose engaging the
zombies (recruited machines) try to open a large number o onitors in filtering their data locally by installing triggs on

TCP connections to a single server (the victim). Assume 3heir machines. The monitornly send updates to the data
set of hosts have been recruited by a botnet, some subset sion center when the local trigger fires

which reside in our given network. An external commander The approach of filtering the measurement data at the

gives _th(_am an or.der .to launch allarge nur_nber of COnm':'Ct'onﬁ)cal monitors has critical implications for detection aec
to a victim, that in this case resides outside our network. In

many cases, tracking the traffic level at each individuat hos A caveat is that the overload could be due to a flash crowd.
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racy, because the operations center (called ‘coordinagse-  distributed sources exceeds a user-supplied threshale.val
after) carries out the detection. The coordinator’s view ofMore recently, Keralapurat al. [15], formalized the instan-
the global state will be approximate because some elementaneous thresholded counting problem and gave static and
of the global data can become stale (until the next update)adaptive algorithms, as well as a detailed optimality analy
Because of its approximate view of the global state, the cosis. Our approach goes further by providing both a firm de-
ordinator could make errors in detection. The coordinatortection guarantee famumulativetrigger conditions, as well as
can make two kinds of mistakes: either a violation amongthe flexibility for users to trade off communication overtiea
monitors occurs and the coordinator fails to catch it (chde  with detection accuracy.
missed detectignor no violation occurs yet the coordinator ~ Our prior work in [10] provides a solution for the particu-
thinks that one has (calledfalse alarn). lar application of volume anomalies using instantanedgs tr
Our framework advocates that if this approximate view of gers combined with PCA techniques. The methods proposed
the global state at the operations center is carefully meghag in this paper are fundamentally different: Instead of PCA an
then accurate detection can nevertheless still be achievethatrix perturbation theory [9, 10], our results here aresbas
The idea is to bound how ‘approximate’ or perturbed it is on queueing theory. The need for different methods result
allowed to become. The filtering scheme needs to be sefrom (i) the different types of triggers (instantaneousswesr
lected so as to ensure these bounds are never exceeded. Sinmgmulative) that are supported; and, (ii) the differentuacc
different security applications require tracking of difat  racy guarantees provided. In [10], we offer guarantees only
conditions, each new anomaly detector that is supported resn false alarm rates, whereas in this work we provide guaran-
quires the development of a new filtering scheme along witltees on both false alarm rates and missed detection rates.
an analytical method for guaranteeing the detection acgura
bounds are met. In designing the filtering, we leverage th% . .
coordinator’s global view by having it choose the level of ac Cumulative Trlggers
curacy that each monitor must report. This last point ingisa . . S
some of the complexities of our problem setting, since IocalWe now explain a new kind of threshold violation that can

filtering needs to be done based upon the global constrairﬁe detected t_hrou_gh the usecmh_l ul_atiye trigg.ersThe goal
that is being tracked. IS to detect violations that persist in time, without haviog

A nice property of our framework is that it achievesn- ZpeCIIy te;]flxedt aggkreg'ztlotn .tlme \t/r\glndc;lwlgifhorteh and.'(iiett
tinuoustracking, where by 'continuous’ we mean the follow- enote the network-wide trigger thresho atls resiaen

ing. The remote monitors can collect data as fast as they a ' co_ordina_ltor. _In cumulative triggers, the threshold-con
designed to operate (i.e., this could be 5 minutes if they col |ft|t?]n IS defmetd n terTns of tt_he .acguggtl_ated excas=a

lect SNMP data, or on the order of a few milliseconds, ifg efaggrege:_e S'gT.a ovektl)mte. (tl ytestime) Iort.(nu;”r}—
they collect flow statistics - such as netflow). Today moni- ero cg.r;_nec I?lnsid |frpe). h strr?c Y, a cumuia IV? ﬂ?g_ b
tors either summarize their data by aggregating at coarse ti ger condition should fire when the excess area of the ob-

scales (e.g., computing averages over long windows of mul_ser\aedtﬁggregate s!?ngl over Iatt_lmeﬂ\]/v mdnih ulzdmyssmﬁ ex- |
tiple minutes) before sending it to an operations center, ofceds he pre-specilied cumuiative threshold. -such cumuia-

they send every measurement they make. Neither of thestsé;; inlggerlng c?]nd!tlonst::anndot bg c?ptltjred using € '@t'f |
options is desirable. In our framework, the local monitors®” ™ rigger mechanisms based on instantaneous sums ot o-

do continuous monitoring and the operations center has th(éal values [14, 15]. . .
To capture temporally-persistent phenomena, the coordi-

perceptionthat it receives all the measurements. The filter- . .
tor computes a violation penalty that accrues over time, a

ing strategies are chosen so that the operation center fint%a the tri diti hen th v b
out anything important (relative to the anomalies it trgcks Ires the trigger condition when he penaty becomes exces-

as soon as something happens, thereby essentially acghieviﬁ've' During a time WII’lFiOW of size :.T(t)’ _the penalty at
continuous monitoring. timet accrued over the interv@l — 7, ¢] is defined to be

Prior Work. Database research on continuous distributed t &

query processing has considered similar environments, [3, 5 V(t,7) = max{0, /t_T Z ri(w)dw —C - 7}.

13, 17]; however, the focus is on the accurate estimation of =1

the aggregate signal itself rather than catching a constrai (We maximize this term with zero to keep the penalty non-
violation. Jainet al. [14], propose using uniform thresh- negative.) Our cumulative triggering mechanism does not
olds across all monitors, and eventually detect instamiasie depend on any fixed window; instead, a cumulative trig-
threshold violations without giving any guarantees onthe s ger fires at time if penalty V (¢, 7) > ¢ for anywindow size

of the violation; in contrast, we place strictboundsonies + € [1, t]. Thus, intuitively, we fire the trigger if there is
of the violation that our schemes seek to enforce within-specsome time windowhat causes the cumulative penalty to ex-
ified error rates. Dilman and Raz [7] propose algorithms forceed the constraint; or, more formally, ihax.{V (¢,7)} >
detecting whether the sum of a set of numeric values from, wheremax is computed on all possible over the entire
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o SR KKK exceeds; a window size of 2 would detect the violation in

KA A [4, 6] in our second example since the pendftydoes exceed

Vi>e / T e. We can thus see the flexibility in not having to specify
Vot Vs >e

Sum

a priori the time window over which a potential violation is
measured.

P Va<e 1 Vg<e s

4 Problem Statement

0 7 6 10 15 20T Because our approach of using limited data introducessrror
we allow the network operator to input their tolerable error
Figure 2:Cumulative violations. levels. We allow three such inputs. The first inpugpecifies
the error tolerance on the size of the violation. We alsonallo
signal history. One of our key insights in this work is that, network operators to input their tolerance on false alamas a
by exploiting an analogy to queuing theory, our system carimissed detections.

track cumulative trigger conditions effectively, withcugyv- In our system, anissed detectioaccurs ifmax, {V (¢, 7)}
ing to retain the entire signal history or check the conditio > ¢ and the system doewot fire the corresponding trigger.
against all possible. Conversely, dalse alarmoccurs whenevemax, {V (¢,7)}

We allow the user or network operator to specify an er-< ¢ and the system fires a trigger. We define thissed-
ror tolerance: which indicates that it is sufficient to track the detection rate3 as the fraction of missed detections over the
global state (i.e., the aggregated time series) approgignat total number of real violations, and tf@se-alarm rate; as
with an error bounded by. We will exploit this error toler-  the fraction of false alarms over the total number of trigger
ance to gain additional savings in communication overhead.fired. Allowing 5 and to be inputs, creates a flexible sys-
Earlier work on distributed triggers [7, 15] has focused tem in which different deployments can be tailored to their
solely oninstantaneoushreshold conditions, where the goal own needs. For example, some systems may consider mini-
is to detect ifzy r;(t) exceeds a threshold at any timet. mizing false alarms more important than minimizing missed
An generalization of the instantaneous caseiasel-window  detections; other systems may take the opposite view.
triggers where the goal is to detect the conditiBiit, 7) > € The user input thus constitutes a trigke 3, n) that essen-
at any timet, for a given, fixed time window. tially denotes the accuracy level that our tracking schemes
Instantaneous and fixed-window triggers are inherentlytarget. The problem we address herein is to design the pro-
limited when it comes to signals where transient bursty betocols resident at the monitors and at the coordinator in or-
havior is the norm, such as IP network traffic. Depending onder toguaranteethat the coordinator’s trigger fires, whenever
the threshold value, an instantaneous trigger may easiliy ov max-{V (¢,7)} > ¢, at any timet, with (e, 3, n)-accuracy
react to natural, transient phenomena. With fixed-windowwhile simultaneously keeping communication overhead low.
triggers, choosing the right window sizecan be problem- To simplify the exposition, our discussion assumes that
atic for several reasons. If we use a smafshort window), = communication between the monitors and the coordinator are
and the violation lasts for a long time but is small in magni- instantaneous. In the case of non-trivial delays in the unde
tude, the system is likely to miss it altogether. For example lying network, techniques based on time-stamping and mes-
in Fig. 2, the persistent (but small) violation occurrindgime  sage serialization can be employed to ensure correctress, a
slots[10, 20] could go undetected with a window sizeof= in[17].
5 because the penalty (over any 5 time slots)pr Vs, does
not grow to exceed. If, on the other hand, the violation were
short in duration but large in magnitude, the system would5  Distributed Cumulative Triggers
miss it if a larger (long window) is used. In our example fig-
ure, a sh_ort but_large viola_tion occurs d_uring f[he _time_ pierio 5.1 The Queueing Model
[4,6]. With a window of size 5 time units, this violation is
likely to get averaged out because the positive penalty in peOur approach tsupporting cumulative violations without
riod [4, 6] is canceled out by the negative contribution in pe-having to specify windows of time a priori is to use insights
riod [3, 4] (or, [6,7]). This illustrates the difference between from queueing theory. Earlier work on data streaming uses
fixed sized windows and cumulative violations with varying window-basedtream processing [6, 8] and focuses only on
window sizes. With a fixed window of size 5, both these vi- the case of (time- or arrival-based) windowfdixed sizever
olations would have been missed. However, with cumulativethe stream. Such techniques are not useful in our case, since
conditions, a window of size 10 would have caught the viola-the window sizes of the (potential) trigger violation are no
tion in [10, 20] in our first example since the penaky + V5 known ahead of time. Instead, our key observation is that
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stated by the foIIowing theore?m Miss detectioni(e., false negative) rate
False alarmi(e., false positive) rate

Theorem 1 Consider a queue of sizewith an arrival rate
equal to the actual aggregate signal’"_, r;(¢) and a drain
(i.e., service) rate equal to the trigger threshald A cumu-
lative trigger should fire (i.e37 s.t. V(¢,7) > €) if and only ing queue and a violation of the cumulative trigger conatrai
if the above queue overflows.

Essentially, cumulative triggering aims to guarantee tha®.2 Our Trigger-Tracking Protocols
>, 7i(t) does not exceed' in the long-term, however, it al-
lows >, i(t) to be bursty (i.e.y, r;(t) can beany amount
larger thanC' in any time window, but the volume of the
burstiness should not exceell Thus, cumulative trigger-
ing does not care about instantaneous sums or averages o
a fixed size window; it cares only whether (acrasy possi-
ble time scalgthe accumulated violation (penalty) exceeds
and causes queue overflow.

As an example, the bottom half of Fig. 3 depicts a sampl
aggregate time-series signgl’"_, r;(t), while the top half
shows the occupancy of the above-described qué\fe),
over time. Clearly, if the queue overflows at some titne
then there must be some time < ¢ denoting the start of
a busy period[t*, ] (i.e,, a period during which the queue
is persistently non-empty; that i$; = max{z|z < t and
Q(z) = 0}) ending att with a queue occupana@(t) > e.
Fig. 3 shows two busy period§;, t2] and[ts, t4], the sec-
ond of which results in sufficient queue buildup to fire the
trigger. It is not difficult to see that, by our queueing mqdel
Q(t) =V(t,t —t%), sothatQ(t) > € (i.e, a queue overflow)
indeed implies that our trigger should fire. Similarly, fowya
time windowr < ¢, V(¢t,t —t°) > V(t,7) (i.e., windows
smaller or larger than the latest busy period can only reduc
the cumulative size of the violation). In other word}t) =

Figure 4:Our distributed trigger tracking framework.

The architecture of our system is depicted in Fig. 4. The role
of the monitor is to track it's own time series data and to de-
cide when to send the coordinator an update based on a filter-
\}ng scheme. Let;(¢) denote the actual time series observed
S monitoring node. If a monitor decides at timé’™ ¢ to
send the coordinator a sample of its data, it seRgdg"™ "),
which is an approximate representationrgft?<v). If in a
subsequent time > "¢V, the monitor sends nothing, then
She coordinator assumes thag(t?"<v) is a good approxima-
tion for r;(¢t). In general,R;(t) can be based on any type
of prediction modelfor monitor m;. For example, a sim-
ple model is to seR;(tP"*V) = r;(tP"*V) at the update time.
Time series prediction models and other sophisticatedgred
tion models [5, 13] could also be used.

The role of the coordinator is twofold. First, it makes
global anomaly detection decisions based a queueing model
with parameted), using the received updaté (¢) from the
monitors. Second, it computes the slack parameteiar all
the monitors based on its view of the global state and the con-
dition for triggering an anomaly. The slack parametgrare
sent to the monitors whenever they change. The monitors use
slack parameters when tracking the drift between the actual
fime series signal and the prediction function; whenevisr th
, . . : . drift exceeds the allowed slack, the monitor sends the coor-
Vit,t 1) — m.aXT{V(t’ T.)}’ implying the cumulative trig- dinator an updated predictiaR; (¢). Intuitively, these slacks
ger should fire if and only if the_queue overflows. The mOOIeIare used to bound the difference between the coordinator’s
in Theorem 1 captures the equivalence between an overflow-.

view of the data and the actual data.

2Due to lack of space, the proofs for all of our theorems are edhitout The simple queueing model as in Theorem 1 is ideal since
can be found in [11]. it assumes the true aggreg3ter;(¢) feeds a single coordi-
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‘ e 0 1. while (true) do
ro(t) :"Zlm Ry(t) ~ c 2. Continuously simulate a virtual que@eof sizef with arrival rate

>~; Ri(t) and drain rate”
for each (monitor updatg(é, d; (t), R (t)) received)do

Set local predictiom; (t):= R} (t)

Enqueue the} () chunk in the virtual coordinator queg
if (Q overflows)then

fire (“trigger violation”); break

. EDM)/
7. Compute new optimal settings for local slagks} and coordinator

Figure 5:Distributed queueing model: cumulative triggers. slackd based ond, 3, n) and maintained statisti¢Sec. 5.3)
8. if (adaptive allocationjhen disseminaté{J; })

nator queue. We extend the ideal queueing model to the dig=igure 6: Procedures for distributed trigger tracking at the coordi-
tributed environment by placing queues at each of the mong 4o,

itors in addition to the one queue at the coordinator. This
distributed queueing model is depicted in Fig. 5. Our task
is then to design algorithms to convert the centralized queu
model of size: into a coordinator queue of sifeand a set of  (drops below zero), thed;(¢) is negative. The coordinator
local monitor queues of sizg, . . . , 6,,, while still guarantee- ~ continuously tracks this complex arrival process at itsugue
ing the necessary false alarm and missed detection rates. and fires a trigger violation if its queue overflows. A high-
The Local Monitor Protocol. In our distributed model, each €vel pseudo-code description of the coordinator protéol
local queue has an arrival rate g(t), a drain rate ofz;(t) ~ depicted in Fig. 6. . .
and a size of;. Let /" denote the time of the last update  INtuitively, the local slacks; at the remote monitors aim
message fromm; to the coordinator. At any time, the size to filter out local variations in |nd|V|duaL;(t_) signals, \_/vh_|le
of the monitor's queue captures the cumulative deviation ofn€coordinator slackd is useful for canceling out variations
r;(t) from its most recent predictioR;(t?"**) over the in- a.?rog_s m?nlto)ritla.g,(;/:/jr_l?n dtIStthle(t),?hmO\I”%g I'” Opgt)'
prev ot site directions). In addition to tracking the global coasit,
terval [£"°", #], namelyd(t) = [ypren (ri(w) — Fi(x))d. one of the coordinator’s key tasks is to compute valuesfor

Should t::e (Ijo_(;alhqueue ovgrf(ljov;/], "el'l’ Wh?(f” E ii tL‘_'S _ (i = 1, ..., n) andd that lower communications costs yet
means the drift has exceeded the allowed slack. AtthIS M@ arantee that none of the three errars3, n) exceed their

the monitor sends the coordinator an update on its timesserie; |arance levels. In order to be adaptive, the coordinadar c

It sends the current valug(t), a prediction;(t) for near- recompute and redistributed these slacks either peribdica

fierm future valudes, ang the curlre_nt ng@)i The aTount or upon each monitor update. In the next section, we give our
) i(t) corresponds t(_) t_ e cumu atl_ve eviationroft) from algorithm for computing these slack values.
its most recent prediction. At the time of the update, thalloc

queue also reset(t) to zero. Note that, unlike traditional ] ] ] ]
queueing, local monitor queue occupancies are allowed t®-3 Queueing Analysis for Slack Estimation

become negative, if predictions consistently overesertiaé  \ye now present an analysis of a simplified variant of our dis-
trqe local S|gnals._Such7c0nd|t|(_)ns are important to detedt tributed queueing model (Fig. 5), and discuss the apptinati
brmg o th? coordinator’s attention since they also Cw of our results to estimating effective settings for the nhami
cessive drift and thus lead to more updates. Sending undef, ¢oordinator slack parameters in our system. The exis-
flow information to the coordinator can also enable Cro&s-si o6 of the locad; filters obviously reduces communication
variations to cancel out (thus avoiding false alarms). costs by allowing monitors to “absorb” updates with no com-
We point out that the queues we are using here are modelg, nication to the coordinator. At the same time, however,
not actual physical queues. Inan implementation a quete thgnis |ocal filtering also makes the arrival process at tha-coo
;tqres datais not needed. Instead only a cpunter is neeaated .”Hinator queue morburstyby introducing bursts of queue ar-
is incremented and decremented according to the queueing,a|s and departures when the filter constraints at local-mo
models herein. itors are violated. Thus, abstractly, the role of the cauatbr
The Coordinator Protocol. In our distributed queue- queue (of sizé) is to allow for such bursts to be effectively
ing model, the coordinator's queue has an arrival rate ofabsorbed (or, cancel each other out) as long as the cunaulativ
i, Ri(t), a drain rate equal to the trigger threshald  trigger bound is not exceeded.
and is of sized, as in (Fig. 5). In addition to the contin- The system slack parametefsg andd) interact with each
uous “arrivals” at raté .-, R;(t) to the coordinator queue, other as well as the input error threshe|dniss-detection rate
each update from moniter, also introduces ehunkof d; (t) (3, and false-alarm rate parameters in complex ways. Intu-
arrivals into the queue. Note that if the queue underflowstively, given an error thresholdfor our trigger monitor, we
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would like to maximizethe size of the local-monitor filters the miss-detection rate to6, andd, under the assumption of
d;, as that would obviously minimize the number of monitor normally-distributed local “queue” sizes.

updgtes to the coordinator. However, Iarge.r monitor flltersTheorern 2 Assume anZ/M /1 model for the coordinator
also imply Ie}rger (more bursty) chunks of arnvals/degam;u gueue, and that the aggregate occupancy of all local moni-
_at the coordinator queue (due to monitor updat_es) which may,, . “queues” follows a NormalN (0, o2) distribution. Then,

in turn, cause: (alse alarmavhen a combination of bursts

etting
causes the queue to overflow even though the true aggregate

signal has not violated the trigger condition; and,r(23s de- o0
tectionswhen the local monitor filters absorb enough traffic / [1 - (
variability to mask a real trigger violation. To minimizeeth -

false alarm problem, we would like to have a large coordina-guarantees a miss detection rateg, whereF’() denotes the
tor queue sizé to absorb the monitor bursts — however, the CDF of N (0, 02), andp = % denotes the average coordina-
size of the coordinator slagkand monitor slacks, ..., d, tor queue utilization (over time).

are also clearly constrained by the overall error threshold The assumption of a zero mean for the aggregate occu-

that our triggering schemes must try t‘? guarantee. _ pancy of all local monitor queues is motivated by the fact
In what follows, we employ queueing theory to analyti- that over a large enough window of time, the true and pre-
cally explore the aforementioned tradeoffs (under some simgjcteq signal rates are approximately equal.(\r ~ \,).
plifying assumptions), and obtain results that provide®ff  gjmjjarly, the normality assumption can be justified undier t
tive settings for our system slack parameters for a giveatinp assumption oindependent updategross local monitors and
triple (e, 3,m). Our approach is to develop two non-linear ihe |aw of large numbers (for large enoug)f. To estimate
equations relating andé to the parameterg, 3,7) as well  {he gaggregate variane€ in our system, each local monitor
as the model parameters. These two equations can then lp,% continuously tracks the up-to-date variangeof its lo-
solved simultaneously to deriveand?. cal occupancy and ships that information to the coordinator
We make two key assumptions to make the analysisn its update messages if there is a significant change with re
tractable. First, we assume uniform local slack paramespect to the most recent measurement; the coordinator then
ters, whered; = ¢ for all i°. Second, we assume an estimates the aggregate varianceas- 37, o2. Note that
M/M/1 queueing model for the coordinator quéueUn-  Theorem (2) has the ability to support adaptivity through it
der theM /M /1 assumption, led, andAx denote the mean  dependence op= 2z. As the rate\, evolves, so willp, and
“arrival rates” for the true signal and predicted signaspec-  the resulting value computed fér
tively (i.e., the estimated averages pf; r;(t) and}_; R;(t) Now, consider the false alarm rage Observe that, in our
over time). Similarly, let\. and A, be the mean arrival rates distributed queueing model, the arrival and drain ratebet t
for enqueue and dequeue chunks (respectively) at the coogpordinator queue can be naturally approximatedias . -
dinator. Note that, the g, A., and\, rates are directly ob- 5 andC + ), - § (respectively), whereas the corresponding
servable at the coordinator, and can be computed empjricallrates for the idealized (centralized) case are simplgndC.
(e.g, through averaging over a time window of recent queue-Based on this observation and auf/}M /1 assumption, we

ing activity). Since the overall “mass” of the true aggregat can prove the following result (see [11] for details).

signal is preserved over time, the coordinator can also-accu .
rately estimate\, ash, — Ag + (Ao — Ag) - 6. 5 Theorem 3 Assume an\//M /1 model for the coordinator

Now, consider the effect af andd on the miss detection queue. Then, setting:
rate 5. It is not difficult to see that having > 0 + n - § A\ Ap A6 241
always guarantees a miss detection rate= 0. However, 1-— <T> / (R‘e) =1
this condition is simply too conservative and may result in ¢ C+Ad-o
excessive communication, especially if (a) some> 0 is ~ guarantees a false alarm rate 7.
acceptable, or (b) the true value of the cumulative viotatio ) ) ) _ )
max, {V(T,7)} is well below thee threshold. Essentially, Given a triple of trigger-tracking requirements (3, n),
fixing a total slack of is an overly conservative, non-adaptive 0ur coordinator algorithms use the derived system of two
solution. As proved in [11], the following theorem presents non-linear equations (Theorems 2 and 3) to solve for the opti

a more versatile, less conservative analytical resultinga Mal (under our assumptions) coordinator- and monitorkslac
valuesf andé (Step7 in Fig. 6(b)). The local slacks are

3In a technical report [11], we evaluate how using non-umif@arame- then distributed to _the monitors. This theorem also is aa‘u_nc
ters can provide greater communiction reduction. tion of the queue input rates, and thus these two equations

“In [11], we also provide analyses under other possible dogueodels,  can be solved again as often as desired; as the time series
such asM/D/1.

S5Note that (unlike), and\r) Ae and\y here are in units of chunks (of 6Experience with several real data sets shows that a Normallnebde
sized). aggregate local occupancy is accurate under reasonablevtirdews.
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[ e [ Target3 [ Achieved3™ | Targetn [ Achievedn™ | °

= High Volatility

0.2 0.02 0.008 0.02 0.008 —4— Middle Volatility
0.2 0.02 0.008 0.06 0.030 05| —e— Low Volatility
0.2 0.04 0.000 0.02 0.020
0.2 0.04 0.008 0.04 0.031 E
0.4 0.02 0.010 0.02 0.010 g
0.4 0.02 0.000 0.06 0.026 g
0.4 0.04 0.028 0.02 0.009 g
0.4 0.04 0.028 0.04 0.036 E

§

Table 1:Target vs. achieved detection performance.

035 0.4 0.45 05

change, the queue input and drain rates will evolve and thus
0(t), 6(t) can be updated over time. Thus supporting changes
in the data’s underlying statistics is straightforwarde(gEeL]

for more details).

Percentage’ error tolerance (35 IC)
Figure 7:Impact of volatility on overhead.

false alarm and missed detection rates, which are computed
6 Evaluation as follows. If a trigger is fired, but no corresponding real
violation occurred within 3 time intervals (1 interval bedo
during, and after) of the detected one, then we count it as a
false alarm. The achieved false alarm ratg) (s the ratio of
We have implemented D-Trigger using Java, and deployedhe number of false alarms over the total number of triggers
the monitor protocol on 40 PlanetLab nodes along with thefired. For each real violation, if no trigger is fired withireth
coordinator protocol on a single PlanetLab node. SNORT [2]3 time intervals around the real violation, we count this as a
sensors have been continuously running on each monitonissed detection. The achieved missed detection feideig
node for approximately one year. Our Java module extractghe ratio of the number of missed detections over the number
information about the number of TCP requests per fixed timeof real constraint violations.
window from these logs, and D-Trigger uses this information ~We compute the communication overhead (per-node com-
to detect network overload conditions resulting from ksic§t ~ munication cost) as follows. Letumn be the number of mes-
short TCP connections or periods of many, long TCP connecsages exchanged between monitors and the coordinator, in-
tions. While the sizes of time windows (and underlying time cluding both the signal updates from monitors to coordinato
unit of the time series data) can range from from 5 seconds tas well as the filter updates from the coordinator to the mon-
10 minutes, we have elected to use a 5 minute window. Waétors. Letn be the number of monitors and the number
explored the effects of other time windows and in time serieof values in each monitor’s time series. Thus n indicates
with 5 minute windows, we observed 85% to 96% of com-the worst-case communication overhead (giving the coordi-
munication reduction, while with 5 second time windows, we nator perfect knowledge), and the communication overhead
observed 70% to 90% of communication reduction. Thusjs num/(m - n).
we believe the data presented herein are representatikie of t  Table 1 provides several examples of achieved false alarm
general gains possible using our methods. Furthermore, thin*) and missed detectior3{) rates, along with the corre-
time series demonstrates the need for cumulative triggers b sponding target (inputy and 5. The table shows that the
cause we observed that the size of the time window needed t@chieveds* andn* are always lower than the targétand
detect violations varied from 5 to 100 minutég{ no single 7, indicating that our model finds upper bounds on the de-
fixed window size would have caught all events). tection performance, and its derived queue size paramgters
andd are always safe to use. The results also imply that there
are additional optimizations that could reduce the communi
cation cost further.
Using our implementation, we developed a trace-driven sim-  Clearly the reduction in communication overhead depends
ulator that takes in a time series and can be used for runningn the time series data themselves. We now examine our
large-scale experiments under controlled conditions aall e data’s properties to ensure that the our general obsengatio
uating D-Trigger’s performance. Given a target perforneanc are not artifacts of a particular time series, and use these r
level specified by the triplet parametdks 3,7), our model  sults to help select the time series and parameters used in ou
uses Theorems 2 and 3, the data variabilityand the en- experiments.
gueue and dequeue rateg, A, and)\,, to compute the (uni- The communication bandwidth used between monitors
form) monitor and coordinator queue siz@sé) which are  and the coordinator depends upon the data (intuitivelyemor
used by the simulator to process the SNORT time series dataolatile data uses more bandwidth). To explore the range of
The simulator’'s outputs are the actual observachigved communication overhead reductions for different setsmoéti

6.1 Implementation and Data

6.2 Performance Evaluation Model



series, we selected 40 machines (time series) at a time from
the 200 SNORT time series, by first computing the variance
of each of the 200 time series and then sorting them.

We selected three different sets of 40 machines: a “high
volatility” set of nodes with the 40 largest variances, an’lo
set of the 40 nodes with the lowest variances, and a “mid-
dle” volatility set of 40 nodes selected at random. The com-
munication overhead reduction versus error tolerancegusin
8 = n = 0.06 for these three sets of machines is given in
Fig. 7. In all cases, the shapes of the monotonically decreas -
ing curves are similar to each another, and the communica- * Number of nodes in the system
tion reduction is substantial. A communication overhead of
0.1-0.2 means that only 10-20% of the original time series Figure 9:Communication overhead versus system size.
data is needed to fire triggers with high accuracy. The ex-
act amount depends upon the volatility of the input data, angtraint definition, and target performance levels). Whikesth
as expected, the communication overhead decreases as thgmbers are particular to our dataset, we nonetheless-there
data’s volatility decreases. The fact that the graphs match  fore believe that our methods can regularly achieve signifi-
expectations indicates that, even with the most volatlevee  cant data reduction even for low target error rates. Comgari
considered, our protocol and its implementation still @ebi  our system to distributed monitors today that do not support
efficient communication. For the experiments in this sectio distributed cumulative triggers, we see that we achieve dif
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we use the middle volatility set. ficult monitoring tasks with less than 80% of the monitored
The target constraint’ is data dependent and since trig- data compared to centralized solutions.
gers are usually designed to detect anomalies, it typitiaby Fig. 8(b) shows that as the tolerable false alarm rate in-

near the extreme behavior of the data. We(séb the val-  creases, local queues increase in size because more djlterin
ues of thes5™", 90" and98'" percentile of the distribution can be done at monitors, which in turn brings down the over-
of all 4,000 values (time instants) Of r;(¢), and observed head. This result explains why overhead decreases with in-
that the communication overhead as a function of the erroereasing false alarm rate and a similar behavior occurs when
tolerance is similar for these thrée values. Thus, for the the tolerable missed detection rate is raised. Looking #t bo
experiments in this section, we sgtto the data value at the (b) and (c) together, we see that a small changesim)
90" percentile of the distribution. leads to sizable change in local queues, but relatively Ismal
amounts of change in the coordinator queue. Because the co-
ordinator does not vary much, even with changes in accuracy
requirements, we conclude that cancellation across the sig
We examined the tradeoffs between false alarm and missegils of different monitors is indeed occurring.
detection rates, communication overhead, and the queue
sizes. Using = 0.2C, Fig. 8(a) shows_ communication over- g 4 System Scalability
head tradeoffs, (b) and (¢c) show monitor queue and coordina-
tor queue sizes for each achievgtf, n*) pair. Note thatto  One key reasons for controlling communications costs is to
facilitate viewing of the 3-D plots, the order of increasjfiy  avoid overwhelming the coordinator, so we examine scala-
andn* in (a) differs from that in (b) and (c). bility as the number of distributed monitors grows. Instead
Fig. 8(a) shows that communication overhead decreasesf measuring communications overhea@.( num/n - m),
quickly asg andr increase. The basic phenomenon here isthe average overheger monitor we measure the communi-
that for any error typee( 3, andn are different error types), cationscost(i.e., usingnum/m), the total communications
the communication overhead can be reduced if we can toleandwidth into the coordinator, to capture the average num-
ate higher errors. In this sense, Fig. 8(a) is consisterit wit ber of messages the coordinator receives in a time slot.
Fig. 7. What is surprising is that the range of communication In Fig. 9, we plot communications cost as a function of
overhead is very limited (4-20%), implying that even whenthe number of monitors (ranging from 40 to 200) and set
very low false alarm and missed detection rates are desired¢, 3,7) = (0.2C,0.06,0.06). We ran5 rounds of experi-
we can still achieve efficient communication. For example,ments for each system size each of which ran om ran-
wheng = n = 0.04, we can filter out 92% of the original domly picked monitors. The system scales gracefully, since
signal. We point out that looking across Figs. 7 and 8(a), weas the system size increases: 1) the communication over-
see that the communication overhead is typically in theeanghead of each monitor decreases slightly; and 2) the coor-
of 5-20%, even when looking at it from different perspec- dinator's communication cost increases slowly with a slope
tives (in terms of volatility, percentage error tolerancen-  of roughly 0.1 (indicating that communication cost incieeas

6.3 Performance versus Overhead
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sub-linearly as system size increases). Intuitively, dgo-a  [3] CHERNIACK, M., BALAKRISHNAN, H., BALAZINSKA, M., CARNEY,
rithm captures the trend that as the number of monitor nodes D-, ETINTEMEL, U., XING, Y., AND ZDONIK, S. Scalable distributed

. . I i 0
increases, when one monitor queue overflows, it is mor(?4]sg‘iir§Kprgce§2$§|'GDER((:ZOORAS?WING G AND WROCLAWSK|

likely there will be an underflowing queue elsewhere, lead- " ;. 1. A knowledge plane for the internet. AEM SIGCOMM(2003).
ing to more signal cancellation at the coordinator and les$5] CORMODE, G., AND GAROFALAKIS, M. Sketching streams through

communication cost and overhead the net: Distributed approximate query tracking VIinDB (2005).
. O [6] DATAR, M., GIONIS, A., INDYK, P.,AND MOTWANI, R. Maintaining
Note that monitor and coordinator queues grow as the " gtream statistics over sliding windows. ACM-SIAM SODA2002).

system scales, however, this does not affect scalability be[7] Ditman, M., AND RAz, D. Efficient reactive monitoring. IMEEE

i i - in. INFOCOM(2001).
cause an |mpleme.ntat|on does not actually use buffers; '@84 GAROFALAKIS. M.. GEHRKE, J., AND RASTOGI, R. Querying and
stead queues are implemented as counters, and queue SiZ€$iing data streams. Tutorial in VLDB (2002).
correspond to maximum counter values. [9] HUANG, L., GAROFALAKIS, M., HELLERSTEIN, J., DSEPH A., AND
TAFT, N. Toward sophisticated detection with distributed teggy In
MineNet(2006).
. [10] HUANG, L., NGUYEN, X. L., GAROFALAKIS, M., HELLERSTEIN,
7 Conclusion and Future Work J. M., DRDAN, M., JOSEPH A.D., AND TAFT, N. Communication-
efficient online detection of network-wide anomalies. To egupin IN-
We have presented a novel solution to the problem of ef'ficienf1 FOCOM(2007).
X 8 . X X 1] HUANG, L., GAROFALAKIS, M., JOSEPH A., AND TAFT, N.
aggregate constraint detection over a time-varying window - communication-efficient tracking of distributed cumulativiggers. UC

(cumulative triggeriny in a distributed monitoring system. Berkeley Tech. rep., EECS-2006-139 (2006).

Our solution relies on a key insight of focusing on accurate[lzgz(')"ousiBSCH’ R..AND ET AL. Querying the internet with pier. WLDB

trlgge_rlng instead of-error aggregate_ value repor'Flng_, which [13] JaIN, A., CHANG, E. Y.,AND WANG, Y.-F. Adaptive stream resource
can yield a greater than 80% reduction communication over- management using kalman filters. ACM SIGMOD(2004).
head, while preserving high detection accuracy. [14] JaIiN, A., HELLERSTEIN, J. M., RATNASAMY, S., AND WETHER-

L . . . . ALL, D. A wakeup call for internet monitoring systems: The case for
Our contributions include: providing a mathematical def- b ted triggers. IHotNets(2004).

inition of cumulative distributed triggering; using a q@eu [15] KERALAPURA, R., CORMODE, G., AND RAMAMIRTHAM , J.
ing theory-based problem definition, which makes analjjtica Communication-efficient distributed monitoring of thresteldcounts. In

. oo . . : ACM SIGMOD(2006).
solutions possible; and performing a detailed evaluatibn 0{16] LAKHINA, A.. CROVELLA, M., AND DIOT, C. Diagnosing network-

our schemes using real world and trace-based streaming data yge traffic anomalies. IACM SIGCOMM(2004).
Overall, the combination of our contributions offers ustes  [17] OLsTon, C., JANG, J.,AND WiDOM, J. Adaptive filters for contin-

power to tradeoff desired detection accuracy and perfocman uous queries over distributed data streamsA@M SIGMOD(2003).
ith icati head [18] PADMANABHAN, V. N., RAMABHADRAN, S.,AND PADHYE, J. Net-
with communication overhead. profiler: Profiling wide-area networks using peer cooperatiin IPTPS

We envision several areas for future exploration, inclgdin  (2005).
additing fault-tolerance to the single coordinator, apply [19] PAXSON, V., AND FLOYD, S. Wide-area traffic: the failure of poisson

. N L . modeling.IEEE/ACM Trans. on Networkin@®(3) (1995).
cumulative triggers over more sophisticated correlatiorcf [20] SPRING, N., WETHERALL, D., AND ANDERSON T. Scriptroute: A

tions (other than our choice &UM), and using multi-level facility for distributed internet measurement. USI1TS(2003).
tree hiearchies to further reduce the processing and commugl] Xig, Y., Kim, H.-A., O’HALLARON, D. R., REITER, M. K., AND
nication workload at the coordinator ZHANG, H. Seurat: A pointillist approach to anomaly detectionRiID
' (2004).
[22] YEGNESWARAN, V., BARFORD, P., AND JHA, S. Global intrusion
detection in the domino overlay system.NIDSS(2004).
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