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Abstract
Massive continuous data streams arise naturally in several dynamic
big data analytics applications, such as enabling observability for
complex distributed systems, network-operations monitoring in
large ISPs, or incremental federated learning over dynamic dis-
tributed data. In such settings, usage information from numerous
devices needs to be continuously collected and analyzed for interest-
ing trends and real-time reaction to different conditions (e.g., anom-
alies/hotspots, DDoS attacks, or concept drifts). Streaming data
raises important memory-, time-, and communication-efficiency
issues, making it critical to carefully optimize the use of available
computation and communication resources. We give a (biased)
overview of some key algorithmic tools in the space of streaming
data analytics, along with relevant applications and challenges.
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Overview
Filters and aggregate statistics constitute the workhorse of data ana-
lytics, and are implemented in all database systems and big data plat-
forms. Accordingly, indexing, storage, and processing techniques
have been implemented to answer such queries efficiently, even
over large data volumes. Still, analytics on streaming data raises
difficult challenges, which call for novel approaches. In particular,
due to the massive (potentially, unbounded) size of contemporary
streams, storing the full stream such that it can be processed later for
answering ad-hoc queries becomes impractical. Typical streaming
applications, such as monitoring of network traffic or application
observability data, require extremely fast query response times (in
the order of milliseconds) to support reactive applications. For ex-
ample, in network monitoring for early detection of DDoS attacks,
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a delay of a couple of seconds when answering a network-statistics
query may provide sufficient time for an attacker to compromise
a corporate network. Furthermore, the high stream update rates
(millions of updates per second) that are typical of contemporary
streams render traditional data structures for speeding up analytics
queries essentially useless in such settings. Finally, the majority
of large-scale stream processing applications rely on continuous
tracking of measurements and events in distributed environments,
with several remote monitor sites observing their local data streams
and exchanging information through a communication network.
This distribution implies critical communication constraints that
prohibit centralizing all the streaming data, due to either technical
(e.g., bandwidth, power) or administrative restrictions.
Approximate Data Stream Processing. Abstractly, a relational
data stream can be modeled as a massive, dynamic data-distribution
vector𝐴 that is continuously rendered through a continuous stream
of updates to the underlying relation. This general model can natu-
rally capture general, turnstile streams (where updates can insert
or delete data), as well as special cases such as cash-register (insert-
only) and time-series data streams [14, 23] The generic goal of
streaming data analytics is to compute queries (or, functions) on
the vector𝐴 at any point during the lifetime of the stream (continu-
ous or ad-hoc), while only using space and time that is (significantly)
sublinear in the size of 𝐴 (i.e., without storing/accessing the entire
stream). The go-to techniques for complex streaming analytics typ-
ically rely on sketches: compact data structures that can effectively
summarize streaming data using small space and can be updated
and queried in small time, where “small” usually means logarith-
mic or poly-logarithmic in the size of the stream [4]. Sketches are
randomized structures that typically employ random hash func-
tions to map elements of the stream into a small number of random
subsets, maintaining an appropriate counter for each subset. As a
result, sketches can often be thought of as collections of random
linear projections of the streaming vector 𝐴 — this linearity implies
not only fast incremental maintenance but also straightforward
sketch merging/composition operations. Furthermore, sketches are
often backed by rigorous theoretical analysis, allowing the user
to control the space/accuracy trade-off with strong probabilistic
accuracy guarantees. Owing to their simplicity and high perfor-
mance, sketches have been widely adopted across various domains
(in both research and industrial settings) to meet diverse application
requirements. For instance, frequency-based sketches (e.g., AMS [2]
and Count-Min [7]) have been used for tracking complex analytics
such as top-𝑘/heavy-hitter elements [3, 6], join/multi-join aggre-
gates [1, 9, 13], and Haar wavelets [5]; similarly, set-based sketches
(e.g., Flajolet-Martin (FM) [11] and HyperLogLog [10]) have been
deployed for tracking distinct element counts and set-expression
cardinalities [12, 19, 20].
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The scope and versatility of sketches have been significantly
extended with the emergence of composite sketching (aka“sketch-
in-sketch”) techniques, where the key idea is to replace the simple
counters used in conventional sketch structures with embedded
sketches/summaries to enable additional query functionality. Early
examples include the ECM sketch [25] that embeds approximate
sliding-window counters (e.g., exponential histograms [8]) in Count-
Min sketches to effectively track frequency-based analytics in the
sliding-window model [14]; and, the Many-Distinct-Count sketch
of Ting [29] where Count-Min counters are replaced by Hyper-
LogLog sketches to enable space-efficient distinct-count estimation
over potentially billions of data sets. The recently-proposed Om-
niSketch [26] addresses a key limitation of existing sketch structures
when dealing with multi-dimensional data, namely that they are
typically purpose-built for a specific query type. By employing
per-dimension Count-Min structures that embed fixed-size sam-
ples (maintained via minwise hashing), OmniSketch enables the
effective approximation of any counting query with dynamically-
specified predicates (at query time); thus, it makes a substantial
step in the direction of “general-purpose” sketch structures.
Distributed Data Streaming. The naturally distributed nature
of large-scale stream-monitoring applications implies one addi-
tional level of complexity, in the sense that there is no centralized
observation point for the dynamic stream vector 𝐴; instead, 𝐴 is
fragmented across several sites. More specifically, we consider a
distributed computing environment, comprising a collection of
remote sites and a designated coordinator site. Local streams are
continuously updated at remote sites and, at any point in time, the
global stream vector 𝐴 is defined as an aggregation (e.g., weighted
average) of the local stream vectors. As earlier, our focus is on the
problem of effectively answering user queries over the global stream
vector 𝐴 at the coordinator. Rather than one-time query evalua-
tion, we assume a continuous-querying environment which implies
that the coordinator needs to continuously track the answers to
queries as the local streams evolve at individual remote sites. The
distributed nature and large data stream volumes imply that the
naive solution of continuously shipping all streaming data to the
coordinator (turning this into a conventional, centralized streaming
problem) is clearly impractical. Thus, novel distributed monitoring
protocols that can effectively trade-off space/time/communication
efficiency and query-approximation accuracy are required. Further-
more, while simple protocols based on allocating local slacks to
remote sites are possible for the special case of linear aggregate
queries (e.g., sum, count) [21, 24], such approaches fail for complex
non-linear queries which raise difficult technical challenges.

To address the general problem, Sharfman et al. [28] consider
the fundamental primitive of distributed threshold monitoring: deter-
mine whether 𝑞(𝐴) > 𝜏 , for a given general aggregate query 𝑞 over
the global stream vector and a fixed threshold 𝜏 . Their key idea is
that, since it is generally impossible to connect the locally-observed
values of the query to the global value 𝑞(𝐴), one can employ geo-
metric arguments to monitor the domain (rather than the range) of
the monitored query. Their proposed Geometric Method (GM) offers
the first communication-efficient protocol for efficiently tracking
general queries over distributed streams. In a nutshell, GM relies
on locally monitoring (at remote sites) geometric regions of the

stream vector domain defined through the local data streams. Since
its inception, GM has been extended in numerous ways, includ-
ing the incorporation of prediction models [18], sketches [15], and
sampling [17]; other work [16, 22] has explored interesting general-
izations of GM ideas through the lens of convex analysis, leading to
much more efficient distributed stream monitoring protocols, like
Functional Geometric Monitoring (FGM) [27].
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