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Abstract. Recent years have witnessed an increasing interest in designing algo-
rithms for querying and analyzing streaming data (i.e., data that is seen only once
in a fixed order) with only limited memory. Providing (perhaps approximate) an-
swers to queries over such continuous data streams is a crucial requirement for
many application environments; examples include large telecom and IP network
installations where performance data from different parts of the network needs to
be continuously collected and analyzed.
Randomized techniques, based on computing small “sketch” synopses for each
stream, have recently been shown to be a very effective tool for approximating
the result of a single SQL query over streaming data tuples. In this paper, we
investigate the problems arising when data-stream sketches are used to process
multiplesuch queries concurrently. We demonstrate that, in the presence of mul-
tiple query expressions, intelligentlysharing sketchesamong concurrent query
evaluations can result in substantial improvements in the utilization of the avail-
able sketching space and the quality of the resulting approximation error guar-
antees. We provide necessary and sufficient conditions for multi-query sketch
sharing that guarantee the correctness of the result-estimation process. We also
prove that optimal sketch sharing typically gives rise toNP-hard questions, and
we propose novel heuristic algorithms for finding good sketch-sharing configu-
rations in practice. Results from our experimental study with realistic workloads
verify the effectiveness of our approach, clearly demonstrating the benefits of our
sketch-sharing methodology.

1 Introduction

Traditional Database Management Systems (DBMS) software is built on the concept of
persistentdata sets, that are stored reliably in stable storage and queried several times
throughout their lifetime. For several emerging application domains, however, data ar-
rives and needs to be processed continuously, without the benefit of several passes over
a static, persistent data image. Suchcontinuous data streamsarise naturally, for exam-
ple, in the network installations of large telecom and Internet service providers where
detailed usage information (Call-Detail-Records, SNMP/RMON packet-flow data, etc.)
from different parts of the underlying network needs to be continuously collected and
analyzed for interesting trends. Other applications that generate rapid-rate and massive
volumes of stream data include retail-chain transaction processing, ATM and credit card



operations, financial tickers, Web-server activity logging, and so on. In most such ap-
plications, the data stream is actually accumulated and archived in the DBMS of a (per-
haps, off-site) data warehouse, often making access to the archived data prohibitively
expensive. Further, the ability to make decisions and infer interesting patternson-line
(i.e., as the data stream arrives) is crucial for several mission-critical tasks that can
have significant dollar value for a large corporation (e.g., telecom fraud detection). As
a result, there has been increasing interest in designing data-processing algorithms that
work over continuous data streams, i.e., algorithms that provide results to user queries
while looking at the relevant data itemsonly once and in a fixed order(determined by
the stream-arrival pattern).

Given the large diversity of users and/or applications that a generic query-processing
environment typically needs to support, it is evident that any realistic stream-query pro-
cessor must be capable of effectively handlingmultiplestanding queries over a collec-
tion of input data streams. Given a collection of queries to be processed over incoming
streams, two key effectiveness parameters are (1) the amount ofmemorymade avail-
able to the on-line algorithm, and (2) theper-item processing timerequired by the query
processor. Memory, in particular, constitutes an important constraint on the design of
stream processing algorithms since, in a typical streaming environment, only limited
memory resources are made available to each of the standing queries.

Prior Work. The recent surge of interest in data-stream computation has led to several
(theoretical and practical) studies proposing novel one-pass algorithms with limited
memory requirements for different problems; examples include: quantile and order-
statistics computation [1]; distinct-element counting [2, 3]; frequent itemset counting [4];
estimating frequency moments, join sizes, and difference norms [5–7]; and computing
one- or multi-dimensional histograms or Haar wavelet decompositions [8, 9]. All these
papers rely on an approximate query-processing model, typically based on an appro-
priate underlying synopsis data structure. The synopses of choice for a number of the
above-cited papers are based on the key idea ofpseudo-random sketcheswhich, es-
sentially, can be thought of as simple, randomized linear projections of the underlying
data vector(s) [10]. In fact, in our recent work [11], we have demonstrated the utility of
sketch synopses in computing provably-accurate approximate answers for asingleSQL
query comprising (possibly) multiple join operators.

None of these earlier research efforts has addressed the more general problem of
effectively providing accurate approximate answers tomultipleSQL queries over a col-
lection of input streams. Of course, the problem ofmulti-query optimization(that is, op-
timizing multiple queries for concurrent execution in a conventional DBMS) has been
around for some time, and several techniques for extending conventional query opti-
mizers to deal with multiple queries have been proposed [12]. The cornerstone of all
these techniques is the discovery of common query sub-expressions whose evaluation
can be shared among the query-execution plans produced.

Our Contributions. In this paper, we tackle the problem of efficiently processing mul-
tiple (possibly, multi-join) concurrent aggregate SQL queries over a collection of input
data streams. Similar to earlier work on data streaming [5, 11], our approach is based on
computing small, pseudo-random sketch synopses of the data. We demonstrate that, in
the presence of multiple query expressions, intelligentlysharing sketchesamong con-



current (approximate) query evaluations can result in substantial improvements in the
utilization of the available sketching space and the quality of the resulting approxima-
tion error guarantees. We provide necessary and sufficient conditions for multi-query
sketch sharing that guarantee the correctness of the resulting sketch-based estimators.
We also attack the difficult optimization problem of determining sketch-sharing config-
urations that are optimal (e.g., under a certain error metric for a given amount of space).
We prove that optimal sketch sharing typically gives rise toNP-hard questions, and we
propose novel heuristic algorithms for finding effective sketch-sharing configurations in
practice. More concretely, the key contributions of our work can be summarized as fol-
lows.

• Multi-Query Sketch Sharing: Concepts and Conditions.We formally introduce
the concept ofsketch sharingfor efficient, approximate multi-query stream processing.
Briefly, the basic idea is to share sketch computation and sketching space across several
queries in the workload that can effectively use the same sketches over (a subset of) their
input streams. Of course, since sketches and sketch-based estimators are probabilistic
in nature, we also need to ensure that this sharing does not degrade the correctness and
accuracy of our estimates by causing desirable estimator properties (e.g., unbiasedness)
to be lost. Thus, we present necessary and sufficient conditions (based on the resulting
multi-join graph) that fully characterize such “correct” sketch-sharing configurations
for a given query workload.

• Novel Sketch-Sharing Optimization Problems and Algorithms.Given that multi-
ple correct sketch-sharing configurations can exist for a given stream-query workload,
our processor should be able to identify configurations that are optimal or near-optimal;
for example, under a certain (aggregate) error metric for the workload and for a given
amount of sketching space. We formulate these sketch-sharing optimization problems
for different metrics of interest, and propose novel algorithmic solutions for the two
key sub-problems involved, namely: (1)Space Allocation:Determine the best amount
of space to be given to each sketch for a fixed sketch-sharing configuration; and, (2)
Join Coalescing:Determine an optimal sketch-sharing plan by deciding which joins in
the workload will share sketches. We prove that these optimization problems (under
different error metrics) are typicallyNP-hard; thus, we design heuristic approximation
algorithms (sometimes with guaranteed bounds on the quality of the approximation) for
finding good sketch-sharing configurations in practice.

• Implementation Results Validating our Sketch-Sharing Techniques.We present
the results from an empirical study of our sketch-sharing schemes with several syn-
thetic data sets and realistic, multi-query workloads. Our results clearly demonstrate
the benefits of effective sketch-sharing, showing that very significant improvements in
answer quality are possible compared to a naive, no-sharing approach. Specifically, our
experiments indicate that sketch sharing can boost accuracy of query answers by factors
ranging from 2 to 4 for a wide range of multi-query workloads.

Due to space constraints, the proofs of our analytical results and several details have
been omitted; the complete discussion can be found in the full version of this paper [13].



. . .. . .

Stream
Query-Processing

Engine

Stream forR1

Stream forR2

Stream forRr

Sketches forR1 Sketches forRr Memory

Query Workload

to queriesQ1, . . . , Qq

Approximate answers

Q1(r1) Qq(rq)
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2 Streams and Random Sketches

2.1 Stream Data-Processing Model

We now briefly describe the key elements of our generic architecture for multi-query
processing over continuous data streams (depicted in Fig, 1); similar architectures (for
the single-query setting) have been described elsewhere (e.g., [11, 8]). Consider a work-
loadQ = {Q1, . . . , Qq} comprising a collection of (possibly) complex SQL queries
Q1, . . . , Qq over a set of relationsR1, . . . , Rr (of course, each query typically ref-
erences a subset of the relations/attributes in the input). Also, let|Ri| denote the total
number of tuples inRi. In contrast to conventional DBMS query processors, our stream
query-processing engine is allowed to see the data tuples inR1, . . . , Rr only onceand
in fixed order as they are streaming in from their respective source(s). Backtracking
over the data stream and explicit access to past data tuples are impossible. Further, the
order of tuple arrival for each relationRi is arbitrary and duplicate tuples can occur
anywhere over the duration of theRi stream. (Our techniques can also readily handle
tupledeletionsin the streams.)

Our stream query-processing engine is also allowed a certain amount of memory,
typically significantly smaller than the total size of the data. This memory is used to
maintain a set of concisesynopsesfor each data streamRi. The key constraints imposed
on such synopses are that: (1) they are much smaller than the total number of tuples
in Ri (e.g., their size is logarithmic or polylogarithmic in|Ri|); and, (2) they can be
computed quickly, in a single pass over the data tuples inRi in the (arbitrary) order
of their arrival. At any point in time, our query-processing algorithms can combine the
maintained collection of synopses to produce approximate answers to all queries inQ.

2.2 Approximating Single-Query Answers with Pseudo-Random Sketches

The Basic Technique: Binary-Join Size Tracking [5, 6].Consider a simple stream-
processing scenario where the goal is to estimate the size of a binary join of two streams



R1 andR2 on attributesR1.A1 andR2.A2, respectively. That is, we seek to approxi-
mate the result of queryQ = COUNT(R1 ./R1.A1=R2.A2 R2) as the tuples ofR1 and
R2 are streaming in. Letdom(A) denote the domain of an attributeA 4 andfR(i) be the
frequency of attribute valuei in R.A. (Note that, by the definition of the equi-join op-
erator, the two join attributes have identical value domains, i.e.,dom(A1) = dom(A2).)
Thus, we want to produce an estimate for the expressionQ =

∑
i∈dom(A1)

fR1(i)fR2(i).
Clearly, estimating this join size exactly requires at leastΩ(|dom(A1)|) space, making
an exact solution impractical for a data-stream setting. In their seminal work, Alon et
al. [5, 6] propose a randomized technique that can offer strong probabilistic guarantees
on the quality of the resulting join-size estimate while using space that can be signifi-
cantly smaller than|dom(A1)|.

Briefly, the basic idea of their scheme is to define a random variableXQ that can
be easily computed over the streaming values ofR1.A1 andR2.A2, such that (1)XQ

is anunbiased(i.e., correct on expectation) estimator for the target join size, so that
E[XQ] = Q; and, (2)XQ’s variance (Var(XQ)) can be appropriately upper-bounded to
allow for probabilistic guarantees on the quality of theQ estimate. This random variable
XQ is constructed on-line from the two data streams as follows:

– Select a family offour-wise independent binary random variables{ξi : i = 1, . . . ,
|dom(A1)|}, where eachξi ∈ {−1,+1} andP [ξi = +1] = P [ξi = −1] = 1/2
(i.e.,E[ξi] = 0). Informally, the four-wise independence condition means that for
any 4-tuple ofξi variables and for any 4-tuple of{−1,+1} values, the probabil-
ity that the values of the variables coincide with those in the{−1,+1} 4-tuple is
exactly1/16 (the product of the equality probabilities for each individualξi). The
crucial point here is that, by employing known tools (e.g., orthogonal arrays) for the
explicit construction of small sample spaces supporting four-wise independence,
such families can be efficiently constructed on-line using onlyO(log |dom(A1)|)
space [6].

– DefineXQ = X1 ·X2, whereXk =
∑

i∈dom(A1)
fRk

(i)ξi, for k = 1, 2. Quantities
X1 andX2 are called theatomic sketchesof relationsR1 andR2, respectively.
Note that eachXk is simply a randomized linear projection (inner product) of the
frequency vector ofRk.Ak with the vector ofξi’s that can be efficiently generated
from the streaming values ofAk as follows: Start withXk = 0 and simply addξi

to Xk whenever theith value ofAk is observed in the stream.

The quality of the estimation guarantees can be improved using a standardboosting
techniquethat maintains several independent identically-distributed (iid) instantiations
of the above process, and uses averaging and median-selection operators over theXQ

estimates to boost accuracy and probabilistic confidence [6]. (Independent instances can
be constructed by simply selecting independent random seeds for generating the fami-
lies of four-wise independentξi’s for each instance.) As above, we use the termatomic
sketchto describe each randomized linear projection computed over a data stream. Let-
ting SJk (k = 1, 2) denote the self-join size ofRk.Ak (i.e., SJk =

∑
i∈dom(Ak) fRk

(i)2),

4 Without loss of generality, we assume that each attribute domaindom(A) is indexed by the set
of integers{1, · · · , |dom(A)|}, where|dom(A)| denotes the size of the domain.



the following theorem [5] shows how sketching can be applied for estimating binary-
join sizes in limited space. (By standard Chernoff bounds [14], using median-selection
overO(log(1/δ)) of the averages computed in Theorem 1 allows the confidence in the
estimate to be boosted to1− δ, for any pre-specifiedδ < 1.)

Theorem 1 ([5]). Let the atomic sketchesX1 and X2 be as defined above. Then
E[XQ] = E[X1X2] = Q and Var(XQ) ≤ 2 · SJ1 · SJ2. Thus, averaging theXQ

estimates overO(SJ1SJ2
Q2ε2 ) iid instantiations of the basic scheme, guarantees an estimate

that lies within a relative error ofε from Q with constant probability. �

This theoretical result suggests that the sketching technique is an effective estima-
tion tool only for joins with reasonably high cardinality (with respect to the product
of the individual self-join sizes); thus, it may perform poorly for very selective, low-
cardinality joins. Note, however, that the strong lower bounds shown by Alon et al. [5]
indicate thatanyapproximate query processing technique is doomed to perform poorly
(i.e., use large amounts of memory) for such low-cardinality joins. Thus, it appears that
the only effective way to deal with such very selective joins is through exact computa-
tion.

Single Multi-Join Query Answering [11]. In our recent work [11], we have extended
sketch-based techniques to approximate the result of a singlemulti-join aggregate SQL
query over a collection of streams.5 More specifically, our work in [11] focuses on ap-
proximating a multi-join stream queryQ of the form: “SELECT COUNT FROMR1,
R2, . . . , Rr WHEREE”, where E represents the conjunction of ofn equi-join con-
straints of the formRi.Aj = Rk.Al (Ri.Aj denotes thejth attribute of relationRi).
The extension to other aggregate functions, e.g.,SUM, is fairly straightforward [11]; fur-
thermore, note that dealing with single-relation selections is similarly straightforward
(simply filter out the tuples that fail the selection predicate from the relational stream).

Our development in [11] also assumes that each attributeRi.Aj appears inE at most
once; this requirement can be easily achieved by simply renaming repeating attributes
in the query. In what follows, we describe the key ideas and results from [11] based on
the join-graph model of the input queryQ, since this will allow for a smoother transition
to the multi-query case (Section 3).

Given stream queryQ, we define thejoin graphof Q (denoted byJ (Q)), as follows.
There is a distinct vertexv in J (Q) for each streamRi referenced inQ (we useR(v)
to denote the relation associated with vertexv). For each equality constraintRi.Aj =
Rk.Al in E , we add a distinct undirected edgee =< v, w > toJ (Q), whereR(v) = Ri

andR(w) = Rk; we also label this edge with the triple< Ri.Aj , Rk.Al, Q > that
specifies the attributes in the corresponding equality constraint and the enclosing query
Q (the query label is used in the multi-query setting). Given an edgee =< v, w > with
label< Ri.Aj , Rk.Al, Q >, the three components ofe’s label triple can be obtained
asAv(e), Aw(e) andQ(e). (Clearly, by the definition of equi-joins,dom(Av(e)) =
dom(Aw(e)).) Note that there may be multiple edges between a pair of vertices in the

5 [11] also describes asketch-partitioningtechnique for improving the quality of basic sketching
estimates; this technique is essentially orthogonal to the multi-query problems considered in
this paper, so we do not discuss it further.
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Fig. 2.Example Query Join Graph.

join graph, but each edge has its own distinct label triple. Finally, for a vertexv in
J (Q), we denote the attributes ofR(v) that appear in the input query (or, queries) as
A(v); thus,A(v) = {Av(e) : edgee is incident onv}.

The result ofQ is the number of tuples in the cross-product ofR1, . . . , Rr that sat-
isfy the equality constraints inE over the join attributes. Similar to the basic sketching
method [5, 6], our algorithm [11] constructs an unbiased, bounded-variance probabilis-
tic estimateXQ for Q using atomic sketches built on the vertices of the join graph
J (Q). More specifically, for each edgee =< v, w > in J (Q), our algorithm de-
fines a family of four-wise independent random variablesξe = {ξe

i : i = 1, . . . ,
|dom(Av(e))|}, where eachξe

i ∈ {−1,+1}. The key here is that the equi-join attribute
pairAv(e), Aw(e) associated with edgee shares the sameξ family; on the other hand,
distinct edges ofJ (Q) useindependently-generatedξ families (using mutually inde-
pendent random seeds). The atomic sketchXv for each vertexv in J (Q) is built as
follows. Lete1, . . . , ek be the edges incident onv and, fori1 ∈ dom(Av(e1)), . . . , ik ∈
dom(Av(ek)), let fv(i1, . . . , ik) denote the number of tuples inR(v) that match values
i1, . . . , ik in their join attributes. More formally,fv(i1, . . . , ik) is the number of tuples
t ∈ R(v) such thatt[Av(ej)] = ij , for 1 ≤ j ≤ k (t[Aj] denotes the value of attribute
A in tuplet). Then, the atomic sketch atv isXv =

∑
i1∈dom(Av(e1))

· · ·
∑

ik∈dom(Av(ek))

fv(i1, . . . , ik)
∏k

j=1 ξ
ej

ij
. Finally, the estimate forQ is defined asXQ =

∏
v Xv (that

is, the product of the atomic sketches for all vertices inJ (Q)). Note that each atomic
sketchXv is again a randomized linear projection that can be efficiently computed as
tuples ofR(v) are streaming in; more specifically,Xv is initialized to 0 and, for each
tuplet in theR(v) stream, the quantity

∏k
j=1 ξ

ej

t[Av(ej)]
∈ {−1,+1} is added toXv.

Example 1.Consider queryQ=SELECT COUNT FROMR1, R2, R3 WHERER1.A1 =
R2.A1 ANDR2.A2 = R3.A2. The join graphJ (Q) is depicted in Figure 2, with
verticesv1, v2, andv3 corresponding to streamsR1, R2, andR3, respectively. Sim-
ilarly, edgese1 ande2 correspond to the equi-join constraintsR1.A1 = R2.A1 and
R2.A2 = R3.A2, respectively. (Just to illustrate our notation,R(v1) = R1, Av2(e1)
= R2.A1 andA(v2) = {R2.A1, R2.A2}.) The sketch construction defines two fami-
lies of four-wise independent random families (one for each edge):{ξe1

i } and{ξe2
j }.

The three atomic sketchesXv1 , Xv2 , andXv3 (one for each vertex) are defined as:
Xv1 =

∑
i∈dom(R1.A1)

fv1(i)ξ
e1
i , Xv2 =

∑
i∈dom(R2.A1)

∑
j∈dom(R2.A2)

fv2(i, j)ξ
e1
i ξe2

j ,
andXv3 =

∑
j∈dom(R3.A2)

fv3(j)ξ
e3
j . The value of random variableXQ =Xv1Xv2Xv3

gives the sketching estimate for the result ofQ. �

Our analysis in [11] shows that the random variableXQ constructed above is an
unbiased estimator forQ, and demonstrates the following theorem which generalizes
the earlier result of Alon et al. [5] to multi-join queries. (SJv =

∑
i1∈dom(Av(e1))

· · ·∑
ik∈dom(Av(ek)) fv(i1, . . . , ik)2 is the self-join size ofR(v).)



Theorem 2 ([11]). Let Q be aCOUNTquery with n equi-join predicates such that
J (Q) contains no cycles of length> 2. Then,E[XQ] = Q and using sketching space

of O(Var[XQ]·log(1/δ)
Q2·ε2 ), it is possible to approximateQ to within a relative error ofε

with probability at least1− δ, where Var[XQ] ≤ 22n
∏

v SJv. �

3 Sketch Sharing: Basic Concepts and Problem Formulation

In this section, we turn our attention to sketch-based processing ofmultipleaggregate
SQL queries over streams. We introduce the basic idea of sketch sharing and demon-
strate how it can improve the effectiveness of the available sketching space and the
quality of the resulting approximate answers. We also characterize the class of correct
sketch-sharing configurations and formulate the optimization problem of identifying an
effective sketch-sharing plan for a given query workload.

3.1 Sketch Sharing

Consider the problem of using sketch synopses for the effective processing of a query
workloadQ = {Q1, . . . , Qq} comprising multiple (multi-join)COUNTaggregate que-
ries. As in [11], we focus onCOUNTsince the extension to other aggregate functions
is relatively straightforward; we also assume an attribute-renaming step that ensures
that each stream attribute is referenced only once in each of theQi’s (of course, the
same attribute can be used multiple times across the queries inQ). Finally, as in [11],
we do not consider single-relation selections, since they can be trivially incorporated
in the model by using the selection predicates to define filters for each stream. The
sketching of each relation is performed using only the tuples that pass the filter; this
is equivalent to introducing virtual relations/streams that are the result of the filtering
process and formulating the queries with respect to these relations. This could poten-
tially increase the number of relations and reduce the number of opportunities to share
sketches (as described in this section), but would also create opportunities similar to
the ones investigated by traditional MQO (e.g., constructing sketches for common filter
sub-expressions). In this paper, we focus on the novel problem of sharing sketches and
we do not investigate further how such techniques can be used for the case where se-
lection predicates are allowed. As will become apparent in this section, sketch sharing
is very different from common sub-expression sharing; traditional MQO techniques do
not apply for this problem.

An obvious solution to our multi-query processing problem is to build disjoint join
graphsJ (Qi) for each queryQi ∈ Q, and construct independent atomic sketches for
the vertices of eachJ (Qi). The atomic sketches for each vertex ofJ (Qi) can then be
combined to compute an approximate answer forQi as described in [11] (Section 2.2).
A key drawback of such a naive solution is that it ignores the fact that a relationRi may
appear in multiple queries inQ. Thus, it should be possible to reduce the overall space
requirements bysharingatomic-sketch computations among the vertices for streamRi

in the join graphs for the queries in our workload. We illustrate this in the following
example.
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Fig. 3.Example Workload with Sketch-Sharing Potential.

Example 2.Consider queriesQ1 = SELECT COUNT FROMR1, R2, R3 WHERE
R1.A1 = R2.A1 ANDR2.A2 = R3.A2 andQ2 = SELECT COUNT FROMR1, R3

WHERER1.A1 = R3.A2. The naive processing algorithm described above would main-
tain two disjoint join graphs (Fig. 3) and, to compute a single pair(XQ1 , XQ2) of
sketch-based estimates, it would use three families of random variables (ξe1 , ξe2 , and
ξe3), and a total of five atomic sketches (Xvk

, k = 1, . . . , 5).
Instead, suppose that we decide to re-use the atomic sketchXv1 for v1 also forv4,

both of which essentially correspond to the same attribute of the same stream (R1.A1).
Since for eachi ∈ dom(R1.A1), fv4(i) = fv1(i), we getXv4 = Xv1 =

∑
i∈dom(R1.A1)

fv4(i)ξ
e1
i . Of course, in order to correctly compute a probabilistic estimate ofQ2,

we also need to use the same familyξe1 in the computation ofXv5 ; that is,Xv5 =∑
i∈dom(R1.A1)

fv5(i)ξ
e1
i . It is easy to see that both final estimatesXQ1 = Xv1Xv2Xv3

andXQ1 = Xv1Xv5 satisfy all the premises of the sketch-based estimation results in
[11]. Thus, by simply sharing the atomic sketches forv1 andv4, we have reduced the
total number of random families used in our multi-query processing algorithm to two
(ξe1 andξe2) and the total number of atomic sketches maintained to four.�

Let J (Q) denote the collection of all join graphs in workloadQ, i.e., allJ (Qi)
for Qi ∈ Q. Sharing sketches between the vertices ofJ (Q) can be seen as a transfor-
mation ofJ (Q) that essentiallycoalescesvertices belonging to different join graphs
in J (Q). (We also useJ (Q) to denote the transformed multi-query join graph.) Of
course, as shown in Example 2, verticesv ∈ J (Qi) andw ∈ J (Qj) can be coalesced
in this manneronly if R(v) = R(w) (i.e., they correspond to the same data stream) and
A(v) = A(w) (i.e., bothQi andQj use exactly the same attributes of that stream). Such
vertex coalescing implies that a vertexv in J (Q) can have edges from multiple differ-
ent queries incident on it; we denote the set of all these queries asQ(v), i.e.,Q(v) =
{Q(e) : edgee is incident onv}. Figure 4(a) pictorially depicts the coalescing of ver-
ticesv1 andv4 as discussed in Example 2. Note that, by our coalescing rule, for each
vertexv, all queries inQ(v) are guaranteed to use exactly the same set of attributes of
R(v), namelyA(v); furthermore, by our attribute-renaming step, each query inQ(v)
uses each attribute inA(v) exactly once. This makes it possible to share an atomic
sketch built for the coalesced verticesv across all queries inQ(v) but, as we will see
shortly, cannot guarantee the correctness of the resulting sketch-based estimates.

Estimation with Sketch Sharing. Consider a multi-query join graphJ (Q), possibly
containing coalesced vertices (as described above). Our goal here is to buildatomic
sketches corresponding to individual verticesof J (Q) that can then be used for obtain-
ing sketch-based estimates forall the queries in our workloadQ. Specifically, consider



a queryQ ∈ Q, and letV (Q) denote the (sub)set of vertices inJ (Q) attached to a join-
predicate edge corresponding toQ; that is,V (Q) = {v : edgee is incident onv and
Q(e) = Q}. Our goal is to construct an unbiased probabilistic estimateXQ for Q using
the atomic sketches built for vertices inV (Q).

The atomic sketch for a vertexv of J (Q) is constructed as follows. As before,
each edgee ∈ J (Q) is associated with a familyξe of four-wise independent{−1,+1}
random variables. The difference here, however, is that edges attached to nodev for
the same attributeof R(v) share thesameξ family since thesamesketch ofR(v)
corresponding to vertexv is used to estimateall queries inQ(v); this, of course, implies
that the number ofdistinctξ families for all edges incident onv is exactly|A(v)| (each
family corresponding to a distinct attribute ofR(v)). Furthermore, all distinctξ families
inJ (Q) are generated independently (using mutually independent seeds). For example,
in Figure 4(a), sinceAv1(e1) = Av1(e3) = R1.A1, edgese1 ande3 share the sameξ
family (i.e., ξe3 = ξe1); on the other hand,ξe1 andξe2 are distinct and independent.
AssumingA = {A1, . . . , Ak} and lettingξ1, . . . , ξk denote thek corresponding distinct
ξ families attached tov, the atomic sketchXv for nodev is simply defined asXv =∑

(i1,...,ik)∈A1×···×Ak
fv(i1, . . . , ik)

∏k
j=1 ξj

ij
(again, a randomized linear projection).

The final sketch-based estimate for queryQ is the product of the atomic sketches over
all vertices inV (Q), i.e.,XQ =

∏
v∈V (Q) Xv.

Correctness of Sketch-Sharing Configurations.The XQ estimate construction de-
scribed above can be viewed as simply “extracting” the join (sub)graphJ (Q) for query
Q from the multi-query graphJ (Q), and constructing a sketch-based estimate forQ
as described in Section 2.2. This is because, if we were to only retain inJ (Q) vertices
and edges associated withQ, then the resulting subgraph is identical toJ (Q). Further-
more, our vertex coalescing (which completely determines the sketches to be shared)
guarantees thatQ references exactly the attributesA(v) of R(v) for eachv ∈ V (Q), so
the atomic sketchXv can be utilized.

There is, however, an important complication that our vertex-coalescing rule still
needs to address, to ensure that the atomic sketches for vertices ofJ (Q) provide unbi-
ased query estimates with variance bounded as described in Theorem 2. Given an esti-
mateXQ for queryQ (constructed as above), unbiasedness and the bounds on Var[XQ]
given in Theorem 2 depend crucially on the assumption that theξ families used for the
edges inJ (Q) are distinct and independent. This means that simply coalescing vertices
in J (Q) that use the same set of stream attributes is insufficient. The problem here is
that the constraint that all edges for the same attribute incident on a vertexv share the
sameξ family may (by transitivity) force edges for the same queryQ to share identical
ξ families. The following example illustrates this situation.

Example 3.Consider the multi-query join graphJ (Q) in Figure 4(b) for queriesQ1

andQ2 in Example 3. (J (Q) is obtained as a result of coalescing vertex pairsv1, v4

andv3, v5 in Fig, 3.) SinceAv1(e1) = Av1(e3) = R1.A1 andAv3(e2) = Av3(e3) =
R3.A2, we get the constraintsξe3 = ξe1 andξe3 = ξe2 . By transitivity, we haveξe1 =
ξe2 = ξe3 , i.e., all three edges of the multi-query graph share the sameξ family. This,
in turn, implies that the sameξ family is used on both edges of queryQ1; that is,
instead of being independent, the pseudo-random families used on the two edges ofQ1

are perfectly correlated! It is not hard to see that, in this situation, the expectation and
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Fig. 4.Multi-Query Join GraphsJ (Q) for Example 2.

variance derivations forXQ1 will fail to produce the results of Theorem 2, since many
of the zero cross-product terms in the analysis of [5, 11] will fail to vanish.�

As is clear from the above example, the key problem is that constraints requiringξ
families for certain edges incident on each vertex ofJ (Q) to be identical, can transi-
tively ripple through the graph, forcing much larger sets of edges to share the sameξ
family. We formalize this fact using the following notion of (transitive)ξ-equivalence
among edges of a multi-query graphJ (Q).

Definition 1. Two edgese1 ande2 in J (Q) are said to beξ-equivalent if either (1)e1

ande2 are incident on a common vertexv, andAv(e1) = Av(e2); or (2) there exists an
edgee3 such thate1 ande3 are ξ-equivalent, ande2 ande3 are ξ-equivalent.

Intuitively, the classes of theξ-equivalence relation represent exactly the sets of
edges in the multi-query join graphJ (Q) that need to share the sameξ family; that is,
for any pair ofξ-equivalent edgese1 ande2, it is the case thatξe1 = ξe2 . Since, for
estimate correctness, we require that all the edges associated with a query have distinct
and independentξ families, our sketch-sharing algorithms only consider multi-query
join graphs that arewell-formed, as defined below.

Definition 2. A multi-query join graphJ (Q) is well-formed iff, for every pair ofξ-
equivalent edgese1 ande2 in J (Q), the queries containinge1 ande2 are distinct, i.e.,
Q(e1) 6= Q(e2).

It is not hard to prove that the well-formedness condition described above is actually
necessary and sufficient for individual sketch-based query estimates that are unbiased
and obey the variance bounds of Theorem 2. Thus, our shared-sketch estimation process
over well-formed multi-query graphs can readily apply the single-query results of [5,
11] for each individual query in our workload.

3.2 Problem Formulation

Given a large workloadQ of complex queries, there can obviously be a large number
of well-formed join graphs forQ, and all of them can potentially be used to provide
approximate sketch-based answers to queries inQ. At the same time, since the key
resource constraint in a data-streaming environment is imposed by the amount of mem-
ory available to the query processor, our objective is to compute approximate answers



to queries inQ that are as accurate as possible given a fixed amount of memoryM for
the sketch synopses. Thus, in the remainder of this paper, we focus on the problem of
computing (1) a well-formed join graphJ (Q) for Q, and (2) an allotment of theM
units of space to the vertices ofJ (Q) (for maintaining iid copies of atomic sketches),
such that an appropriate aggregate error metric (e.g., average or maximum error) for all
queries inQ is minimized.

More formally, letmv denote the sketching space allocated to vertexv (i.e., number
of iid copies ofXv). Also, letMQ denote the number of iid copies built for the query es-
timateXQ. SinceXQ =

∏
v∈V (Q) Xv, it is easy to see thatMQ is actually constrained

by theminimumnumber of iid atomic sketches constructed for each of the nodes in
V (Q); that is,MQ = minv∈V (Q){mv}. By Theorem 2, this implies that the (square)

error for queryQ is equal toWQ/MQ, whereWQ = 8Var[XQ]
E[XQ]2 is a constant for each

queryQ (assuming a fixed confidence parameterδ). Our sketch-sharing optimization
problem can then be formally stated as follows.

Problem Statement.Given a query workloadQ = {Q1, . . . , Qq} and an amount
of sketching memoryM , compute a multi-query graphJ (Q) and a space allotment
{mv : for each nodev in J (Q)} such that one of the following two error metrics is
minimized:

– Average query error inQ =
∑

Q∈Q
WQ

MQ
.

– Maximum query error inQ = maxQ∈Q{WQ

MQ
}.

subject to the constraints: (1)J (Q) is well-formed; (2)
∑

v mv ≤ M (i.e., the space
constraint is satisfied); and, (3) For all verticesv in J (Q), for all queriesQ ∈ Q(v),
MQ ≤ mv. �

The above problem statement assumes that the “weight”WQ for each queryQ ∈ Q
is known. Clearly, if coarse statistics in the form of histograms for the stream relations
are available (e.g., based on historical information or coarse a-priori knowledge of data
distributions), then estimates forE[XQ] and Var[XQ] (and, consequently,WQ) can be
obtained by estimating join and self-join sizes using these histograms [11]. In the event
that no prior information is available, we can simply set eachWQ = 1; unfortunately,
even for this simple case, our optimization problem is intractable (see Section 4).

In the following section, we first consider the sub-problem of optimally allocat-
ing sketching space (such that query errors are minimized) to the vertices of agiven,
well-formed join graphJ (Q). Subsequently, in Section 5, we consider the general op-
timization problem where we also seek to determine the best well-formed multi-query
graph for the given workloadQ. Since most of these questions turn out to beNP-hard,
we propose novel heuristic algorithms for determining good solutions in practice. Our
algorithm for the overall problem (Section 5) is actually an iterative procedure that uses
the space-allocation algorithms of Section 4 as subroutines in the search for a good
sketch-sharing plan.

4 Space Allocation Problem

In this section, we consider the problem of allocating space optimally given a well-
formed join graphJ = J (Q) such that the average or maximum error is minimized.



4.1 Minimizing the Average Error

The problem of allocating space to sketches in a way that minimizes the average error
turns out to beNP-hard even whenWQ = 1. Given the intractability of the problem,
we look for an approximation based on its continuous relaxation, i.e., we allow the
MQ’s andmv ’s to be continuous. The continuous version of the problem is a convex
optimization problem, which can be solved exactly in polynomial time using, for exam-
ple, interior point methods [15]. We can then show that a near-optimal integer solution
is obtained by rounding down (to integers) the optimal continuous values of theMQ’s
andmv ’s.

Since standard methods for solving convex optimization problems tend to be slow
in practice, we developed a novel specialized solution for the problem at hand. Our
solution, which we believe has applications to a much wider class of problems than the
optimal space allocation problem outlined in this paper, is based on a novel usage of
the Kuhn-Tucker optimality conditions (KT-conditions). We rewrite the problem using
the KT conditions, and then we solve the problem through repeated application of a
specific Max-Flow formulation of the constraints. Due to space limitations, we omit a
detailed description of the algorithm and the analysis of its correctness; details can be
found in the full version of this paper [13]. Our results are summarized in the following
theorem:

Theorem 3. There is an algorithm that computes the optimal solution to the average-
error continuous convex optimization problem in at mostO(min{|Q|, |J |}·(|Q|+|J |)3)
steps. Furthermore, rounding this optimal continuous solution results in an integer solu-
tion that is guaranteed to be within a factor of(1+ 2|J|

M ) of the optimal integer solution.
�

4.2 Minimizing the Maximum Error

It can be easily shown (see [13] for details) that the problem of minimizing the max-
imum error can be solved in timeO(|J | log |J |) by the following greedy algorithm:
(1) take eachmv proportional tomaxQ∈Q(v) WQ), (2) round down eachmv com-
ponent to the nearest integer, and (3) take the remaining spaces ≤ |J | and allocate
one extra unit of space to each of the nodes with thes smallest values for quantity
mv/ maxQ∈Q(v) WQ.

5 Computing a Well-formed Join Graph

The optimization problem we are trying to solve is: find a well-formed graphJ (Q) and
the optimal space allocation to the vertices ofJ (Q) such that the average or maximum
error is minimized. If we takeWQ = 1 for all queries and minimize the maximum error,
this optimization problem reduces to the problem of finding a well-formed join graph
J (Q) with the minimum number of vertices; this problem isNP-hard (see [13] for the
proof) which makes the initial optimization problemNP-hard as well.

In order to provide an acceptable solution in practice we designed a greedy heuris-
tic, that we callCoalesceJoinGraphs , for computing a well-formed join graph



with small error. The AlgorithmCoalesceJoinGraphs iteratively merges pair of
vertices inJ that causes the largest decrease in error, until the error cannot be reduced
any further by coalescing vertices. It uses the algorithm to compute the average (Sec-
tion 4.1) or maximum error (Section 4.2) for a join graph as a subroutine, which we
denote byComputeSpace , at every step. Also, in order to ensure that graphJ al-
ways stays well-formed,J is initially set to be equal to the set of all the individual
join graphs for queries inQ. In each subsequent iteration, only vertices for identical
relations that have the same attribute sets and preserve the well-formedness ofJ are co-
alesced. Well-formedness testing essentially involves partitioning the edges ofJ ′ into
equivalence classes, each class consisting ofξ-equivalent edges, and then verifying that
no equivalence class contains multiple edges from the same join query; it can be carried
out very efficiently, in time proportional to the number of edges inJ ′. The Algorithm
CoalesceJoinGraphs needs to make at mostO(N3) calls toComputeSpace ,
whereN is the total number of vertices in all the join graphsJ (Q) for the queries, and
this determines its time complexity.

6 Experimental Study

In this section, we present the results of an experimental study of our sketch-sharing
algorithms for processing multipleCOUNTqueries in a streaming environment. Our
experiments consider a wide range ofCOUNTqueries on a common schema and set
of equi-join constraints and with synthetically generated data sets. The reason we use
synthetic data sets is that these enable us to measure the effectiveness of our sketch
sharing techniques for a variety of different data distributions and parameter settings.
The main findings of our study can be summarized as follows.

• Effectiveness of Sketch Sharing.Our experiments with various realistic workloads
indicate that, in practice, sharing sketches among queries can significantly reduce the
number of sketches needed to compute estimates. This, in turn, results in better utiliza-
tion of the available memory, and much higher accuracy for returned query answers.
For instance, for our first query set (its description is provided latter in this section), the
number of vertices in the final coalesced join graph returned by our sketch-sharing al-
gorithms decreases from 34 (with no sharing) to 16. Further, even withWQ = 1 (for all
queriesQ), compared to naive solutions which involve no sketch sharing, our sketch-
sharing solutions deliver improvements in accuracy ranging from a factor of 2 to 4 for
a wide range of multi-query workloads.

• Benefits of Intelligent Space Allocation.The errors in the approximate query an-
swers computed by our sketch-sharing algorithms are smaller if approximate weight

informationWQ = 8Var[X]
E[X]2 for queries is available. Even with weight estimates based

on coarse statistics on the underlying data distribution (e.g., histograms), accuracy im-
provements of up to a factor of 2 can be obtained compared with using uniform weights
for all queries.

Thus, our experimental results validate the thesis of this paper that sketch sharing
can significantly improve the accuracy of aggregate queries over data streams, and that
a careful allocation of available space to sketches is important in practice.



6.1 Experimental Testbed and Methodology

Algorithms for Answering Multiple Aggregate Queries. We compare the error per-
formance of the following two sketching methods for evaluating query answers.

•No sketch sharing.This is the naive sketching technique from Section 2.2 in which we
maintain separate sketches for each individual query join graphJ (Q). Thus, there is no
sharing of sketching space between the queries in the workload, and independent atomic
sketches are constructed for each relation, query pair such that the relation appears in
the query.

• Sketch sharing.In this case, atomic sketches for relations are reused as much as possi-
ble across queries in the workload for the purpose of computing approximate answers.
Algorithms described in Sections 4 and 5 are used to compute the well-formed join
graph for the query set and sketching space allocation to vertices of the join graph (and
queries) such that either the average-error or maximum-error metric is optimized. There
are two solutions that we explore in our study, based on whether prior (approximate)
information on join and self-join sizes is available to our algorithms to make more in-
formed decisions on memory allocation for sketches.

– No prior information. The weights for all join queries in the workload are set to 1,
and this is the input to our sketch-sharing algorithms.

– Prior information is available. The ratio8Var(X)
E[X]2) is estimated for each workload

query, and is used as the query weight when determining the memory to be allo-
cated to each query. We use coarse one-dimensional histograms for each relational
attribute to estimate join and self-join sizes required for weight computation. Each
histogram is given 200 buckets, and the frequency distribution for multi-attribute
relations is approximated from the individual attribute histograms by applying the
attribute value independence assumption.

Query Workload. The query workloads used to evaluate the effectiveness of sketch
sharing consist of collections of JOIN-COUNT queries roughly based on the schema
and queries in TPC-H benchmark; this allows us to simulate a somewhat realistic sce-
nario in which sketches can be shared. The schema consists of six relations with one
to three join attributes. Three workloads have been defined on this schema. Workload
1, inspired by the TPC-H workload, consists of twelve queries. Workload 2 extends
the first workload with seventeen random queries. Workload 3 contains seven queries
from the workload 1 that contain one or two join constraints together with a query from
workload 3 that contains three join constraints. The full details, which we omit due to
lack of space, can be found in [13].

Data Set.We used the synthetic data generator from [16] to generate all the relations
in our experiments. The data generator works by populating uniformly distributed rect-
angular regions in the multi-dimensional attribute space of each relation. Tuples are
distributed across regions and within regions using a Zipfian distribution with values
zinter andzintra, respectively. We set the parameters of the data generator to the fol-
lowing default values: size of each domain=1024, number of regions=10, volume of
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Fig. 8.Maximum error (workload 2)

each region=1000–2000, skew across regions (zinter)=1.0, skew within each region
(zintra) =0.0–0.5 and number of tuples in each relation = 10,000,000.

Answer-Quality Metrics. In our experiments we use the square of the absolute relative

error ((actual−approx)2

actual2 ) in the aggregate value as a measure of the accuracy of the
approximate answer for a single query. For a given query workload, we consider both
the average-error and maximum-error metrics, which correspond to averaging over all
the query errors and taking the maximum from among the query errors, respectively.
We repeat each experiment 100 times, and use the average value for the errors across
the iterations as the final error in our plots.

6.2 Experimental Results

Results: Sketch Sharing.Figures 5 through 8 depict the average and maximum errors
for query workloads 1 and 2 as the sketching space is increased from 2K to 20K words.
From the graphs, it is clear that with sketch sharing, the accuracy of query estimates im-
proves. For instance, with workload 1, errors are generally a factor of two smaller with
sketch sharing. The improvements due to sketch sharing are even greater for workload 2
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where due to the larger number of queries, the degree of sharing is higher. The improve-
ments can be attributed to our sketch-sharing algorithms which drive down the number
of join graph vertices from 34 (with no sharing) to 16 for workload 1, and from 82 to
25 for workload 2. Consequently, more sketching space can be allocated to each vertex,
and hence the accuracy is better with sketch sharing compared to no sharing. Further,
observe that in most cases, errors are less than 10% for sketch sharing, and as would be
expected, the accuracy of estimates gets better as more space is made available to store
sketches.

Results: Intelligent Space Allocation.We plot in Figures 9 and 10, the average and
maximum error graphs for two versions of our sketch-sharing algorithms, one that is
supplied uniform query weights, and another with estimated weights computed using
coarse histogram statistics. We considered query workload 3 for this experiment since
workloads 2 and 3 have queries with large weights that access all the underlying rela-
tions. These queries tend to dominate in the space allocation procedures, causing the
final result to be very similar to the uniform query weights case, which is not happening
for query workload 3. Thus, with intelligent space allocation, even with coarse statistics
on the data distribution, we are able to get accuracy improvements of up to a factor of
2 by using query weight information.

7 Concluding Remarks

In this paper, we investigated the problem of processingmultipleaggregate SQL queries
over data streams concurrently. We proved correctness conditions for multi-query sketch
sharing, and we developed solutions to the optimization problem of determining sketch-
sharing configurations that are optimal under average and maximum error metrics for
a given amount of space. We proved that the problem of optimally allocating space to
sketches such that query estimation errors are minimized isNP-hard. As a result, for
a given multi-query workload, we developed a mix of near-optimal solutions (for space
allocation) and heuristics to compute the final set of sketches that result in small errors.
We conducted an experimental study with realistic query workloads; our findings indi-
cate that (1) Compared to a naive solution that does not share sketches among queries,



our sketch-sharing solutions deliver improvements in accuracy ranging from a factor of
2 to 4, and (2) The use of prior information about queries (e.g., obtained from coarse
histograms), increases the effectiveness of our memory allocation algorithms, and can
cause errors to decrease by factors of up to 2.
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