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Abstract

XML is rapidly emerging as the new standard for data representation and exchange on the Web. Doc-
ument Type Descriptors (DTDs) contain valuable information on the structure of XML documents and
thus have a crucial role in the efficient storage and querying of XML data. Despite their importance,
however, DTDs are not mandatory, and it is quite possible for documents in XML databases to not have
accompanying DTDs. In this paper, we present an overview of XTRACT, a novel system for inferring a
DTD schema for a database of XML documents. Since the DTD syntax incorporates the full expressive
power of regular expressions, naive approaches typically fail to produce concise and intuitive DTDs.
Instead, the XTRACT inference algorithms employ a sequence of sophisticated steps that involve: (1)
finding patterns in the input sequences and replacing them with regular expressions to generate “gen-
eral” candidate DTDs, (2) factoring candidate DTDs using adaptations of algorithms from the logic
optimization literature, and (3) applying the Minimum Description Length (MDL) principle to find the
best DTD among the candidates.

1 Introduction

The genesis of the eXtensible Markup Language (XML) was based on the thesis that structured documents can
be freely exchanged and manipulated, if published in a standard, open format. Indeed, as a corroboration of
the thesis, XML today promises to enable a suite of next-generation web applications ranging from intelligent
web searching to electronic commerce. XML documents comprise hierarchically nested collections of elements,
where each element can be either atomic (i.e., raw character data) or composite (i.e., a sequence of nested
subelements). Further, tags stored with elements in an XML document describe the semantics of the data. Thus,
XML data is hierarchically structured and self-describing.

A Document Type Descriptor (DTD) may optionally accompany an XML document and essentially serves
the role of a schema specifying the internal structure of the document. Briefly , a DTD specifies for every
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element, the regular expression pattern that subelement sequences of the element need to conform to. In addition
to enabling the free exchange of electronic documents through industry-wide standards, DTDs also provide the
basic mechanism for defining the structure of the underlying XML data. As a consequence, DTDs play a crucial
role in the efficient storage of XML data as well as the formulation, optimization, and processing of queries over
a collection of XML documents [3, 4, 7]. Despite their importance, however, DTDs are not mandatory and an
XML document may not always have an accompanying DTD. This is typically the case, for instance, when large
volumes of XML documents are automatically generated from data stored in relational databases, flat files (e.g.,
HTML pages, bibliography files), or other semistructured data repositories.

Based on the above discussion on the virtues of a DTD, it is important to devise algorithms and tools
that can infer an accurate, meaningful DTD for a given collection of XML documents (i.e., instances of the
DTD). This is not an easy task. In contrast to simple structural descriptions or typings (e.g., [7, 11]), the DTD
syntax incorporates the full specification power of regular expressions; thus, manually deducing such a DTD
schema for even a small set of XML documents created by a user could prove to be a process of daunting
complexity. Furthermore, naive approaches typically fail to deliver meaningful and intuitive DTD descriptions
of the underlying data. Both problems are, of course, exacerbated for large XML document collections.

In this paper, we provide an overview of the architecture of XTRACT [5, 6], a novel system for inferring an
accurate, meaningful DTD schema for a repository of XML documents. A naive and straightforward solution
to our DTD-extraction problem would be to infer as the DTD for an element, a “concise” expression which
describes exactly all the sequences of subelements nested within the element in the entire document collection.
However, DTDs generated by this approach tend to be voluminous and unintuitive. In fact, we discover that
accurate and meaningful DTD schemas that are also intuitive and appealing to humans tend to generalize. That
is, “good” DTDs are typically regular expressions describing subelement sequences that may not actually occur
in the input XML documents. (Note that this, in fact, is always the case for DTD regular expressions that
correspond to infinite regular languages, e.g., DTDs containing one or more Kleene stars (*) [9].) In practice,
however, there are numerous such candidate DTDs that generalize the subelement sequences in the input, and
choosing the DTD that best describes the structure of these sequences is a non-trivial task. The XTRACT
inference algorithms employ the following novel combination of sophisticated techniques to generate DTD
schemas that effectively capture the structure of the input sequences.

o Generalization. As a first step, XTRACT employs novel heuristic algorithms for finding patterns in each
input sequence and replacing them with appropriate regular expressions to produce more general candidate
DTDs. The main goal of the generalization step is to judiciously introduce metacharacters (like Kleene
stars) to produce regular subexpressions that generalize the patterns observed in the input sequences. Our
generalization heuristics are based on the discovery of frequent, neighboring occurrences of subsequences
and symbols within each input sequence. To avoid an explosion in the number of resulting patterns, our
techniques are inspired by practical, real-life DTD examples.

e Factoring. As a second step, XTRACT factors common subexpressions from the generalized candidate
DTDs obtained in the generalization step, in order to make them more concise. The factoring algorithms
applied are appropriate adaptations of techniques from the logic optimization literature [1, 14].

o Minimum Description Length (MDL) Principle. In the final and most important step, XTRACT em-
ploys Rissanen’s Minimum Description Length (MDL) principle [13] to derive an elegant mechanism for
composing a near-optimal DTD schema from the set of candidate DTDs generated by the earlier two
steps. (Our MDL-based notion of optimality is described later in the paper.) The MDL principle has
its roots in information theory and, essentially, provides a principled, scientific definition of the optimal
“theory/model” that can be inferred from a set of data examples [12]. Using MDL allows XTRACT to
control the amount of generalization introduced in the inferred DTD in a principled and, at the same
time, intuitively-appealing fashion. We demonstrate that selecting the optimal DTD based on the MDL
principle has a direct and natural mapping to the Facility Location Problem (FLP), which is known to be



<article>
<title> A Relational Model for
Large Shared Data Banks </title>
<author>
<name> E. F. Codd </name>
<affil> IBM Research </affil>
</author>
</article>

<!ELEMENT article(title, author*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (name, affil)>
<!ELEMENT name (#PCDATA) >
<!ELEMENT affil (#PCDATA)>

(a) (b)
Figure 1: (a) An Example XML Document. (b) An Example DTD.

NP-complete [8]. Fortunately, efficient approximation algorithms with guaranteed performance bounds
have been proposed for the FLP in the literature [2], thus allowing us to efficiently compose the final DTD
in a near-optimal manner.

We have implemented our XTRACT DTD-derivation algorithms and conducted an extensive experimental
study with both real-life and synthetic DTDs that demonstrates the effectiveness of our approach. Due to space
constraints, the discussion of our experimental findings as well as most of the details of the XTRACT algorithms
have been omitted from this overview paper; interested readers are referred to [5, 6].

2 Formulating the DTD-Inference Problem

Quick Overview of XML and DTDs. An XML document, like an HTML document, consists of nested element
structures starting with a root element. Subelements of an element can either be elements or simply character
data. Figure 1(a) illustrates an example XML document, in which the root element (art icle) has two nested
subelements (title and author), and the author element in turn has two nested subelements. The title
element contains character data denoting the title of the article while the name element contains the name of the
author of the article. The ordering of subelements within an element is significant in XML. Elements can also
have zero or more attribute/value pairs that are stored within the element’s start tag.

A DTD is a grammar for describing the structure of an XML document. A DTD constrains the structure of
an element by specifying a regular expression that its subelement sequences have to conform to. Figure 1(b)
illustrates a DTD that the XML document in Figure 1(a) conforms to. The DTD declaration syntax uses commas
for sequencing, | for (exclusive) OR, parenthesis for grouping and the meta-characters ?,* ,* to denote, respec-
tively, zero or one, zero or more, and one or more occurrences of the preceding term. As a special case, the DTD
corresponding to an element can be ANY which allows an arbitrary XML fragment to be nested within the ele-
ment. We should point out that real-life DTDs can get fairly complex and can sometimes contain several regular
expressions terms with multiple levels of nesting (e.g., ((ab)*c)*). (For brevity, we denote XML elements by a
single lower-case letter; we also omit explicit commas in element sequences and regular expressions.)

Problem Formulation. Our goal is to infer a DTD for a collection of XML documents. Thus, for each element
that appears in the XML documents, we aim to derive a regular expression that subelement sequences for the
element (in the XML documents) conform to. Note that an element’s DTD is completely independent of the
DTD for other elements, and only restricts the sequence of subelements nested within the element. Therefore,
for simplicity of exposition, we concentrate on the problem of extracting a DTD for a single element.

Let e be an element that appears in the XML documents for which we want to infer the DTD. It is straight-
forward to compute the sequence of subelements nested within each < e >< /e > pair in the XML documents.
Let I denote the set of N such sequences, one sequence for every occurrence of element e in the data. The
problem we address in this paper can be stated as follows: “Given a set I of N input sequences nested within
element e, compute a DTD for e such that every sequence in I conforms to the DTD.”



As stated, an obvious solution to the problem is to find the most “concise” regular expression R whose
language is /. One mechanism to find such a regular expression is to factor as much as possible, the expression
corresponding to the OR of sequences in I. Factoring a regular expression makes it “concise” without changing
the language of the expression. For example, ab|ac can be factored into a(b|c). An alternate method for com-
puting the most concise regular expression is to first find the automaton with the smallest number of states that
accepts I and then derive the regular expression from the automaton. Such concise regular expressions whose
language is exactly I, are unfortunately not “good” DTDs, in the sense that they tend to be voluminous and
unintuitive. We illustrate this using the DTD of Figure 1(b). Suppose we have a collection of XML documents
that conform to this DTD. Abbreviating the title tag by ¢, and the author tag by a, it is reasonable to
expect the following sequences to be the subelement sequences of the article element in the collection of
XML documents: t, ta, taa, taaa, tacaa. Clearly, the most concise regular expression for the above language
is t|t(ala(ala(alaa))) which is definitely much more voluminous and lot less intuitive than a DTD such as ta*.

In other words, the obvious solution above never “generalizes” and would therefore never contain metachar-
acters like * in the inferred DTD. Clearly, a human being would at most times want to use such metacharacters in
a DTD to succinctly convey the constraints he/she wishes to impose on the structure of XML documents. Thus,
the challenge is to infer, for the set of input sequences I, a “general” DTD which is similar to what a human
would come up with. However, as the following example illustrates, there can be several possible “generaliza-
tions” for a given set of input sequences and thus we need to devise a mechanism for choosing the one that best
describes the sequences.

Example 1: Consider I = {ab, abab, ababab}. A number of DTDs match sequences in I — (1) (a | b)*, (2)
ab | abab | ababab, (3) (ab)*, (4) ab | ab(ab | abab), and so on. DTD (1) is similar to ANY in that it allows any
arbitrary sequence of as and bs, while DTD (2) is simply an OR of all the sequences in I. DTD (4) is derived
from DTD (2) by factoring the subsequence ab from the last two disjuncts of DTD (2). The problem with DTD
(1) is that it represents a gross over-generalization of the input, and the inferred DTD completely fails to capture
any structure inherent in the input. On the other hand, DTDs (2) and (4) accurately reflect the structure of the
input sequences but do not generalize or learn any meaningful patterns which make the DTDs smaller or simpler
to understand. Thus, none of the DTDs (1), (2), or (4) seem “good”; on the other hand, DTD (3) has great
intuitive appeal since it is succinct and it generalizes the input sequences without losing too much information
about their structure.

Based on the discussion in the above example, we can characterize the set of desirable DTDs by placing the
following two qualitative restrictions on the inferred DTD: (R1) The DTD should be concise (i.e., small in size);
and, (R2) The DTD should be precise (i.e, not cover too many sequences not contained in I). Restriction (R1)
above ensures that the inferred DTD is easy to understand and succinct, thus eliminating, in many cases, exact
solutions, i.e., regular expressions whose language is exactly I. Restriction (R2), on the other hand, attempts
to ensure that the DTD is not too general and captures the structure of input sequences, thus eliminating trivial
DTDs such as ANY. While the above restrictions seem reasonable at an intuitive level, there is a problem with
devising a solution based on the above restrictions. The problem is that restrictions (R1) and (R2) conflict with
each other. In our earlier example, restriction (R1) would favor DTDs (1) and (3), while these DTDs would not
be considered good according to criterion (R2). The situation is exactly the reverse when we consider DTDs (2)
and (4). Thus, in general, there is a tradeoff between a DTD’s “conciseness” and its “preciseness”, and a good
DTD is one that strikes the right balance between the two. The problem here is that conciseness and preciseness
are qualitative notions — in order to resolve the tradeoff between the two, we need to devise quantitative measures
for mathematically capturing the two qualitative notions.

Using the MDL Principle to Define a Good DTD. We use the MDL principle [13] to define an information-
theoretic measure for quantifying and thereby resolving the tradeoff between the conciseness and preciseness
properties of DTDs. The MDL principle has been successfully applied in the past in a variety of situations
ranging from constructing good decision tree classifiers [12] to learning common patterns in sets of strings [10].

4



Roughly speaking, the MDL principle states that the best theory to infer from a set of data is the one which
minimizes the sum of: (A) The length of the theory (in bits); and, (B) The length of the data (in bits), when
encoded with the help of the theory. We will refer to the above sum, for a theory, as the MDL cost for the
theory. The MDL principle is a general one and needs to be instantiated appropriately for each situation. In our
setting, the theory is the DTD and the data is the sequences in I. Thus, the MDL principle assigns each DTD
an MDL cost and ranks the DTDs based on their MDL costs (DTDs with lower MDL costs are ranked higher).
Furthermore, parts (A) and (B) of the MDL cost for a DTD depend directly on its conciseness and preciseness,
respectively. Part (A) is the number of bits required to describe the DTD and is thus a direct measure of its
conciseness. Further, since a DTD that is more precise captures the structure of the input sequences more
accurately, fewer bits are required to describe the sequences in I in terms of a more precise DTD; as a result,
part (B) of the MDL cost captures a DTD’s preciseness. The MDL cost for a DTD thus provides us with an
elegant and principled mechanism (rooted in information theory) for quantifying (and combining) the conflicting
concepts of conciseness and preciseness in a single unified framework, and in a manner that is consistent with
our intuition. By favoring concise and precise DTDs, and penalizing those that are not, it ranks highly exactly
those DTDs that would be deemed desirable by humans.

Note that the actual encoding scheme used to specify a DTD as well as the data (in terms of the DTD) plays
a critical role in determining the actual values for the two components of the MDL cost. The following example
uses a simple, coarse encoding scheme to illustrate how ranking DTDs based on their MDL cost closely matches
our intuition of their goodness; the details of XTRACT’s encoding scheme can be found in [5, 6].

Example 2: Consider the input set I and DTDs from Example 1. We rank our example DTDs based on their
MDL costs (DTDs with smaller MDL costs are considered better). (Our encoding assumes a cost of 1 unit for
each character.) DTD (1), (a | b)*, has a cost of 6 for encoding the DTD. In order to encode the sequence abab
using the DTD, we need one character to specify the number of repetitions of the term (a | b) that precedes
the * (in this case, this number is 4), and 4 additional characters to specify which of a or b is chosen from
each repetition. Thus, the total cost of encoding abab using (a | b)* is 5 and the MDL cost of the DTD is
6 + 3+ 5+ 7 = 21. Similarly, the MDL cost of DTD (2) can be shown to be 14 (to encode the DTD) + 3 (to
encode the input sequences; we need one character to specify the position of the disjunct for each sequence) =
17. The cost of DTD (3) is 5 (to encode the DTD) + 3 (to encode the input sequences — note that we only need
to specify the number of repetitions of the term ab for each sequence) = 8. Finally, DTD (4) has a cost of 14 + 5
(1 character to encode sequence ab and 2 characters for each of the other two input sequences) = 19. Thus, DTD
(3) is the best (i.e., lowest MDL cost) DTD in our example instance — which matches our intuition.

The above example shows that the MDL principle indeed provides an elegant mechanism for quantifying
and resolving the tradeoff between the conciseness and preciseness properties of DTDs. More specifically: (1)
the “theory length” part of the MDL cost includes the number of bits required to encode the DTD — this ensures
that the inferred DTD is succinct; and, (2) the “data length” part of the MDL cost includes the number of bits
needed for encoding the input sequences using the DTD — usually, expressing data in terms of a more general
DTD (e.g., (a | b)* in Example 2) requires more bits than describing data in terms of a more specific DTD (e.g.,
(ab)* in Example 2). Thus, using the MDL principle enables us to choose a DTD that strikes the right balance
between conciseness and preciseness.

3 Overview of the XTRACT System

The XTRACT system architecture is illustrated in Figure 2(a). XTRACT consists of three main components:
the generalization module, the factoring module, and the MDL module. Input sequences in I are processed by
the three subsystems one after another, the output of one subsystem serving as input to the next. We denote
the outputs of the generalization and factoring modules by Sg and S, respectively. Observe that both Sg and
S contain the initial input sequences in I. This is to ensure that the MDL module has a wide range of DTDs
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Figure 2: (a) XTRACT System Architecture. (b) XTRACT’s MDL Subsystem.

to choose from that includes the obvious DTD which is simply an OR of all the input sequences in I. In the
following, we provide a brief description of each XTRACT subsystem; more details can be found in [5, 6].

The Generalization Subsystem. For each input sequence, the generalization module generates zero or more
candidate DTDs that are derived by replacing patterns in the input sequence with regular expressions containing
metacharacters like * and | (e.g., (ab)*, (a | b)*). Note that the initial input sequences do not contain metachar-
acters and so the candidate DTDs introduced by the generalization module are more general. For instance, in
Figure 2(a), sequences abab and bbbe result in the more general candidate DTDs (ab)*, (a | b)* and b*e to be
output by the generalization subsystem. Also, observe that each candidate DTD produced by the generalization
module may cover only a subset of the input sequences. Thus, the final DTD output by the MDL module may
be an OR of multiple candidate DTDs.

Ideally, in the generalization phase, we should consider all DTDs that cover one or more input sequences as
candidates so that the MDL step can choose the best among them. However, the number of such DTDs can be
enormous. For example, the sequence ababaabb is covered by the following DTDs in addition to many more —
(a ] b)*, (a|b)*a*b*, (ab)*(a | b)*, (ab)*a*b*. Therefore, XTRACT employs several novel heuristics, inspired
by real-life DTDs, for limiting the set of candidate DTDs Sg output by the generalization module.

The Factoring Subsystem. The factoring component factors two or more candidate DTDs in Sg into a new
candidate DTD. The length of the new DTD is smaller than the sum of the sizes of the DTDs factored. For
example, in Figure 2(a), candidate DTDs b*d and b*e representing the expression b*d | b*e, when factored,
result in the DTD b*(d | e); similarly, the candidates ac, ad, bc and bd are factored into (a | b)(c | d) (the pre-
factored expression is ac | ad | be | bd). Although factoring leaves the semantics of candidate DTDs unchanged,
it is nevertheless an important step. The reason being that factoring reduces the size of the DTD and thus the
cost of encoding the DTD, without seriously impacting the cost of encoding input sequences using the DTD.
Thus, since the DTD encoding cost is a component of the MDL cost for a DTD, factoring can result in certain
DTDs being chosen by the MDL module that may not have been considered earlier. We appropriately modify
factoring algorithms for boolean functions in the logic optimization area [1, 14] to meet our needs. However,
even though every subset of candidate DTDs can, in principle, be factored, the number of these subsets can be
large and only a few of them result in good factorizations. We propose novel heuristics to restrict our attention
to subsets that can be factored effectively.

The MDL Subsystem. The MDL subsystem finally chooses from among the set of candidate DTDs S gen-
erated by the previous two subsystems, a (sub)set of DTDs S such that the final DTD (which is the OR of the
DTDs in S): (1) covers all the input sequences in I, and (2) has the minimum MDL cost. For the input sequences



in Figure 2(a), we illustrate (using solid lines) in Figure 2(b), the input sequences (in the right column) covered
by the candidate DTDs in S# (in the left column).

The above MDL-cost minimization problem naturally maps to the Facility Location Problem (FLP) [2, 8],
which can be stated as follows: Let C be a set of clients and J be a set of facilities such that each facility “serves”
every client. There is a cost ¢(j) of “choosing” a facility j € J and a cost d(j,7) of serving client i € C by
facility j € J. The problem definition asks to choose a subset of facilities ' C J such that the sum of costs of
the chosen facilities plus the sum of costs of serving every client by its closest chosen facility is minimized.

Our problem of inferring the minimum MDL cost DTD can be reduced to FLP by letting C be the set I of
input sequences and J be the set of candidate DTDs in S. The cost ¢(j) of choosing a facility j is the length
of the corresponding candidate DTD, whereas the cost d(j, ) of serving client ¢ from facility j is the length of
the encoding of the sequence corresponding to 7 using the DTD corresponding to facility j.

The FLP is N'P-hard; however, it can be reduced to Set Cover and then approximated within a logarithmic
factor as shown in [8]. Our XTRACT implementation employs the randomized algorithm from [2], which
approximates the FLP to within a constant factor if the distance function is a metric. Even though our distance
function is not a metric, we have found the solutions produced by [2] for our problem setting to be very good in
practice. The final DTD inferred by XTRACT for our example instance is shown at the bottom of Figure 2(b).

4 Conclusions

In this paper, we have presented an overview of the XTRACT system [5, 6] for inferring a DTD for a database of
XML documents. The DTD-inference problem is complicated by the fact that DTD syntax incorporates the full
expressive power of regular expressions. Naive approaches that do not “generalize” beyond the input element
sequences fail to deduce concise and semantically meaningful DTDs. Instead, XTRACT applies sophisticated
algorithms that combine generalization and factorization steps with Rissanen’s MDL principle in order to com-
pute a DTD schema that is more along the lines of what a human would infer.
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