Distrib quallel Databases @ CrossMark
https://doi.org/10.1007/s10619-018-7223-7

Monitoring distributed fragmented skylines

Odysseas Papapetrou! - Minos Garofalakis?

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Distributed skyline computation is important for a wide range of domains,
from distributed and web-based systems to ISP-network monitoring and distributed
databases. The problem is particularly challenging in dynamic distributed settings,
where the goal is to efficiently monitor a continuous skyline query over a collection
of distributed streams. All existing work relies on the assumption of a single point
of reference for object attributes/dimensions: objects may be vertically or horizon-
tally partitioned, but the accurate value of each dimension for each object is always
maintained by a single site. This assumption is unrealistic for several distributed appli-
cations, where object information is fragmented over a set of distributed streams (each
monitored by a different site) and needs to be aggregated (e.g., averaged) across several
sites. Furthermore, it is frequently useful to define skyline dimensions through com-
plex functions over the aggregated objects, which raises further challenges for dealing
with distribution and object fragmentation. We present the first known distributed algo-
rithms for continuous monitoring of skylines over complex functions of fragmented
multi-dimensional objects. Our algorithms rely on decomposition of the skyline mon-
itoring problem to a select set of distributed threshold-crossing queries, which can
be monitored locally at each site. We propose several optimizations, including: (a) a
technique for adaptively determining the most efficient monitoring strategy for each
object, (b) an approximate monitoring technique, and (c) a strategy that reduces com-
munication overhead by grouping together threshold-crossing queries. Furthermore,

B Odysseas Papapetrou
odysseas.papapetrou@epfl.ch

Minos Garofalakis
minos @softnet.tuc.gr

Data-Intensive Applications and Systems Laboratory, EPFL, Lausanne, Switzerland

ECE Department, Technical University of Crete, Chania, Greece

Published online: 27 March 2018 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-018-7223-7&domain=pdf

Distrib Parallel Databases

we discuss how our proposed algorithms can be used to address other continuous query
types. A thorough experimental study with synthetic and real-life data sets verifies the
effectiveness of our schemes and demonstrates order-of-magnitude improvements in
communication costs compared to the only alternative centralized solution.

Keywords Skylines - Fragmented skylines - Distributed skylines - Geometric method

1 Introduction

Since the introduction of the skyline operator [3], the problem of efficiently construct-
ing skylines in distributed environments (such as, client—server and P2P architectures)
has been widely studied. The bulk of this work has typically focused on one-shot
skyline computation, proposing CPU- and communication-efficient strategies for one-
time computation of the skyline objects (i.e., dominating, or, Pareto-optimal) across
static, distributed multi-dimensional object collections. Such one-shot techniques
over static data are inadequate for new, rapidly-emerging classes of large-scale event
monitoring applications, which need to effectively manage, query, and analyze large
collections of distributed data streams. Prototypical examples include wireless sen-
sor networks (where multiple remote sensor measurements must be monitored and
analyzed for trends, patterns, intrusions, or other adverse events) and ISP network-
monitoring systems (where usage information from a multitude of monitoring points
must be tracked and correlated in order to quickly react to hot spots, floods, failures,
and attacks). Querying in such systems is naturally distributed (i.e., over a collection
of remote sites), and also continuous; that is, we require real-time monitoring of query
answers and events, not merely one-shot responses to sporadic queries.

Continuous skyline maintenance has been addressed in recent work, both for cen-
tralized [15,22,29] and distributed deployments [32]. Still, that work, as well as all
existing work in distributed skyline processing assumes, at most, horizontal or ver-
tical partitioning of the data: each site maintains a subset of the complete object
vectors [28], or a subset of the dimensions for all objects [2,27]. As such, all previous
algorithms rely on the fundamental assumption that there exists a single site in the
network maintaining the accurate value for each object’s dimension. Thus, each site
can independently apply local filtering techniques on the observed updates, drastically
reducing the required network resources. Unfortunately, this assumption is unrealis-
tic for a number of real-world, distributed monitoring applications, where the vector
of each object is determined by aggregating (e.g., averaging) partial vector values
fragmented over many sites.

To make matters worse, skyline dimensions can often be defined through (possibly)
complex, non-linear functions over the aggregated object vectors. For example, an
ISP might be interested in monitoring the skyline of the aggregate packet volume and
the variance of packet sizes routed to each subnet through each of the edge routers.
Such complex functional skyline queries are particularly challenging in the case of
fragmented objects: each site only has its partial view of the object vector values,
and, for non-linear functions like variance, it is impossible to estimate the value of the
function on the global object vector from the local object position [24].

@ Springer

Distrib Parallel Databases

(@ (b) (c)

router targetip #packets vol. targetip #packets vol. targetip avg(#packets) var(vol.) sky
1 121.11** 134 1226 121.11.*%* 158 1269 121.11.*%* 158 1497 YES
1 117.23.** 60 72 117.23.*.* 70 86 117.23.*.* 70 392 NO
2 121.11.** 180 1280 201.7.*.* 627 4874 201.7.*%.* 627 0 NO
2 117.23.** 80 100 72.11.* * 884 982 72.11.* * 884 1208 YES

w

121.11.** 160 1301

Aggregation (average) Skyline space: avg(#packets), var(vol.)

Fig. 1 Network routers maintain statistics corresponding to the observed target IP addresses: a the raw-
distributed data, b the aggregated data, ¢ the skyline space of the target IP addresses with the highest number
of messages and highest variance on transfer volume

Example 1 Consider the problem of monitoring the network of a large ISP. A typical
configuration involves installing monitoring code at the edge routers of the ISP to
collect workload statistics over sliding windows for a set of IP addresses served by
the ISP. Skyline queries on the data aggregated over all edge routers are powerful
tools for network administrators, for quickly identifying problematic IP addresses or
interesting network events. For example, the skyline of the average (over all routers)
number of packets and transfer volume, per target IP (data shown in Fig. 1b), helps
an administrator to focus on IPs potentially under attack. Skyline dimensions can
even be defined through complex, non-linear functions on the aggregated data, such
as the variance of the edge routers’ workload per IP (Fig. 1c)—a key indicator for
sites under DoS attack. Even though the industry standard in routers enables local
statistics maintenance, aggregation of the data in order to maintain the skyline space
is challenging due to the volume and volatility of the traffic update streams. The
challenge is aggravated by the usage of non-linear functions for the definition of the
skyline dimensions, in which case a router observing a local update cannot even predict
the direction of the change at the skyline space. This calls for a distributed solution
for skyline maintenance, where each edge-router can react only to its local updates
that potentially invalidate the existing skyline, notifying the central monitor for further
analysis. O

Example 1 will be used as a running example throughout the paper. Similar sce-
narios where data streams are fragmented across different sites occur frequently in
other domains. For instance, in weather monitoring, sensors may be deployed across
different cities, in order to continuously collect temperature, humidity, wind speed,
and other weather statistics in real time. A useful skyline in this context is the cities
with the most extreme weather (e.g., temperature and humidity), with the weather
statistics of each city determined by averaging the current readings of all sensors in
the city (Fig. 2b). The skyline dimensions may even be defined through complex, non-
linear functions on the aggregate data, e.g., dew point (Fig. 2¢), which is computed
by a function on the aggregate values of temperature and humidity. Clearly, streaming
all sensor readings to a central site is expensive in terms of network, and drastically
reduces the lifetime of the system. Other scenarios include skyline maintenance over
scores that change live in a distributed information system (e.g., popularity and activity
over social networks) and user ratings over distributed recommendation networks.
Our contributions All previous distributed skyline techniques assume either hori-
zontal or vertical partitioning of the data, which implies that the accurate value of

@ Springer

Distrib Parallel Databases

(@ (b) (c)

sensor city temp. hum. city temp. hum. city temp. dew point sky
1 NYC 43 93% NYC 44 73% NYC 44 41 NO
2 NYC 45 87% Madison 40 39% Madison 40 39 YES
3 Madison 40 38% Pasadena 51 44% Pasadena 51 29 YES
4 Madison 40 40% Buffalo 41 79% Buffalo 41 35 YES
5 Pasadena 51 44%
6 Buffalo 41 79%

Aggregation (average) Skyline space: avg(temp), dewpoint

Fig.2 Sensors distributed across US cities monitor the weather statistics of each city: a the raw-distributed
data at the sensors, b the aggregated data, ¢ the skyline space of cities with the most extreme temperature
and lowest dew-point values

each dimension for each object is known by one of the sites at any time. In this
work, we consider the fundamentally different (and, much more general) setting of
continuous fragmented skyline queries, where: (a) each dimension for each object is
fragmented over a number of sites, i.e., the actual values of each object are computed
by aggregating (e.g., averaging) the object’s (partial) vectors across all sites, and, (b)
the skyline space is defined through potentially complex functions, parameterized by
the aggregate object values. Our contributions are summarized as follows:

e We formally define the continuous fragmented skyline problem, and outline the
key underlying challenges.

e We present two algorithms for efficient processing of continuous fragmented sky-
line queries, with dimensions defined through arbitrarily complex functions over
the aggregate vectors. Our algorithms (termed PIvOoT and DIRECT) employ dif-
ferent methodologies for decomposing the problem to a select set of distributed
threshold-crossing queries that are guaranteed to fire when a change in the skyline
occurs. We show how these queries can be monitored efficiently using ideas from
the geometric method [16,24].

e We propose several optimizations that significantly improve the communication
efficiency of our fragmented skyline monitoring algorithms. These include several
techniques for effectively reducing the number of queries (which can result in
substantial communication gains), an approximation technique for error-tolerant
setups, and a technique based on random-walk models for adaptively determining
the most efficient monitoring strategy for each object.

e We discuss how PIVOT and DIRECT can be exploited and adapted for monitoring
other types of continuous queries over fragmented data.

e We present a thorough experimental study with synthetic and real-life data sets.
The results demonstrate substantial performance benefits compared to the (only
alternative) centralized solution, which often exceed two orders of magnitude.

2 Related work

Since the introduction of the skyline operator [3], several aspects of skyline compu-
tation have been explored, such as, continuous skylines, e.g., [15,22,29], functional
(or, dynamic) skylines [22] subspace skylines [26], and skylines over distributed and

@ Springer

Distrib Parallel Databases

P2P networks [14]. Our contribution lies on the intersection of the areas of distributed,
functional and continuous skyline queries, with a novel data fragmentation model.

Algorithms for efficiently constructing skylines in P2P and distributed networks
have been widely studied in recent years (see [14] for a recent survey). These algo-
rithms typically rely on three key ideas to reduce the network communication between
participants: (1) Additivity of the Skyline Operator: The skyline over all remote sites is
always a subset of the union of the local skylines computed at each site, e.g., [28]; (2)
Point Filtering: Representative points, belonging to one or more sites’ local skylines,
can help other sites effectively reduce their local skylines [2,27]; and, (3) Site Filter-
ing: Compact local site summaries can be used to target neighboring sites that can
potentially contribute skyline points [10]. However, at the core of all these approaches
is the requirement that the value of each dimension for each object is always main-
tained by a single site; that is, objects are vertically or horizontally partitioned, but
not fragmented (as the IP data in our example above). Even though both vertical and
horizontal partitioning hold significant interest for real-life applications (and, in fact,
can also be handled by our work), our contributions lie in devising the first known
schemes for the general case of fragmented data objects, as this arises frequently in
a wide range of network-based applications. Furthermore, we focus on continuous
skyline queries, and not on one-shot queries.

Perhaps most similar to ours is the work of Zhang et al. [32] for distributed contin-
uous skyline monitoring, which relies on installing filters at remote sites to control the
updates that need to be sent to the coordinator. The functionality of filters is similar
to that of threshold-crossing queries employed in this work. In fact, in the simple case
where data is partitioned but not fragmented, and no functions are used for producing
the skyline space, the algorithm of [32] and our algorithms (without the adaptivity
extension) produce similar types of local constraints, yet, each following different
optimization strategies. Note, however, that [32] supports neither fragmented data nor
functional skylines, the combination of which is the main focus of our work. Some
ideas from [32], i.e., near-optimal derivation of filters, as well as the sampling-based
extension that trades accuracy for performance, can potentially be adapted for the case
of fragmented functional skylines.

Cheema et al. [5] recently proposed a centralized skyline monitoring algorithm for
moving skyline queries based on “safe zones”. Even though we also utilize (a different
notion of) “safe zones” in this work, we focus solely on distributed environments, and
address the challenges that arise due to data fragmentation. As such, the way we define,
construct, and exploit safe zones is completely unrelated to [5]. Instead, our techniques
build on ideas from distributed geometric monitoring [16,24].

To reduce pairwise comparisons, existing works rely on grouping and representing
two or more objects with a single representative, i.e., a pivot point [19,31]. This
approach bears similarity to one of our algorithms (PTVOT), which relies on pivot points
to represent large space regions. However, PIVOT chooses and utilizes pivot points in
a completely different manner. First, pivot points in our setting are not actual object
points; they are the cleverly-chosen points in the high-dimensional space. The way of
computing these pivot points (where to place them, and which objects to represent with
them) is a core contribution of our work, and makes substantial difference in terms

@ Springer

Distrib Parallel Databases

Table 1 Frequently-used notation

Notation Description

P ={p1,p2,---, PN} Remote processing sites

O ={01,02,...,0n} Multi-dimensional objects to monitor

Pj) <P Set of sites that monitor object o0 ;

O(pj) O Set of objects that are monitored by site p;

v(oj, pis1t) Local values of object o at site p;, i.e., the local statistics vector

v(oj, 1) Aggregate (e.g., average) values of object o across all sites P(0}), i.e., the

global statistics vector

[R - R d’-dimensional function vector defined by the user

of performance. Second, all the machinery of our algorithm focuses on reducing the
network cost, and not the computational overhead, in contrast to the previous works.

Summarizing, none of the existing techniques handles, or can be easily extended
to address the problem considered in this work. The difficulty stems mainly from the
fact that in our setting, sites are not aware of the global object values—each site only
knows its own local values of each object. This hinders the additivity property, which
constitutes the core of most previous algorithms, and disables effective point and site
filtering. An additional difficulty comes from the fact that we are considering a stream-
ing setup. Therefore, the skyline in our setup needs to be continuously maintained, as
it can be invalidated after each update.

An early version of this work has been presented in [23]. Compared to [23], this
article includes several novel contributions, including: (a) a new grouping technique
for threshold-crossing queries that can reduce network cost by up to a factor of two
(Sect. 5), (b) an extension of the ideas to enable approximate skyline monitoring
that can further reduce network in domains where small (bounded) inaccuracies are
acceptable (Sect. 4.5) (c) a discussion on how the proposed algorithms can be used for
addressing other continuous query types, e.g., skyband queries, constrained skylines,
and skylines over uncertain data (Sect. 7), and (d) a more extensive experimental
evaluation (Sect. 8).

3 Preliminaries

Problem formulation We consider a distributed computing environment, comprising

acollection of N remote processing sites P = {p1, p2, ..., py}and adesignated coor-
dinator site. Remote sites receive continuous streams of data updates for a collection of
n multi-dimensional objects O = {01, 02, ..., 0,} that reside in the system (possibly

fragmented across multiple sites), while the coordinator is responsible for maintaining
answers to continuous user queries posed over the union of remotely-observed streams
(across all sites). The (sub)set of sites monitoring object o; is denoted by P(0;) € P,
while O(p;) denotes the (sub)set of objects monitored by site p;. Table 1 summarizes
the frequently used notation.

@ Springer

Distrib Parallel Databases

Following earlier work in the area, e.g., [1,7,8,11,21], our distributed stream-
processing model does not allow direct communication between remote sites; instead,
remote sites exchange messages only with the coordinator, providing it with state
information on its (locally-observed) streams. Such a hierarchical processing model is
representative of several application domains, including ISP network monitoring and
sensor networks.

At time ¢, the local state of each object o; at site p; is captured by a dynamic

d-dimensional local statistics vector v(0;, p;, t). The global state of o; is defined
as the average (or, more generally, any convex combination) of o;’s local statis-
tics vectors across all sites in P(o0;), i.e., the global statistics vector v(oj,t) =
IP(IW > pieP(o)) v(0j, pi,t). (To simplify notation, we omit the explicit time depen-
dence when referring to the current value of local/global vectors.)
Problem statement Our goal is to define effective protocols for continuously moni-
toring distributed skylines over complex functions of fragmented multi-dimensional
objects. More formally, assume that the skyline dimensions are defined through a d’-
dimensional function vector f : R? — RY' where each dimension f[k](v(-)) is a
possibly complex function over the original d-dimensional global statistics vectors
of the objects. We define the notion of functional dominance (or, f-dominance) over
fragmented data objects as follows. (Wlog., in this article we assume that lower values
are preferred.)

Definition 1 (f-dominance) Let v(0;), v(0;) denote the global statistics vectors of
objects 0; and 0. We say that o; f-dominates o; (denoted as o; < o;) if and only
if flkl1(v(0i)) < flkl(v(0j)) forallk € {1,...,d'},and 3k € {1, ..., d’} such that
SlIkl(v(0i)) < fIkI(v(0;)).

The f-skyline of the set of objects O = {oy, ..., 0,} fragmented over the remote
sites P is then simply defined as the subset of objects in O that are not f-dominated
by any other object in O.

Example 2 Building on the ISP monitoring scenario of Example 1, the set of remote
processing sites P includes all edge routers of the ISP, which collect workload statistics
for all target IP addresses (or, subnets) contained in (. Assume that we want to monitor
the 2-dimensional skyline shown in Fig. 1c (average number of packets and variance
of transfer volume across all routers, per IP address).

Since the f-skylines are defined on averaged global vectors, we rewrite the variance
function using the average transfer volume and the average squared transfer volume
per IP at all routers. In particular, each router p; maintains a three-dimensional vec-
tor v(o;, p;j) for each IP address o;: v[0](0;, p;) stores the count of all observed
packets destined for o; and routed through p;, v[1](o;, p;) stores the sum of the
packet sizes, and v[2](o;, p;) stores (v[1](o;, p j))z. The global statistics vector for
each IP address o; is the average of the local statistics vectors over all routers,
i.e., v(o;) = ij ePop) Y©0is)/ IP)] The desired skyline space is then defined by
function f: f[0] = v[0](0;), i.e., the identity function of the average number of

vI21(0;.p;)

packets for each IP address, and f[1]1 = Var({v(o;, pj)Ip;jeP(0)}) = ijep(o,«) TPl

1(oj,p; 2
(Spyepion i) =vi2ion - <1102 o

@ Springer

Distrib Parallel Databases

We address the challenging task of continuously maintaining the f-skyline over
a large collection of fragmented multi-dimensional objects O that are dynamically
updated across multiple remote sites P. Our protocols aim to minimize communi-
cation across remote sites and the coordinator—a critical requirement in large-scale
monitoring systems, owing to either network-capacity restrictions (e.g., in ISP mon-
itoring, where the volumes of collected utilization and traffic data are huge [9]), or
power and bandwidth restrictions (e.g., in wireless sensor networks, where communi-
cation overhead is the key factor determining sensor battery life [20]). The centralized
solution that ships all updates to a coordinator can easily introduce network, compu-
tation, and power bottlenecks, overwhelming the underlying network infrastructure.
Similarly, simplistic solutions based on batch or periodic updates to the coordinator
can either cause large amounts of unnecessary network traffic or fail to react to impor-
tant transitions in a timely manner. Most importantly, such techniques cannot offer
useful guarantees on the quality of the skyline between updates. Instead, our proposed
algorithms are reactive (based on the observed stream of object updates) and guarantee
the continuous correctness of the f-skyline at the coordinator.

3.1 Background: the geometric method

Our algorithms decompose functional fragmented skyline monitoring to a small set
of distributed threshold crossing queries, which can be monitored locally at each site
using the geometric method. We now describe the required elements of the geometric
method. Further details can be found in [24].

The geometric method addresses the basic problem of monitoring distributed
threshold-crossing queries; that is, monitor whether f(v(0)) < t or f(v(0)) > t, for
any arbitrary, possibly complex, non-linear function f() of a global statistics vector
v(o) fragmented over N sites, and a fixed threshold t. The core idea is that, since it
is generally impossible to connect the values of f() on the local statistics vectors to
the global value f(v(0)), one can employ geometric arguments to monitor the domain
(rather than the range) of f().

To initialize the monitoring process, at time #(all nodes p € P(0) send their local
statistics vectors for the object v(o, p, tp) to a coordinator, where the global statistics
vector v(o, ty) is computed. This global statistics vector is also called the global esti-
mate vector e(0), and is sent to all network nodes. Whenever a node p; receives a new
local value for o, say, at time ¢, it updates its local statistics vector and checks whether
the new value may cause a threshold crossing. For this check, p; extracts the statistics
delta vector Av(o, pj) = v(o, pj,t) — V(0, pj, to). The drift vector is then defined
asu(o, pj) = e(0) + Av(o, pj). These vectors can be used to bound the location of
the global statistics vector, which is guaranteed to lie within the convex hull formed
by the drift vectors of all nodes and e(0) [24]. Therefore, by checking that the convex
hull does not overlap the inadmissible region (i.e., the region {v € R?: f(v) > t}in
Fig. 3) we can guarantee that the threshold has not been violated.

The problem of course is that the drift vectors are distributed across the nodes.
Therefore, the global convex hull is unknown to the individual nodes. To transform
the global condition into a local constraint, we place a d-dimensional bounding ball

@ Springer

Distrib Parallel Databases

Fig. 3 Estimate vector e, delta vectors Av(p;) (arrows out of e), convex hull enclosing the current global
vector v (dotted outline), and bounding balls B(e, Av(p;))

around each local delta vector, of radius ||e(0) —u(o, p;)||/2 and centered at (e(o) +
u(o, pj))/2 (see Fig. 3). It can be shown that the union of all these balls completely
covers the convex hull of the drift vectors [24]. Therefore, as long as the bounding ball
constructed individually at each node is monochromatic, i.e., it does not overlap with
the inadmissible region, the threshold has not been violated, and the node can refrain
from sending the local update to the coordinator. If this is not the case, we have a local
threshold violation, and the site communicates its local Av(p;) to the coordinator.
The coordinator then initiates a synchronization process that typically tries to resolve
the local violation by communicating with some of the sites in order to “balance out”
the violating Av(p;). This process involves collecting the current delta vectors from
a subset of the sites, and recomputing the minimum and maximum values of f(v)
according to the new, partial, average. In the worst case, the delta vectors from all N
sites are collected, leading to an accurate estimate of the current global statistics vector.
In more recent work, Sharfman et al. [16] show that the local bounding balls defined
by the geometric method are special cases of a more general theory of Safe Zones (SZs),
which can be broadly defined as convex subsets of the admissible region of a threshold
query. As long as the local drift vectors stay within such a SZ, the global vector is
guaranteed (by convexity) to be within the admissible region of the query.

4 Monitoring fragmented skylines

We propose two novel algorithms for continuous fragmented skylines: (1) the Pivot-
Based (P1voT) algorithm, and (2) the Direct Monitoring (DIRECT) algorithm. Both
algorithms rely on effectively decomposing the continuous fragmented skyline com-
putation into a collection of threshold-crossing queries, which can be efficiently
monitored at the participating sites using the geometric method. Their main differ-
ence lies in the details of this decomposition into queries. Still, since both algorithms

@ Springer

Distrib Parallel Databases

5r RY space 10 r RY space f(v(o,,t))
- ,
/Pt
a b V(E?z pyt) g |
v(0,,t) E‘: L
3 r - 2 6 L PP,
~
v(01,P,t) > 4
2 ¢ Bv(0yp,t) I
S
1 .V(°1:t) 4= ° f(V(O:ut))
1 1 1 J
v(0y,pyt) 0
0 s UMY I I] 0 1 2 3 4
0 1 2 3 4 5 6 f[1]=v[1](o,t)

Fig. 4 A simple example for query decomposition. The skyline space is defined using function vector

ST = v[1(o, 1) and f[2] = (v[2](0, 1))*

share a common framework, we describe them in parallel, with references to their
particularities.

We start with a high-level description of the distributed-monitoring protocol. Ini-
tially, the user configures the continuous skyline query, by defining the (possibly
complex) functions over the global statistics vector v to derive the skyline dimen-
sions. The system goes through an initialization phase, during which the coordinator
requests the current local statistics vectors from all sites, and uses them to compute
the initial global statistics vectors, the f values for all objects in O, and an initial
f-skyline, using any standard, centralized algorithm. Then, for each object 0; € O,
the coordinator extracts a set of threshold-crossing queries, denoted as Q(o;). While
the details of these query sets depend on the employed algorithm (PIVOT or DIRECT),
their key property is that they guarantee skyline correctness: as long as no threshold
violation is observed at any site, the skyline is guaranteed not to change. Finally, the
computed global statistics vectors and threshold-crossing queries are shipped to the
remote sites observing the corresponding objects, where they are monitored using the
geometric method. All updates not violating any threshold query are registered locally
at the sites, and only the remaining updates are sent to the coordinator, invoking a
synchronization process.

The intuition behind the decomposition of skyline monitoring to threshold-crossing
queries is illustrated in Fig. 4. The example shows two two-dimensional objects, 01
and o7, monitored by nodes p; and p;. The local statistics vectors of the two objects
at each node (the local values, depicted with empty markers), and the average value of
each object (depicted with filled markers) are shown in Fig. 4a. Figure 4b illustrates
the skyline space of the same two objects, using a simple function vector f, defined as:
fI11=V[1]1(o, 1) and f[2] = (v[2](0, 1))?. Clearly, 0; dominates 0>. Both PIVOT and
DIRECT track the pairwise relative positions of the objects in the skyline space, making
sure that these remain unchanged (i.e., o still dominates 0;), thereby guaranteeing
that the skyline remains valid. PIvOT will install two threshold-crossing queries at the
nodes (one per object) to check the relative positioning of each object with a fixed point
in the space defined by f—their middle point, at position (2,5), denoted with ﬁ)l,z.
In this example, the first query will monitor that f(v(o, t)) dominates 17[51,2, ie.,
fl11(v(o1, 1)) < 2and f[2](v(o1, t)) < 5. The second query will be to monitor that 0>

@ Springer

Distrib Parallel Databases

is still dominated by [7[)91,2,1.6., fl11(v(02,1)) > 2and f[2](v(02,t)) > 5. Instead of
installing queries with fixed pivot points, DIRECT considers the direct relation between
the two. In this example, DIRECT will check that f[1](v(o1, 1)) — f[1]1(v(02,1)) <O
and f[2](v(o1, 1)) — fI2](v(02, 1)) <O.

As discussed in Sect. 3.1, a threshold-crossing query focuses on detecting when the
value of a function g() over a fragmented dynamic vector crosses a threshold value
7. Let 1y denote the query construction time and let v(¢) be the dynamic vector. Then,
using the sign function sgn(), we can define this general threshold-crossing query
Qi,(g, v, T) as the boolean condition:

01, (g, v, 7) = sgn(g(v(?)) — 1) # sgn(g(v(t)) — 7). (1

The above boolean condition will become true at any time ¢ only if there is a threshold
crossing of g(v(?)), i.e., g(v(t)) > 7 and g(v(fp)) < t, or vice-versa. Clearly, both
g() and t can be multi-dimensional, giving rise to a query that is equivalent to the
OR of the boolean conditions across all dimensions. To keep our descriptions concise,
we employ the multi-dimensional form of Query (1) over our skyline function vector
f:RI 5 RE ; Obviously, only the subset of relevant dimensions of R¢ are accounted
for monitoring each component function f[k] (k =1,...,d").

In the remainder of this section, we first explain how the two algorithms extract the
threshold-crossing queries. Then, we outline the local monitoring and synchronization
processes, which are largely common to both algorithms. Finally, we discuss ways of
reducing the number of threshold crossing queries, in order to reduce network overhead
and number of synchronizations.

4.1 Threshold-crossing query decomposition

We now discuss the details of decomposing a continuous fragmented skyline into
threshold-crossing queries. In this section, we describe the query extraction process
starting with a first approach, where each object monitors its relative positioning with
respect to all other objects in the system. We will lift this requirement in Sect. 4.4, by
proposing a technique to drastically reduce the number of queries (and, therefore, the
network resources) from O (|O|?) to O (|O)).

PIvoT constructs threshold-crossing queries that pair each object with a set of
carefully selected fixed pivot points. The purpose of these queries is to ensure that the
object remains within a “safe” region, defined by its pivot points in R?". DIRECT, on
the other hand, constructs threshold-crossing queries that correlate each object with
a small set of other (also moving) objects from O. The purpose of the queries in this
case is to detect when the dominance relation between the objects changes.

The PIvoT algorithm PIVOT constructs threshold-crossing queries that pair an object
o; € O with a set of fixed points in the R space, termed pivot points. Specifically,
during initialization phase at time 79, for each pair of objects {0;, 0,}, the coordinator
computes the pivot point 1713,3 ; as the midpoint between the f-values of o; and o,
that is, 171)7” = %(f(v(oi, t0)) + f(v(0;, t))). Then, it constructs the two threshold-

@ Springer

Distrib Parallel Databases

(a) (b)

| R* space ! RY space
: f(v(os,t))® : f(v(0s,t))®
I I
O—r O—1—
f(v(os,t)) L PRg o f(v(oa.t)) L PRt
PP st :ppz‘? f(v(0a4,t)) PP {n\’%z f(v(ost))
f(v(o2t)) +pp,, L f\‘\%“\v},\, PP i_
f(v(o4,t)) f(v(on,1))

Fig. 5 Pivot-based method: a the four pivot points for 07 in the R space, b the safe region for 0,

crossing queries: Q, (f, v(0;), ;7;)7,-,]) (installed at sites P(0;)) and Q (f, v(0;),
ﬁ)i,j) (installed at sites P(0;)).

Consider the geometric interpretation of the PIvOT technique. Each pivot point
17[5,3 j partitions the RY space into 3d subspaces: three subspaces per dimension
k = {1,...,d"}, namely, {x : x[k] < pp; [kl}, {x : x[k] > ppi ;[k]}, and
{x : x[k] = Fﬁi,j[k]}. For each dimension k, f(v(o;)) belongs in exactly one of
these subspaces. The intersection of these d’ subspaces containing f(v(0;)) across
all threshold-crossing queries for object o; effectively defines a safe region for o;;
The intersection of these 3¢’ subspaces across all threshold-crossing queries for object
o; that contains f(v(o;)) effectively defines a safe region for o;; that is, as long as
f(v(0;)) remains in this region, its relative positioning in the skyline with respect to
all other objects in O remains unchanged.

Example 3 Figure 5a depicts a sample data set with five 2-dimensional points in the
f-skyline space, including the four pivot points defined for 0, with respect to all other
objects. Any site observing o, then has to monitor the following threshold-crossing
queries (one per pivot point): O, (f, v(02), pp1.2)s (S, ¥(02), PP23)s Qny(f,
v(02). Pha.4)- and Qy (f . V(02). Pp2.s).

Figure 5b depicts the (shaded) safe region for 0. The threshold-crossing queries
installed at P(0;) monitor exactly this safe-region condition for o;. It is not difficult
to see that this scheme is correct: as long as no threshold-crossing query fires for any
object, the relative positioning of any object pair in the fragmented skyline (i.e., their
relative dominance) remains unchanged, and, thus, the previously-computed skyline
remains valid. O

The DIRECT algorithm Rather than placing fixed pivot points somewhat arbitrarily at
the midpoint of two objects, DIRECT directly monitors the dominance relation across
each pair of fragmented objects, based on the vector difference of their f-values.
Formally, consider any pair of objects 0;, 0; € O and, for the time being, assume that
both objects are observed at the same subset of remote sites, i.e., P(0;) = P(0;). We
define the function-difference vector g(v(0;)|v(0;)) = f(v(0;))— f(v(0})), where
v(0;)|v(0o;) denotes the concatenation of the objects’ global statistics vectors; thus,
g R¥ R4, Then, for each such object pair, the coordinator simply constructs the
threshold-crossing query Q (g, v(0;)|v(0;), 0) and installs it at all sites in P(0;) =

@ Springer

Distrib Parallel Databases

P(o;) to monitor updates to either o; or o; (0 denotes the all-zero d’-dimensional
vector).

Example 4 In the example of Fig. 5, the set of DIRECT threshold queries extracted
for 03 is Q(02) = {04y (g, v(02)|v(0}), 0) : j =1, 3,4, 5}. For a relative positioning
of a pair of objects to change, one of the threshold-crossing queries needs to fire, i.e.,
the value of g(v(02)|v(0;)) needs to flip sign in at least one dimension. For instance,
since 0, dominates o5, the current sign of g(v(02)|v(05)) = f(v(02)) — f(v(0s)) is
negative at both dimensions. It is easy to see that as long as the sign remains negative
at all dimensions, 0, will still dominate 05. When the value becomes positive in at
least one dimension, a threshold-crossing query will fire, signaling a potential skyline
update. O

A number of issues with DIRECT are worth noting. First, it effectively doubles the
dimensionality of the local geometric bounding constraints since it needs to account
for updates to both objects. This increased dimensionality typically leads to more
frequent local threshold violations and to higher communication costs. (This issue can
be avoided for certain function types, e.g., when f is linear, but not in the general
case.)

A second, and perhaps more subtle, issue concerns the extension of DIRECT to
handle the general case of object pairs {o;, o0} that are observed at different sites
(i.e., P(0o;) # P(oj)), and its effectiveness in such settings. To ensure correctness,
the threshold query over v(0;)|v(0;) needs to be monitored across all sites in S =
P(o;) UP(0;) (with parts of the local statistics vector zeroed out at sites observing
only one of the objects). To keep the average correct, we need to scale each of the local
statistics vectors of o; by |S|/|P(0;)| (and, similarly for o;). This scaling, however,
has the adverse effect of increasing the radius of the local bounding balls, thereby
increasing the number of local violations. Theorem 1 formalizes this observation, in
comparison to PIVOT.

Theorem 1 Monitoring the DIRECT threshold-crossing query Q. (g, v(0;)|v(0}), 0)
for object o; at sites S ="P(0;) UP(0}) is provably less communication-efficient than
monitoring the corresponding PIVOT threshold query QO (f, v(0;), 17;7,-,1), when all
functions in f are linear, and r = |73|‘(9_o|)| > 2.

Proof included in Appendix.

4.2 Local monitoring

The threshold-crossing queries produced by the decomposition do not directly translate
to local monitoring conditions, since these are defined over the aggregate object values
(the global statistics vectors). However, nodes can exploit the geometric method to
efficiently monitor these queries without imposing centralization of updates. Briefly,
anode receiving an update for an object o forms the bounding ball (see Sect. 3.1), and
tests for monochromicity w.r.t. all threshold queries. This test is performed by finding
the minimum and maximum values of the monitored function inside the bounding
ball. If both values are on the same side of the threshold, the update is safe, i.e., it

@ Springer

Distrib Parallel Databases

(a) (b)
RY space | R%space
: f(v(os,t))@
1 My
t f(v(os,1)) | PP, g+ of(v(0s,)
v(03,t)o viozpat’) f(')> i Lo{ - |
3 \i* l\M1
*(0s.t) ”‘%ﬁ “Pha |
0 v(0s,t) b f(v(orD)

Fig. 6 Handling updates with the pivot-based method: a constructing the balls in the R4 space, b con-
structing the boxes in the RY space

cannot invalidate the skyline. Otherwise, the site notifies the coordinator to initiate the
synchronization process.

Example 5 Figure 6 illustrates the execution of the local monitoring algorithm over
two sites (p1 and p4) that receive updates for the same fragmented object 0. After p;
and p4 receive an update for 0,, they construct the local bounding balls, denoted with
By and By respectively (Fig. 6a). Let ﬁl/ﬁl denote the minimum and maximum
values of f inside Bj, as computed at p, and 7%4/@4 the ones inside By. Since both
7| and ﬁl remain within the safe region defined by the threshold queries in RY
(the gray-shaded area in Fig. 6b), the update at p; is safe and registered locally at
p1. However, the update at p4 is unsafe, since 1 4 violates the query corresponding
to]7])72,3. Thus, p4 notifies the coordinator of its current local vector, initiating a
synchronization process. O

The local monitoring algorithm also makes use of the more general safe zone
mechanism for testing local violations (Sect. 3.1). Safe zones can be defined for various
classes of monitoring functions, and recent work has shown that they can reduce
network cost for monitoring threshold-crossing queries by an order of magnitude
[18].

Space and computational complexity Complexity of the local monitoring algorithm
depends on the function f used for defining the skyline space, as well as the number
of threshold-crossing queries. In terms of space complexity, algorithm needs to keep
only the threshold-crossing queries, and the local and global statistics values of its
objects. This complexity is dominated by the cost of storing the threshold-crossing
queries. Therefore, the space complexity is O(d’ x |O|) per object, with d’ denoting
the dimensions of the skyline space. In Sect. 4.4 we will reduce this complexity to
0O(d’) per object by removing unnecessary threshold-crossing queries.
Computational complexity depends on the number of threshold-crossing queries
that need to be monitored, and on the complexity of finding the minimum and maxi-
mum values of f in the bounding ball, which is specific on the user-defined function
vector f. For example, if f considers average values, or if all functions in f are mono-
tonic, then the minimum and maximum values in the bounding balls can be computed
in constant time. Since we will have O(]|O|) threshold-crossing queries per object,

@ Springer

Distrib Parallel Databases

computational complexity will be O(d" x |O|)—this will again be reduced to O (d")
with the optimization proposed in Sect. 4.4. Safe zones for other function types also
support constant-time computation of the extreme values (see, e.g., [4, 16] for detailed
discussions).

4.3 Synchronization

Consider a PIvoT threshold-crossing query Q monitoring the relative dominance
relation of the object pair {o;, 0} that raises a local violation due to an update of object
o; at some site in P(0;). As discussed briefly in Sect. 3.1, the coordinator initiates
a balancing process to resolve the violation on o;. If the process fails to resolve the
local threshold violation even after contacting all sites, the coordinator computes the
updated v(o;) out of the collected local statistics. Then, if the dominance relation
between o; and o has not changed, the coordinator recomputes the pivot point for Q,
and sends it to P(0;) and P(o;). Otherwise, it updates the skyline according to the
updated global statistics (using a centralized continuous skyline algorithm to reduce
computation cost [29]), and recomputes only the threshold queries involving at least
one of the two objects and a skyline object, according to the process described in
Sect. 4.1. All updated and new threshold queries are then sent to the sites monitoring
the corresponding objects, and the monitoring protocol continues. The above process
relies on cached global statistics vectors of some objects (i.e., 0;), to extract the new
threshold queries. It is therefore possible that the local statistics vectors at some of
the sites cause immediate threshold violations with the updated threshold queries. In
such cases, synchronization is invoked recursively, until no more threshold violations
are observed.

Animportant optimization here is lazy query updating, which postpones the replace-
ment of all queries that are still valid, even if the participating objects have changed
their skyline status. For example, when an object is removed from the skyline but
still dominates a large number of objects, the coordinator does not update the corre-
sponding query. Instead, sites continue monitoring the query until an update causes a
threshold crossing.

A slight modification is required at the synchronization process for the DIRECT algo-
rithm: since DIRECT threshold queries are defined on pairs of objects, balancing is
always performed for both objects. The rest of the synchronization scheme remains
the same.

4.4 Optimizing communication overhead by eliminating redundant queries

Both algorithms maintain the skyline by monitoring the pairwise dominance between
all objects in O. For this, they require O(|O|?) queries. However, not all changes in
pairwise dominance relations between objects in O are necessary. For example, the
skyline will not change if 04 (Fig. 5a) is updated such that it no longer f-dominates
05, since both 04 and o5 continue to be dominated by o0>. In fact, only two types of
threshold-crossing queries can signify a change in the skyline: (1) Queries monitoring
the domination of a non-skyline object by a skyline object and (2) Queries monitoring

@ Springer

Distrib Parallel Databases

the pareto optimality of a skyline object. All other queries are redundant and can be
safely dropped.

(1) Queries monitoring domination of a non-skyline object

The key observation here is that a non-skyline object cannot enter the skyline as long
as it is f-dominated by at least one skyline object. Thus, for any given non-skyline
object o;, it suffices to monitor a single threshold-crossing query between o; and a
skyline object o; that f-dominates o;. Having no knowledge on the distribution of
future updates, the best threshold condition to monitor is the one that maximizes the
minimum distance (slack) between o; and the resulting pivot point 17‘5,-, j along all d’
dimensions. In the example of Fig. 5a, this gives rise to threshold queries for the pairs
{02, 04} and {02, 05}.

(2) Queries monitoring pareto-optimality of a skyline object

A skyline object o; may exit the skyline only when another skyline object 0 ; moves to
f-dominate o;. (A non-skyline object can cause the removal of a skyline object only
after itself enters the skyline, thereby causing another threshold query of the previous
class to fire.) However, not all pairs of skyline objects need to be monitored, since
some skyline objects impose tighter threshold constraints than others, and will always
be violated first. For example, 01 cannot move to dominate o3 without first crossing
its threshold query with 0>. Specifically, for any skyline object o;, the coordinator
constructs a threshold-crossing query between o; and all other skyline objects whose
[values immediately precede or follow f(0;) along any dimension of the RY space.
In our Fig. 5a example, this gives rise to threshold queries for the pairs {03, 03} and
{02, 01}.

Using the above ideas, the total number of threshold-crossing queries in the system
is effectively reduced from © (|0|?) to (at most) 2(|O| + s(d’ — 1)), where s denotes
the size of the skyline (and, typically, s << |O]). This set of threshold queries is
sufficient and minimal for accurate fragmented-skyline monitoring.

Theorem 2 The extracted threshold queries are sufficient for accurate fragmented
skyline monitoring, i.e., as long as no threshold violation occurs, the skyline is guar-
anteed to stay the same. They are also minimal, in the sense that omitting any of the
queries breaks the correctness guarantees.

Proof included in Appendix.

4.5 Optimizing communication overhead by approximate monitoring

To further reduce network cost, both PIVOT and DIRECT support approximate moni-
toring. With approximate monitoring, we target applications that can tolerate errors in
the skyline, as long as the misclassified objects are very near the skyline border. For
example, consider monitoring the skyline of IP addresses with the highest number of
packets and transfer volume across all ISP routers. Small errors around the skyline
region can often be tolerated; for instance, it is acceptable if an IP address is misclas-
sified as belonging in the skyline, as long as it is very close to the skyline border, i.e.,

@ Springer

Distrib Parallel Databases

it can become a member of the skyline with a small shift. It is even the case that, due
to sampling or sketching (both of which are frequently used in network monitoring),
IP statistics may already be approximate. Similar inaccuracies are also introduced in
sensor networks, due to hardware limitations of the sensors. As such, small errors are
already inherent in many applications, without reducing the importance or utility of
skyline queries.

Moving along the lines of previous works (ADRs [17] and skylines of coarser scales
[13]), we define approximation quality by bounding the maximum allowed error per
object. That is, any misclassified object must be very near the skyline border, i.e., with
maximum distance € at each dimension. This is achieved by defining approximate
threshold queries (as opposed to standard threshold queries generated by the exact
PIvOoT and DIRECT algorithms), which are represented as follows: Qy,(g, v, 7,€) =
sgn(g(vV(t0)) — 1) # sgn(g(v(1)) — 7 +) with

—e, if g(v(r) <t
= {+e, if g(v(tg)) >t
Intuitively, an approximate threshold query allows a local violation by a maximum of €
without initiating the synchronization process. This local violation does not necessarily
translate to a skyline update, since in most cases a local violation does not translate to
a global threshold violation.

Approximate threshold queries can be utilized by PIVOT and DIRECT as follows.
PIVOT guarantees a maximum error € by constructing approximate threshold queries
with an acceptable error € /2: since each object can violate the pivot point by at most € /2
(in opposite directions), the dominance relation between two objects will be violated by
at most €. DIRECT does not need to pre-allocate this error, since the dominance relation
between object pairs is always checked with a threshold query that includes both
objects. Therefore, DIRECT constructs approximate queries with error parameter €.

Clearly, there exist alternative expressions of approximate threshold queries, e.g.,
€ could be relative on the pivot point location, or it could be a d’-dimensional vector
enabling different accuracy requirements per dimension. The best approach is deter-
mined by the application scenario; it is straightforward to adapt PIvOT and DIRECT to
handle alternative expressions.

5 The adaptive method

The geometric method (and, in effect, the proposed algorithms) relies on the existence
of a small slack for each object, for effectively filtering local updates. In extreme
situations, the constructed threshold queries may be too tight, leaving no slack for
updates and causing frequent synchronizations (e.g., when two objects are very close
in RY). Depending on the frequency and cost of these synchronizations, it is more
network-efficient to identify these few threshold queries, and exclude their correspond-
ing objects from the geometric monitoring protocol. All updates for these objects are
directly streamed to the coordinator, thereby introducing a cost for sending the updates,
but eliminating the need for frequent costly synchronizations.

@ Springer

Distrib Parallel Databases

We now propose an adaptive module for identifying such cases. The module is
executed by the coordinator each time an object causes a threshold violation, and
operates by estimating and comparing the communication cost for keeping the object
under geometric monitoring versus directly streaming all its updates. Note that this
module is only applicable to PIVOT; since DIRECT considers objects in pairs, the
dependencies across objects make it impossible to exclude an individual object from
geometric monitoring.

With .Agm and Ay, we denote the two alternative monitoring schemes, the first based
on the geometric method (i.e., PIVOT) and the second based on streaming updates. We
distinguish two types of threshold violations: (a) true threshold violations, where the
global statistics vector of the object changes sufficiently to cause a threshold violation
in the query; and, (b) false-positive threshold violations, where only a local statistics
vector causes a violation that can be resolved with balancing, without changing the
threshold query.

To decide between A, and Ay, for any object o, the coordinator needs to predict
the network cost required by each scheme for monitoring o until the next true threshold
violation for o. Let ¢ denote the time of the last global synchronization for o, and ¢’ the
time of the next true threshold violation caused by o. For illustration purposes only,
assume that the coordinator has full knowledge of the updates arriving between 7 and ¢/
(we will remove this assumption later). Let N,» denote the number of updates arriving
for o in this time range, N, (0) the number of false positive threshold violations,
and Cy,(0) the average cost of resolving each such violation. Then, the cost for
monitoring o with Agy, is Cgp = Cyrp(0) x Nyp(o) (for resolving all false positive
threshold violations), whereas the cost for Ay, is simply C;; = ¢ x Ny, where c is
the cost of a single update message, since .Ay; does not incur false-positive violations.
The coordinator chooses the algorithm with the smallest network cost, and notifies the
sites monitoring o to switch to that algorithm.

Clearly, the challenge now is to estimate the values of N, (0), Crp(0) and Ny (0),
since these depend on future parts of the stream. The coordinator estimates these
values through extrapolation on recently observed updates for 0. We now first describe
the mathematical models for obtaining these estimates, and then present the detailed
algorithm that exploits these models to predict the cost of the geometric and streaming
schemes.

5.1 Estimating threshold violation costs

Mathematical preliminaries To estimate the resolution cost C s, (0), the coordinator
employs the average cost for resolving false positive threshold violations over the last
K observed violations, where « is a small number, e.g., 100. Estimating N> and N,
requires a prediction model for future object updates. In the absence of knowledge
on the distribution characterizing the updates, we employ a random walk model to
capture the behavior of object updates. Precisely, the changes in both the global and
local statistics vectors for each object o are modeled as d-dimensional random walks.
The step length for these walks is determined empirically, by averaging the magnitudes
of change for all observed updates of o across all sites.

@ Springer

Distrib Parallel Databases

Let vector s(0) denote the average of change magnitudes on the global statistics
vector v(o0), for the updates observed by all sites in P(0). According to the random
walk model [12], v(o) follows a d-dimensional binomial distribution, with variance
ogli 1? = s(o)[i 1? 3 peP(o) s where 1, denotes the number of updates received for
object o at site p since time . A similar random walk is used to model the local
statistics vector v(o, p) at each site p € P(0). To simplify computation, rather than
using per-site update statistics, our model employs the single aggregate change vector
|P(0)| x s(o) for all sites in P(0). Then, the probability distribution describing the
local statistics vector of object o at p is a d-dimensional binomial distribution with
variance 07[i]? = (|P(0)| x s(0)[i])*n .

Through one-sided Chebyshev inequalities we probabilistically bound the location
of the global and local statistics vectors of each object, after n, updates: for any
dimension i and any point/ < v(o, t)[i], the probability of v(o, t")[i] crossing / along

oglil?
Ug[i]2+(5(0st)[i]_l)2 ’
satisfying Pr[v(o, t')[i] < 1] > pr for a desired minimum probability pr is:

L=v(o,0[i] —oglily (1 — pr)/pr @

Similar inequalities hold for Pr[v(o, t')[i] > r] for all r > v(o, 1)[i], as well as for
the probability of a local statistics vector dimension being less than / or greater than r.
Estimation algorithm The derived inequalities can be exploited to estimate N, (0) and
N ¢p (cf. Algorithm 1). Starting from number of steps n = 1, and using a combination
of doubling and binary search (lines 5-13), we find the maximum number of steps n,
such that any point p reachable from v(o,) with probability higher than pr = 0.5,

dimension i is Pr[v(o,)[i] < 1] < Therefore, the value of [

does not cause a threshold violation. Formally, let V,, = {pi, p2, ...} denote the
(possibly infinite) set of points, such that any p € V), satisfies the following condition
after n updates, for all dimensionsi =1, ...,d:

d . Prv(o, i1 < plill, if pli] < v(o,)[i]
l_[pri > 0.5, with pr; = . L .
i {Pr[V(o,)i > plill, if pli] > v(o, DIi]

The significance of V), is that each of the points in the set is likely to be reached
from v(o, t) after n updates, i.e., with probability > 0.5. Ny (o) is set to the maximum
value n, such that for all points p € V,, f(p) does not cause a threshold violation for
any of the threshold queries of object o.

To test the above constraints efficiently, the points p are uniformly sampled over
the range defined by / and r, as these are computed per dimension for probability 0.5,
using Eq. 2. This test is performed by function probe (lines 16-28). The function
first computes the left and right bounds per dimension using Eq. 2, and then performs
uniform sampling (using a superimposed grid) to check if the probability to reach
the point after n steps is above the probability threshold pr. In this case, the point is
checked for possible threshold crossing. The algorithm returns the smallest value of
n for which there exists a point p reachable from v(o, t) in n steps with probability
higher than pr, that can cause a threshold crossing. The number of repetitions required
to estimate N, (0), is logarithmic in N (o), and linear in the resolution of the grid.

@ Springer

Distrib Parallel Databases

Algorithm 1: Adaptivity Estimation Algorithm

/] Executed at the coordinator
1 function Estimate N,/ ()

2 begin

3 n<«1

4 TC <« false // Set to true when I find a threshold crossing
// Doubling to determine upper bound

repeat

TC <« probe(n) // check for threshold crossing

if (/TC)then n < 2n

until (7C),

// Binary search: 1 know thatn/2 < N, <n

9 maxN < n, minN < n/2

10 while (maxN-minN>1) do

n = minN + (maxN-minN)/2

if (probe(n)) then maxN <— n else minN <—n

® N !

13 end
14 return n
15 end

/] Checks for threshold crossing, for a given n
16 function probe(int n)
17 begin
18 for (dim=1— d)do
/I Compute left/right bounds for prob 0.5 (see Eqn.2)

19 [[dim] < computeLeftBound(n, 0.5)
20 r[dim] < computeRightBound(n, 0.5)
21 end

/I sampleN determines the sampling resolution
22 for (int sample=0 — sampleN) do

23 p < UniformSampleFromHyperCube(/, r)
/I Compute prob to reach p after n steps (see Eqn.3)
24 prp <probToReachPoint(p, v(o, 1), n)
25 if (prp > 0.5and f(p) causes threshold crossing) then return true
26 end
27 return false
28 end

The same process is used to predict the number of steps for the next false positive
threshold violation, required for estimating the total number of false positive threshold
violations N ;. Using the described formulas for Cg,, and Cy;, we compute the expected
cost for Ag,, and A, and select the most efficient monitoring scheme.

Due to sampling and extrapolation, this process may fail to detect some local or
global threshold violations. A sudden change in stream characteristics may also result
in an overestimate or underestimate of the values of Ny, or Ny. Such inaccuracies,
however, do not introduce errors in the skyline; the only possible negative consequence
is that the adaptive module selects a suboptimal monitoring algorithm for an object,
thereby increasing the monitoring cost.

Special cases The described algorithm relies on sampling to estimate the frequency
of threshold crossings. Sampling can be avoided for certain function types by com-
puting directly the necessary minimal shift in the R? space that causes a threshold

@ Springer

Distrib Parallel Databases

violation. For instance, for a linear function f, the necessary minimal shift in the R¢
space that causes a threshold violation corresponds to the minimum absolute distance
per dimension of the current global statistics vector of the object, and the coordinates
in the set {f_l(ﬁ)n), f_l(ﬁ)yz), ...}, where f_l denotes the inverse function of
f, and pp; are used to denote the pivot points constructed for the object. Then, we
can employ the probabilistic inequalities (e.g., Eq. 2) to estimate the minimal values
of Nyp(o) and Ny (o) that will lead to threshold violations. The same optimization
is applicable to weakly-monotonic non-linear functions, as well as multimodal func-
tions.

6 Grouping of threshold queries

Since all threshold crossing queries need to be propagated and monitored in the
network, the number of queries influences the algorithm’s network performance. In
Sect. 4.4 we have shown how to eliminate all queries that are not necessary for guar-
anteeing the correctness of the skyline, reducing the total number from 00 to
O (]O|). However, even after this reduction, skyline objects with dense dominance
regions may end up participating in a large number of queries. We now show how to
further reduce these queries by grouping. Our discussion first focuses on PIvOT. We
discuss grouping for DIRECT in Sect. 6.3.

Prvot forms groups of pivot points for each skyline object o;, and replaces each
group with a single “composite” pivot point that imposes equivalent threshold con-
straints on o;. Threshold queries are constructed based on the composite pivot points,
which are much fewer than the original ones, and typically enable enlarging the safe
regions for the non-skyline objects. The coordinator decides which pivot points should
be grouped for each object 0; on the basis of the position of the pivot points (basic
grouping), and of the expected maintenance cost for the resulting composite threshold
queries (advanced grouping).

6.1 Basic grouping for PIVOT

Any two pivot points ﬁ)i, j and 1711)91-, , for an object 0; can be grouped together only if
they reside on the same side of f(V(Ol)) in all d’ dimensions, i.e., sgn(f[k](v(0;))—
pp, jlk]) =sgn(f[k](V(o,)) pp, nlk]) fork =1, , d’. All pivot points belonging
in the same group G = {(pp DPijs pp, hs ...} are then replaced by a composite pivot
point pp, G thati 1mposes equivalent constraints on f(v(o;, t)). If o; dominates the
pivot points in G, ppl,G takes the minimum value per dimension out of all the pivot
points in the group (otherwise the maximum value is taken). Formally, the composite
point is defined as follows:

mings pplk] if ming; eG(pp kD) = flkl(v(oi, 1))

ppi.Glk]l =
’ max g ppIk] if maxﬁ;,eg(pp[k]) < fIkI(v(o;i, 1))

@ Springer

Distrib Parallel Databases

Fig.7 A problematic scenario | d’
for basic grouping : R Space
| f(v(os,t)) ©
|
|
O—
I +PPy 3
|
0 f(v(02,t))
PP, ,
¢ .
f(v(os,1)) |
._
fork =1,...,d . The pivot points in G for objects {0, oy, ...} are also replaced by

the composite pivot point 1715,-,(;, which can enable additional slack for these objects.
For example, for object 0, from Fig. 5b, basic grouping will replace G = {17132,4,
17152, 5} with a single composite pivot point that coincides with 17152,4. Basic grouping
guarantees that the total number of queries is effectively reduced to (at most) n +
2sd’.

Basic grouping performs cost-agnostic grouping, which can be problematic in some
cases. We illustrate this limitation with an example. Consider the setup shown in
Fig. 7. For simplicity assume that each object is monitored by 2 nodes, and nodes
do not overlap, i.e., P(0;) N P(o;) = ¥, for all objects o;, 0;. Basic grouping will
construct a single query for both non-skyline objects with a pivot point that coincides
with pp1.2. However, since ppj 2 is very close to 01 and 0y, it will likely be frequently
violated. Each true threshold crossing will require updating the pivot point also to the
two nodes holding 03, even though f(v(03)) is very far from f(v(o1)). Instead, if we
keep pp1,2 and ppi 3 ungrouped, we will only need to update the nodes holding o
and 07, thereby saving two messages at every threshold crossing violation. Our next
algorithm addresses this limitation.

6.2 Advanced grouping for PIVOT

Advanced grouping method (Algorithm 2) avoids this limitation by taking into account
both the expected frequency of threshold crossings and the cost of updating the pivot
points in order to decide which pivot points should be grouped together. First, the
coordinator executes the basic grouping algorithm and extracts an initial set of groups
Gi =1{Gi 1, G2, ...} foreach skyline item o;. Each group G; ; € G; is further split to
a set of sub-groups Qlf’j = {G], G}, ...}, as follows. For each pivot point]7])) € G, j,
the coordinator simulates the addition of pp in each of the groups of g;, j (initially
empty), and estimates the increase on the amortized network cost per update of o; until
the next true threshold violation of the group’s composite threshold query. Also, the

@ Springer

Distrib Parallel Databases

Algorithm 2: Advanced grouping

/] Executed at the coordinator
// Set of groups G; for object o; is constructed by basic grouping

1 function group Pivot Points(G;)

2 begin

3 for (group G; j € G;) do

4 glqu ~ 0

5 for (pivot point pp € G j)do

6 bestGroup < findBestGroup(glf,j, 7p)
7 if (bestGroup=NEWGROUP) then

8 Construct a new group G’ containing pp
9 G <~ G uda

10 else

11 ‘ Add pp to bestGroup

12 end

13 end

14 end

15 return G’

16 end

// Find the best group for the pivot point
17 function find BestGroup(G; J 7p)

18 begin
19 minDiff < oo, bestGroup <~ NULL
20 for (Group G' e g;j) do
21 NG/ , < Estimate N,/ ()
prev
// Simulate addition of pp to the group

2 Pnew < New composite pivot point for G’ U p
23 Nt(i/ < Estimate N,/ ()
2 diff = |P(G' U pp)|/N§ — IP(G' U ﬁ;)wv[?r’w,
25 if (diff<minDiff) then
26 bestGroup < G’
27 minDiff < diff
28 end
29 end

// Simulate creation of a new group for pp
30 Prew < ;ﬁ

’

31 N[C,; < Estimate N,/ ()
2 | if (IP(@p)I/NG <minDiff) then bestGroup <-NEWGROUP
3 return bestGroup

34 end

expected amortized network cost for adding a new group in g;ﬁ j that contains only pp
is computed. The pivot point is added to the group that minimizes the expected cost
increase, or, more formally, to the group min arg, 1g;,%) C(gu [71)9) — C(g), where
C(-) denotes the amortized cost of the group. ’

The challenge in the above process is to estimate the network cost of each potential
query group. This cost corresponds to the network resources required for deploying the

@ Springer

Distrib Parallel Databases

corresponding composite query to all relevant nodes, plus the resources for handling
the false positive threshold violations through balancing. An observation that simplifies
our calculations is that the number of false positive threshold violations, and the cost of
handling them, are orthogonal to the grouping method—they only depend on the coor-
dinates on the ungrouped pivot points. As such, these can be ignored for our computa-
tion, and we can focus on finding the grouping that minimizes the deployment cost only.

Note however that each potential group has a different lifetime. The lifetime of a
group (and its corresponding composite query) is defined as the number of updates
arriving for the object between the query construction time and its next true threshold
violation. To make queries comparable, we amortize the cost of each query over its
whole lifetime, which can be estimated using the approach presented in Sect. 5. In
detail, let P(G’) denote the set of sites monitoring at least one of the objects corre-
sponding to the pivot points in G’, Q ¢’ the corresponding (candidate) threshold query,
and N z(’;, (0;) the estimated number of updates of o; until the next true threshold viola-
tion of Q¢ (cf. Sect. 5). A true threshold violation can only be resolved by updating
the composite pivot point at all sites monitoring the threshold query. Therefore, the
network cost for the lifetime of a constructed group will be |P(G’)| messages. The
same cost amortized per update will be |P(G")|/ Nt,G/ (0;). The cost increase due to
an addition of a pivot point in G’ is computed by subtracting the old amortized cost
per update for G’ (before adding the candidate pivot point) by the new amortized cost
(after adding the new pivot point). The algorithm is sketched in Algorithm 2.

Clearly, the discussed greedy algorithm does not always lead to the optimal group-
ing, since its results depend on the processing order of the pivot points. Errors may also
be introduced due to the estimation algorithm for the lifetime of each query. However,
these errors do not lead to inaccuracies in the maintained skyline; they may only lead
to suboptimal grouping and network performance of the algorithm. As we show later
with experiments, advanced grouping performs well in both real-world and synthetic
data, addressing the weaknesses of the basic grouping strategy.

6.3 Grouping for DIRECT

It is straightforward to adapt both basic and advanced grouping for DIRECT: instead
of building composite pivot points, we build composite ‘dynamic’ objects, which
get updated with the objects participating in the query. Notice however two important
differences compared to PIVOT. First, grouping in DIRECT does not increase the slack of
threshold queries for non-skyline objects, since there are no fixed pivot points involved.
Second, grouping does not affect the cost of handling threshold violations, since only
the invalidated parts of the threshold query need to be replaced. Nevertheless, basic
grouping can still be combined with the described representation for computational
performance at the monitoring sites.

7 Extensions and additional applications

Besides classic skyline queries, many other interesting skyline variants and application
domains have emerged in the last few years, e.g., skycubes, constrained skylines,

@ Springer

Distrib Parallel Databases

skybands, and skylines over sliding windows. To illustrate the flexibility provided by
PIvoT and DIRECT, we now explain how the two algorithms can be applied to some
of these contexts.

Constrained skyline queries Constrained skyline queries [22] restrict the input
domain of a skyline to the objects that satisfy some pre-defined constraints. For exam-
ple, when booking a hotel room, a traveler may want to set an acceptable price range
(between $100 and $200) as a hard constraint. The constrained skyline is not nec-
essarily a subset of the full skyline, and therefore it cannot be produced by filtering
out the objects of the full skyline according to the constraints. Instead, the objects
not satisfying the constraints should be filtered out at the input of the algorithm. This
is not straightforward to achieve in the case of data fragmentation, since each node
cannot know whether the system-wide average values of any of its objects satisfies the
constraints or not.

Both PIvoT and DIRECT can be used to directly track constrained skylines over
fragmented data, by computing the skyline over an auxiliary space defined by helper
functions. In particular, we only need to define one helper function per dimension that
penalizes the tuples not satisfying all constraints. As an example, consider implement-
ing the constraint that the room price is between $100 and $200. To get the distance Vs
price skyline under this constraint, we compute the skyline over the space produced
by the functions f 5, and f ;... defined for pushing the objects not satisfying the
constraints outside of the skyline, as follows: f ;;,, = distance if 100 < price < 200,
or fgise = 0o otherwise (f ;¢ is defined similarly). The constraints are not nec-
essarily rectangular, as in the described example; any constraint that can be formally
described by a function of any form (not necessarily linear) can be integrated in the
method.

Monitoring many concurrent skyline queries We frequently require concurrent
monitoring of many skyline queries on (partially) overlapping dimensions for the same
data input. For instance, a user may need to monitor the skyline of hotel vacancies
using price and distance from the beach, whereas another user may be interested on
the skyline of hotel vacancies using price and distance from the city center. Concurrent
execution of many constrained skyline queries with different constraints (e.g., different
price ranges for the hotel rooms) is another example.

Clearly, we can execute multiple independent instances of PIVOT and DIRECT.
However, if the skylines to be tracked contain overlapping dimensions, we can save net-
work and computational effort by reducing the number of threshold-crossing queries.
In particular, after the coordinator extracts all threshold-crossing queries for each
of the desired skylines, it uses the rules described in Sect. 4.4 to select the tightest
threshold-crossing queries, and propagates only these queries to the nodes for monitor-
ing. Threshold violations and synchronizations are then used for updating all skylines
in parallel.

The performance improvement compared to the individual monitoring of each sky-
line depends on the overlap of the threshold-crossing queries of the different skylines.
However, high overlap of threshold-crossing queries is expected in many application
scenarios, e.g., when maintaining the skycube [30], or when monitoring many skyline
queries with different constraints [22].

@ Springer

Distrib Parallel Databases

Sliding window skylines Algorithms for maintaining skylines over sliding win-
dows have also been proposed, e.g., [25]. However, none of them considers data
fragmentation. Both PIvOT and DIRECT can maintain sliding window skylines straight-
forwardly, by monitoring the auxiliary space defined by a sliding window function,
i.e., f will be a sliding window function.

Skyband queries A k-skyband query includes all objects dominated by ar most
k other objects [22] (skyline queries are in fact specializations of skyband queries,
with k£ = 0). A key observation towards efficient monitoring of k-skyband queries
over fragmented data is that before applying the reduction rules (cf. Sect. 4.4), both
P1voT and DIRECT will construct sufficient threshold-crossing queries to enable mon-
itoring the dominance relations of all pairs of objects. Therefore, a first approach is to
monitor all threshold-crossing queries. As such, the k-skyband query will not change
as long as none of these dominance relations is invalidated. To further reduce network
and monitoring complexity, we can rewrite the reduction rules such that: (a) each
object not belonging in the k-skyband only needs to monitor that it is still dominated
by k objects from the skyband and (b) each object o; from the k-skyband needs to
monitor that it does not become dominated by any new object o;. The number of
threshold crossing queries can be reduced further by noticing that, for the second type
of queries, it is sufficient to monitor only the pairwise relation of o; with all objects
that are immediate neighbors to at least one dimension (the correctness proof is simi-
lar to the one provided for the standard PIVOT and DIRECT algorithms, in Sect. 4.4).
Furthermore, we can use query grouping to reduce the number of threshold crossing
queries even more.

Alternative aggregation functions Up to now, we have considered that aggregate
values are computed by averaging the object values across several sites. However,
any convex combination of the values of each object across the sites can be used (a
combination of values is convex if the aggregate value lies within the convex hull of
all values). For instance, a weighted average can also be used, where weights may
represent, e.g., the trustworthiness or the coverage of the node. Weights that vary with
time, and individual weights per dimension are supported by utilizing the ability of
PIvoT and DIRECT to define skyline spaces through arbitrary functions, as follows:
Let vector w(o, p;, t) denote the varying weight per node for all dimensions. Then,
the skyline dimension is defined by function vector f = > pieP) WO, pi, 1) X
v(o, pi, 1)) Y. PieP () w(o, pi,t), which can again be monitored with the geometric
method.

Operating on uncertain data Uncertain data occurs in many domains, e.g., because
of inaccuracies in the data extraction process. Bounding boxes are often utilized in
these domains, to represent the area where each uncertain point may lie (see, e.g., [6]).
In these cases, it may be required to maintain the skyline of bounding boxes, i.e., the
set of bounding boxes that are not fully dominated by another box. Both PIvOT and
DIRECT can be used for monitoring this skyline, albeit with some modifications. This
is achieved by constructing threshold-crossing queries that monitor the relative posi-
tioning of bounding boxes. In particular, at initialization time we extract the aggregate
bounding box per item, and compute the initial skyline of bounding boxes. Then, we
extract the threshold crossing queries to monitor the following: a) for each bounding
box that belongs in the skyline, we need to monitor that this does not become fully

@ Springer

Distrib Parallel Databases

dominated by another bounding box, and b) for the bounding boxes that do not belong
in the skyline, we need to monitor that they remain fully dominated by at least one
bounding box. These bounding-box threshold crossing queries are essentially reduced
to simple threshold-crossing queries between the upper-right coordinate of the dom-
inating bounding box and the lower-left coordinate of the dominated bounding box.
As such, the reduction rules and all optimizations proposed in the previous sections
can also be used.

8 Experimental evaluation

The experiments were focused on evaluating the network efficiency and scalability
of PIVOT and DIRECT, and on providing guidelines for selecting the best algorithm
for each configuration. As a baseline, we have used the only available alternative for
continuous fragmented functional skylines, which streams the updates to a central
node (only the updates that actually altered the local statistics vector of an object were
considered). In the following, the baseline will be denoted as CENTR, due to its central
nature. Unless otherwise mentioned, PIVOT and DIRECT will be used to denote the
full-fledged algorithms, i.e., PIvOT with advanced grouping and adaptive monitoring,
and DIRECT with basic grouping.
Data sets We have used two publicly available real-world data sets, denoted as
WEATHER and MOVIES. WEATHER, was downloaded from the National Oceanic Atmo-
spheric Administration website (http://www.ncdc.noaa.gov/isd), and includes weather
statistics collected in 2010-2011 from a network of 5423 sensors distributed around
257 countries. It contains 93.6 million readings of temperature and dew point (only
the updates that altered the local values were considered). MOVIES is the largest of the
Movielens data sets (http://grouplens.org/datasets/movielens/), containing 10 million
ratings of 10,681 movies, provided by 71,567 users. Since the data set does not contain
user demographics, we have introduced a random distribution of users to 200 sites.
Furthermore, a set of massive synthetic data streams generated with the data gen-
erator of [3] allowed us to study the behavior of the algorithms under different data
characteristics. Since the generator creates only static data sets, updates were simulated
by randomly selecting a site p; and an object o at each step, and shifting the local value
of the object to a value uniformly selected within the range [(1 —maxRC)v(o;, p;, 1),
(I+maxRC)v(o;, p;,)], with maxRC denoting the maximum relative change chosen
for the experiment.
Monitored functions The algorithms were evaluated using both linear and non-linear
functions. For linear functions, we will report results for the identity function on
the average object values, i.e., f(v(o,t)) = v(o,t), which enables us to directly
observe the influence of data characteristics to the performance of the algorithms.
For non-linear functions, we considered three frequently used functions, variance of
a dimension across all sites, euclidean norm on two dimensions, and L2 distance on
four dimensions.
Performance indicators We measured the number of messages and transfer volume
required by each algorithm. To enable direct comparison with the baseline, the cost
for DIRECT and P1voT will always be presented as a percentage of the corresponding

@ Springer

http://www.ncdc.noaa.gov/isd
http://grouplens.org/datasets/movielens/

Distrib Parallel Databases

Table 2 Experimental parameters (default value is bold)

Data sets
Name Synthetic, WEATHER, MOVIES
Correlation bet. dim. Independent, Correl., Anti-correl.
Max. relative change 0.01, 0.02, 0.04, 0.08, 0.16
objects [257-50.000] (default 2000)
Experimental configuration
Function Linear, Norm, L2 dist., Var.
Dimensions d €{2,3,4,5},d € {2,3,4,5)}
sites [200-50.000] (default 1000)
Acceptable error € 0, 0.0005-0.05

Table 3 Number of threshold-crossing queries per object, with and without the elimination of redundant
queries

Dataset No elimination Prvor DIRECT

Ungrouped Basic Advanced Ungrouped Basic

Movies 10,676 2 1.001 1.005 2 1.001
Weather 256 1.992 1.004 1.027 Not applicable

The results correspond to both the adaptive and the non-adaptive algorithm

cost of CENTR on the same setup. We do not report accuracy since both PIVOT and
DIRECT offer strict error guarantees, i.e., all errors are always at most equal to the
chosen acceptable error €.

Table 2 summarizes the configuration parameters varied in our experiments, and
the default values for each parameter. To avoid repetition, in our discussion we will
be noting only the parameters with values different from the default.

8.1 Evaluation of algorithmic components

We start by evaluating the proposed algorithm extensions, i.e., query grouping for
PIvOoT and DIRECT, and adaptive monitoring for PIvOT. We conduct our experiments
using the real-world data sets WEATHER and MOVIES. An interesting characteristic
of WEATHER is that, even though the value of each object (country) is fragmented
over many sensors, each sensor always maintains the data of a single object, i.e., the
weather statistics of a single country. As shown by Theorem 1, DIRECT is provably
worse than PIVOT for such a setup, and is therefore not used on this data set.

We first investigate the impact of the optimization for eliminating the redundant
queries (Sect. 4.4). Table 3 presents the average number of local threshold-crossing
queries per object at the end of each experiment. As expected, when we disable this
optimization, the number of threshold queries per object equals to the number of
objects, minus one (each object forms a threshold query with each other object). With

@ Springer

Distrib Parallel Databases

—_
D
=1
—_
(=
-

0.25

I
>

[IXOT P IXOT

0.35

0.2

o
w

0.25

0.15

DIRECT

0.1

0.15

o
-

0.05
0.05

Ratio of CENTR (transfer volume)
o
N

Ratio of CENTR (transfer volume)

°
()
o
>
o
=
0o
=

o]

Ungrouped
Advanced
Ungrouped
Advanced

o

S N —
Not adaptive Adaptive Not adaptive Adaptive

Fig. 8 a MOVIES data set. b WEATHER data set

this optimization in place, the number of threshold queries already becomes at most
2 for both datasets, even when the queries are not grouped. Since only redundant
queries are removed (i.e., coordinator needs to send only a subset of the queries), this
optimization has a strictly positive effect on the computational and space complexity
of the monitoring algorithm. All following experiments will therefore correspond to
the variants of PIVOT and DIRECT that utilize this optimization.

We also see that basic grouping aggressively groups all threshold-crossing queries,
thereby reducing the number of queries to almost 1 query per object. Advanced group-
ing slightly increases the number of queries compared to basic grouping, by breaking
some of the groups in order to reduce synchronization cost. However, the difference in
the number of queries (and, hence, in the computational and space complexity of the
monitoring algorithm) is negligible, i.e., the proposed model for advanced grouping
effectively identifies the key groups of threshold-crossing queries that need to break.

Figure 8a, b present the total network cost (both initialization cost and running
cost) induced by all algorithmic variants of PIVOT and DIRECT for maintaining two
indicative skylines: (1) for MOVIES, the movies with the highest average ratings and
the highest number of ratings in the network, and, (2) for WEATHER, the skyline of
countries with lower average temperature and dew point. Costs for PIVOT and DIRECT
are reported as a percentage of the corresponding cost of CENTR (248 Mbytes for
MOVIES and 2.8 Gbytes for WEATHER).

Our first observation from the MOVIES data set (Fig. 8a) is that all algorithmic
variants enable substantial network savings compared to CENTR. For this data set,
DIRECT is the most efficient algorithm, closely followed by PIVOT with grouping
(both basic and advanced grouping). In terms of number of messages (not shown in
the figure), all variants require less than 1% of the corresponding messages of CENTR).

As expected, grouping has no noticeable effect on the network performance of
DIRECT (cf. Sect. 6.3). In contrast, grouping for PIVOT not only enables sending
of fewer pivot points, but also increases the available slack for non-skyline objects,
further reducing the network requirements by a factor of 2. Interestingly, advanced
grouping and adaptive monitoring do not provide additional benefits for this data
set. This is simply because the skyline stabilizes very early in this data set (after a
few thousand updates). As such, there are very few threshold violations, and both

@ Springer

Distrib Parallel Databases

08 a " Movies: Pivot running cost 1
Movies: Pivot total cost %
Movies: Direct running cost =«
Movies: Direct total cost 4
06 | Weather: Pivot running cost ~----
o f Weather:Pivot total cost @
=
£a)
© X
5 04 ¢ A 1
o X
- A
& X
X
la L X <
0.2 X x -
E“—E;-—»-Er’a - W3-y {f

0.0
10 20 30 40 50 60 70 80 90 100
Observed stream (percentage)

Fig. 9 Total and running cost per algorithm

optimizations, which focus on reducing the number and cost of threshold violations,
have a negligible effect.

Figure 8b plots the required transfer volume for WEATHER. The best performing
variant is the full-fledged algorithm (advanced grouping and adaptive monitoring).
Interestingly, basic grouping has a negative effect for this setting. This result is due
to the cost-agnostic property of basic grouping, which causes problems in scenarios
where objects are monitored by subsets of nodes. We also see that adaptive monitoring
is beneficial for this data set, further reducing network cost by a factor of two, by setting
3 cities on average on streaming monitoring (cf. Table 5).

The initialization phase of both algorithms induces a small network cost for sending
all threshold queries to the participating sites. This is a one-time cost, with a small
significance for long-running continuous queries, where running cost is expected to be
the dominant factor. For comparison purposes, Fig. 9 presents both total and running
cost of each algorithm for the two data sets, as measured at regular stream intervals. For
clarity, the plot includes only the transfer volume ratio for the best performing variants
of the algorithms, i.e., PIVOT with advanced grouping and adaptive monitoring, and
DIRECT with basic grouping. We see that this one-time initialization process raises
the total cost ratio of both algorithms at the early stages of the stream. This behavior is
particularly visible with the MOVIES data set, which has a larger number of objects that
translate to many threshold queries. However, as more updates arrive in the stream, the
total transfer volume of the proposed algorithms converges to their running transfer
volume. Since most real-world applications involve long-running—possibly infinite—
streams, the one-time initialization cost of the algorithms is not an important concern.
Instead, the running cost of each algorithm is a more interesting evaluation indicator.

We also see that running cost for the MOVIES data set is close to zero, for both algo-
rithms. This is expected, since MOVIES has a relatively stable skyline. WEATHER on the
other hand is more challenging, having a running cost that fluctuates between 5% and
10%. This is attributed to two properties of the data set: (a) the similar weather statis-

@ Springer

Distrib Parallel Databases

tics observed in nearby countries, leading to tight threshold queries, and to frequent
changes in the skyline, and, (b) the periodicity of the readings due to the day-night
cycle, which causes frequent changes in the skyline. Extreme weather situations, such
as the extremely low temperatures in continental Europe in the winter of 2010-2011
(starting at around 50% of the stream), also cause drastic skyline changes and increased
network requirements. Nevertheless, the overall network savings are significant, reach-
ing 90% by the end of the stream (Table 2).

Even though this work focuses on reducing network requirements, we also measured
the achieved throughput rate of the two algorithms to ensure that the algorithms are
suited for settings with high update rates. Table 4 presents the average throughput rate
of the introduced algorithmic variants, when these are executed on a single core of an
idle Intel(R) Xeon(R) CPU E5-2650L clocked at 1.80 GHz. We see that all variants
can process over 70 thousand updates per second, i.e., they require less than 0.02 ms
to process each arrival. The best performing variant of PIVOT offers a throughput of
over 200 thousand updates per second for both datasets, whereas DIRECT surpasses
125 thousand updates per second. The actual performance of each variant depends
on the combination of the exploited optimizations (i.e., grouping of the queries, and
adaptive or non-adaptive), and on the dataset.

Summarizing, the first set of experiments has shown that both PIvOoT and
DIRECT substantially outperform CENTR in terms of network, and enable efficient local
monitoring. In the remainder of this section, we will be focusing on the best variants
of the two algorithms, i.e., PIVOT with advanced grouping and adaptive monitoring,
and DIRECT with basic grouping.

8.2 Influence of data characteristics

We now resort to synthetic data sets in order to investigate the influence of the following
data characteristics to the performance of the compared algorithms:

e Correlation between dimensions Correlated (e.g., price vs performance for com-
puters), anti-correlated (price vs mileage for used cars), or independent (shipping
cost vs item price).

e Maximum change We consider values from 1 to 16%.

We have generated different synthetic streams of 2000 two-dimensional objects,
varying the properties described earlier. The network was configured such that all
objects were monitored at all sites. In order to maintain the stream properties also
in the skyline space, f[0] and f[1] were set to be the identity functions on the two
dimensions of the objects. The total cost of CENTR in these experiments was always
10 million messages totaling 305 Mbytes.

Correlation between dimensions Figure 10a, b present the running cost of PIvOT and
DIRECT for data sets with different correlations, as measured at regular stream inter-
vals. Y axis is interrupted at y = 0.0065 for illustration purposes. Clearly, both
PIvoT and DIRECT enable substantial savings for all data sets. Both algorithms require
two to three orders of magnitude less transfer volume compared to CENTR on the data
sets with independent and correlated dimensions. The data set with anti-correlated
dimensions is more challenging since most objects end up close to the skyline border,

@ Springer

Distrib Parallel Databases

a[qeardde JoN LSO0€ET $89°6C1 £00°€TI 161791 VLS TET sl RyIEam

L8E9TI 106°CL 8E8'EYT 110°61C SIEYII LETYET Y9S I¥T 1€8°L91 SIIAOIN
oiseq padnoi3upn PasuBApY oiseq padnoi3un PpasuBApY JIseqg padnoi3upn
aandepy aandepe Jo0N

LOTAIJ LOAId josereq

(puodas 1ad sayepdn jo roquinu) sjueLrea orwyitIoge jo aes ndysnoryy, §dqel,

pringer

As

Distrib Parallel Databases

(a) N
- o4
JPUNPIPIEY S S S o
0:%0 """"'W.M.ﬂ. ° 0.30 o000 OO o-0-0-9-8
o ® e 0.25 .’,,.7—0“'./.”"
- |
o 0.20 \\‘\H—‘_A
: o
o 0.15
S g
5 015 5 o
: 2 0.008
£ 0.006 K
i o
g 0.008 M
0.004 g
0.004 xxxxxxxxxxxxxx
o 0.002
0.000 E=E=A=B=R=A-E-8-8-B-B-8-F-5-0-5-5-8 0,000 HEBE= AR A AR E Fop - E R s
1 2 3 o : : 10

4 5 6 7 8 3 4 5 6 7 8
Number of updates (millions) Number of updates (millions)

P1voT: Independent—>— Correlated—H— Anti-correlated—@—
DIRECT: Independent---*¢--- Correlated--1=+-- Anti-correlated---®--

Fig. 10 Effect of dimensions correlation to PIVOT and DIRECT: a transfer volume, b # messages

Table 5 Average number of

streaming objects in PIVOT Data set # streaming objects
MOVIES 0.07
WEATHER 3.03
Independent 5
Correlated 0.35
Anti-correlated 138.5

0.20
0.16 ; (i) Transfer volume 1
0.12 |
0.08
0.04

0.00 PSP
0.16

Ratio of CENTR

0.12
0.08

0.04

e

0.00 PSSt EE——
0.00

0.01 0.02 0.0 0.04
Approximation parameter €

P1voT: Indep.—>— Corr.—E&— Anti-corr.—@—
DIRECT: Indep.--¢-- Corr.--{z+-- Anti-corr."~-®--

Fig. 11 Effect of approximation to cost of PIVOT and DIRECT

leading to frequent skyline updates. Nevertheless, even for this data set, PIvOT and
DIRECT still enable around 80% and 65% respectively network reduction compared
to CENTR.

Also notice that DIRECT is more efficient than PIVOT for the streams with the
correlated and independent dimensions, whereas PIVOT substantially outperforms

@ Springer

Distrib Parallel Databases

DIRECT for the more challenging stream with anti-correlated dimensions. The reason
for this discrepancy is the adaptivity extension, which is supported only by PIvOT. For
the anti-correlated data set, the adaptivity extension switches around 7% of all objects
to streaming monitoring (cf. Table 5). These are objects that end up to be very close
to each other due to the anti-correlated dimensions. The effect of adaptive monitoring
is not evident in the other two data sets, which induce far less threshold crossings,
and are almost solely monitored using geometric monitoring. Since threshold queries
of DIRECT are more compact than the ones of PIVOT, DIRECT turns out to be more
efficient in the experiments with these two data sets.

Maximum change Streams up to now were generated assuming a maximum relative
change maxRC = (.02 per update. To verify the applicability of PIvOT and DIRECT for
fast-changing streams, we have also conducted experiments with different maximum
change values, up to 0.16. Figure 13a plots the network cost of PIvOT and DIRECT for
data sets generated with independent dimensions. As expected, increasing maxRC
results to an increase of the network cost of both algorithms. Nevertheless, even for
maxRC = 0.16, both algorithms enable network savings of around 88% compared to
CENTR. For small maxRC values, network savings of both algorithms are substantially
higher, approximating 100%.

8.3 Approximate monitoring

All previous experiments considered exact monitoring, i.e., € = 0. Figure 11 plots the
network cost in relation to € for data sets with different correlations between dimen-
sions. We see that an increase in the acceptable error can drastically reduce the network
cost. This is particularly visible in the experiments with anti-correlated dimensions
where more threshold crossings are expected. We also observe that DIRECT utilizes
error tolerance better, since it does not need to pre-allocate the error slack to objects,
i.e., DIRECT allocates a total of € tolerance per pair, whereas PIVOT pre-allocates
the tolerance to €/2 per object. Notice that, as expected, the observed error in all
experiments was always less than the guaranteed maximum error €.

8.4 Scalability

To evaluate the scalability of the proposed algorithms, both algorithms were repeated
on larger networks and with more objects. For the first series of experiments, we
examined the cost of monitoring a fixed set of 1000 objects on networks of different
sizes (all objects were monitored by all nodes). Figure 12a plots the running cost of
PIvOoT and DIRECT as a ratio of CENTR for networks of up to 50.000 nodes. We see
that the cost of both algorithms stays below 1.5% and presents no systematic increase
with the network size.

For the second set of experiments, we examined the cost of monitoring object sets
of different sizes over a fixed network of 1000 nodes. We again observe (Fig. 12b)
that there is no systematic increase of network cost ratio with the number of objects.
As such, our algorithm scales well with both number of objects and number of nodes.

@ Springer

Distrib Parallel Databases

(a) (b)
0.025 Pivot —x— 0.010 Pivot —=<—
0.020 | (i) Transfer volume Direct —e— | 0.008 |- () Transfer volume Direct —e— 1
0.015 0.006 |
- e~
£ 0010 [e £ 0004 F
g
S 0.005 3 0.002
o o
2 0.000 + .2 0.000
§ 0.016 (i) Number of messages & 0.008
0.012 § 0.006 |
T g @ @ ° L
0.008 0.004 t
0.004 0.002
0.000
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
Network size Number of objects
Fig. 12 Effect of a network size, b number of objects
(a) (b)
016 Pivot —x— 181 (i) Transfer volume DF;'!;‘;: _____ -
Direct -—--@--- 15
0.12 ; A X
(i) Transfer volume 12 ¢
0.08 0.9 |
o ~ 0.6
&
goo4r Zo3
e 3]
5 0.00 5 0.0
= 0.12 % 1.0
Tot0f @og
(i) Number of messages -
0.08
0.6
0.06
eo4 04
002} o2p .
0.00 A 0.0 === :
0.01 0.02 0.04 0.08 0.16 3 5

. . . 4
Maximum change percentage (log. scale) Number of functions

Fig. 13 Effect of a maximum relative change, b number of functions

8.5 Number and type of functions

The final set of experiments focused on investigating the influence of the number and
type of functions to the performance of PIVOT and DIRECT.

Figure 13b presents the performance of PIVOT and DIRECT when monitoring up to 5
linear functions. We observe that an increase of the number of functions leads to higher
network cost for both algorithms. The main reason for this is that by adding functions,
we increase the frequency of synchronizations (recall that a threshold violation on a
single dimension is sufficient to invoke a synchronization). For up to four functions,
PIVOT is substantially more efficient than CENTR, reducing the transfer volume by
70%, and the messages by more than 80%. For more than four functions, both PIvOT
and DIRECT become less efficient than CENTR. We should note that skylines of higher
dimensions are rarely considered in practical, real-world applications. The problem,
of course, is that, in high dimensions, a large fraction of the objects end up in the
skyline (due to the “dimensionality curse”), rendering it practically useless.

We also conducted experiments with more complex functions, namely the Euclidean

norm on two dimensions (Norm(v(o, 1)) = 2,2:1 v(o,)[i1?), the L2 distance on four

@ Springer

Distrib Parallel Databases

T T T T

r. T T T D w——
08 [(i) Transfer volume .+ “pidiidla (> dim)
o _Pivotid,var (2 dim
0.6 t L Pivot id,norm (3 dim
. Pivot id,L2 dist. (5 dim
Direct id,id (2 dim) -
Direct id,var. (2 dim) -
04 Direct id,norm (3 dim
,\'\._F Direct id,L2 dist. (5 dim
0.2 r 1
~
=
= 0.0 =
© 0.5 (i) Number of messages
o B i S *---9--—-@
2 0.4
<
To03

1 2 3 4 5 6 7 8 9 10
Number of updates (millions)

Fig. 14 Effect of types of functions

dimensions (L2(v(o,1)) = \/Z?zl v(o,)[i1> — v(o, [i +2]?), and the variance of one
dimension on all sites (Var(v(o, 0li) = ¥ pep o) (V{0 1, pliD? — v(o, nli1%). In all experi-
ments, the skyline space was 2-dimensional, with f[0] set as the identity function, and
f[1] set as one of the three functions above. f[0] and f[1] were set to use different
dimensions, in order to avoid introducing correlations.

Figure 14 plots the network cost incurred by the two algorithms. For comparison,
the figure also includes the cost for the case where both functions are set to the identity
function. We see that the proposed algorithms substantially outperform CENTR, also
on skylines defined through non-linear functions. The only exception involves the
experiments with DIRECT used for monitoring the pair of identity and L2 distance
functions. For this configuration, DIRECT reduces the transfer volume only by 20%
compared to CENTR. DIRECT does not perform well in this configuration due to its
local monitoring process, which requires constructing balls in the 2d-space for each
function, i.e., in the 10 dimensions for L2 (cf. Sect. 4.1). This substantially increases
the frequency of threshold crossings, and, consequently, the transfer volume. PIVOT,
on the other hand, reduces the network cost to around 20% of the baseline, since: (a)
it constructs balls in the d-dimensional space, and not in the 2d-dimensional space
and, (b) it uses the adaptivity extension, which avoids a large number of threshold
crossings.

Table 6 presents the throughput rate of PIVOT and DIRECT, as measured in the
previous experiments. We see that even for the most difficult cases—4 linear functions
for PIVOT, and (id, L2 dist.) for direct—both algorithms still offer a throughput rate
that surpasses 1000 updates per second in a single-threaded simulation. Most of the
computation time is spent in the local monitoring of each update. Therefore, the natural
distribution of the monitoring phase over a large number of nodes, e.g., over a network
of sensors, is expected to further increase the throughput.

@ Springer

Distrib Parallel Databases

Table 6 Throughput rate of

PIvOT and DIRECT with Functions Prvor DIRECT

synthfatic data for .different (id,id) 325,860 390,640

function types (# items per Lo

second) (id,id,id) 49,898 129,356
(id,id,id,id) 1352 14,869
(id,var) 117,593 174,437
(id,norm) 2649 8312
(id,L2 dist.) 1788 1818

8.6 Summary

The experimental evaluation showed that the proposed algorithms substantially out-
perform CENTR, the only available alternative. Cost reduction was frequently in the
range of two orders of magnitude, as shown with experiments on both real and syn-
thetic data sets, and using different number and types of functions. Both PIvOT and
DIRECT were shown to scale well with the number of objects, and number of sites.
Furthermore, a thorough experimental comparison of the two algorithms was used to
reveal the preferred algorithms for each situation:

e P1voTis the algorithm of choice for monitoring dense skyline spaces, i.e., with anti-
correlated dimensions, and with many functions, due to the adaptivity extension
which detects tight threshold queries and assigns their corresponding objects to
streaming monitoring.

e PIVOT substantially outperforms DIRECT when monitoring skylines that include
non-linear functions operating on high dimensions, e.g., the L2 distance.

e For 2-dimensional skylines with correlated or independent dimensions, DIRECT is
more efficient than PIVOT, since it does not introduce fixed pivot points, allowing
higher slack to the objects, and more compact threshold queries. For the same
reason, DIRECT also utilizes error tolerance better than PIVOT.

9 Conclusions

In this article we formally introduced the problem of continuous fragmented skyline
queries. To address the problem, we proposed two distributed algorithms that rely on
geometric monitoring to reduce the number of updates that need to be streamed to a
central node, thereby reducing the total network cost for maintaining the skyline. We
discussed several network optimizations for the two algorithms: (a) an approximation
extension for error-tolerant applications, (b) grouping extensions which allow handling
groups of objects more efficiently, and, (c) an adaptivity module which enables detect-
ing highly volatile data and handling them more efficiently. The proposed algorithms
were thoroughly evaluated with experiments on massive real-world and synthetic data
sets. The experimental results demonstrated the scalability of the algorithm, as well as
its significantly improved network efficiency compared to the only available baseline
algorithm.

@ Springer

Distrib Parallel Databases

Appendix: Proofs

Theorem 1 Monitoring the DIRECT threshold-crossing query Q. (g, v(0;)|v(0;), 0)
forobject o; at sites S ="P(0;) UP(0) is provably less commumcatton efficient than
monitoring the corresponding PIVOT threshold query Qq,(f, v(0;), pp, i), when all

functions in f are linear, and r = # > 2.
[P(0i)]

Proof We will use Q7 to denote the threshold-crossing query between objects o; and
o monitored by PIVOT, and 07 the query monitored by DIRECT. We will show that
when both queries are instantiated with the same data, i.e., with identical object values
at time 7, the minimum required update uy of o; that will cause a threshold crossing on
Q% is smaller than the corresponding minimum required update u p for Q7. Therefore,
0% will be violated more frequently, causing more synchronizations. For simplicity,
we examine only the case for a function vector f where all constituting functions are
linear, and we focus only on object o;, i.e., we consider o; to be stationary on the
node receiving the update of o;. This can happen, e.g., when the node p monitoring
o0; does not monitor o, or when it did not receive any update for o; since the last
synchronization.

Consider any node p € P(0;) receiving an update u for o; at time ¢. This
update will cause a threshold crossing for Q7 only if sgn(f(v(o;,t)) — 1) #
sgn(f(v(o;, 1)) — 7), with T = (f(v(0i, t0)) + f(v(0j, t9)))/2. Since f is linear,
fv(oi, 1) = f(v(oi, 10) +u) = f(v(o;, 10)) + f(w).

Recall that f is a function vector. We need to consider each dimension & of f sepa-
rately. A threshold crossing due to dimension k will occur when sgn(f (v(o;, to))[k]+
f@[k] — t[k]) # sgn(f(v(o;, t9))[k] — t[k]). Without loss of generality, assume
that f(v(o;, t0))[k] < f(v(oj,t0))[k] (the other case is symmetric). Then, [k] >
f(v(o;, 10))[k], and threshold crossing on Q7 can occur only when f (u)[k] surpasses
Tkl = f (v(or, 0))[K]. e, f (up) k] > LD JEon0E,

Now consider the case of DIRECT. Q¢ will be v101ated in dlmensmn k when

sgn(f (v(oi, 1)[k] — f(V(Oj, D)IkD #
sgn(f (v(oi, 10))[k] — f(v(0j, 10))[k]) 3

By our assumption that f(v(o;,f))[k] < f(v(oj,1))[k], we know that sgn
(f(v(oi, t0))[k] — f(v(oj, t0))[k]) = —1. Therefore, a threshold crossing will be
caused only when the LHS of Eq. 3 becomes positive:

sgn(f (v(oi,)[k] — f(v(oj, D)k]) = +1 =
Jf(v(oi,)kl = f(v(oj, 1))[k] > 0 “)

As discussed in the paper, to account for the fact that o; is not monitored by all
nodes, we need to scale the local statistics drift vector for o; by r = |S|/|P(0;)|.
Since f is linear, f(v(oi,t)) = f(v(oi,t0) +ru) = f(v(o;, 1)) + r f(u). Sub-
stituting f in Eq. 4, and since v(oj,t) = v(oj,t), we get f(v(o;, to))[k] +
rflk] — f(v(oj, t0))[k] > 0. Therefore, the condition for threshold crossing

@ Springer

Distrib Parallel Databases

becomes f(ug)[k] > f(v(oi’[0))[k]:f(v(0j’t0))[k]. Thus, if » > 2, for all dimensions

k, f(ug)[k] will be smaller than f(u,)[k], which directly implies that 07 will be
violated with a smaller magnitude update. O

Theorem 2 The extracted threshold queries are sufficient for accurate fragmented
skyline monitoring, i.e., as long as no threshold violation occurs, the skyline is guar-
anteed to stay the same. They are also minimal, in the sense that omitting any of the
queries breaks the correctness guarantees.

Proof We will prove that the threshold queries are sufficient for detecting whenever
an object changes status, i.e., enters or leaves the skyline. The proof is valid for both
PIvoT and DIRECT. First, we consider the simpler case of an object o; not belonging
in the skyline at time 7, to show that it cannot enter the skyline without first causing a
threshold violation. For o;, the algorithm constructs a threshold crossing query between
o; and an object o; that dominates o;. As long as the threshold query is not violated
by an update of either o; or 0}, o; continues to dominate o;, which guarantees that o;
does not enter the skyline.

Second, we consider an object o; that belongs in the skyline at time 7). We will
prove that o; cannot be removed from the skyline without first causing a threshold
violation, which will enable the coordinator to detect the change in the skyline. o; can
be removed from the skyline only due to an update of o; or an update of any object
0, which will dominate o;. We have the following cases:

e 0;, which did not belong in the skyline at time fy, is updated and dominates o; .
Since 0 ; dominates an object that was previously skyline object, this means that o ;
first needs to become part of the skyline. This, of course, corresponds to the case
addressed earlier, thus causing a violation of the threshold query that monitors o
and enabling the coordinator to detect the skyline update.

e Object 0, which belonged in the skyline at time #, is updated and now dom-
inates o;. Since at time fy object o; did not dominate o;, there existed at least
one dimension k for which f(v(o;, t0))[k] < f(v(o;, t0))[k]. Also, since o; also
belonged in the skyline, our monitoring algorithm constructed a threshold query
between o; and its immediate skyline neighbor o at dimension k that satisfies
S (v(op, t0))[k] < f(v(oj,t0))[k]. There are two cases: (a) o, is the object o;, in
which case the corresponding threshold query will be violated, or (b) o, is not o;,
in which case f(v(o;, 10))[k] < f(v(op, 19))[k] (by the definition of 0j), and the
threshold query of o corresponding to o, will be violated. In both cases, the vio-
lation will cause synchronization, which will enable the coordinator to detect the
change in the skyline. (Note that o, will also be monitoring its nearest dominating
neighbor in the skyline (say, o;) so that, if 0; at some point takes the position of
the nearest neighbor of o, then 05, would fire; in general, it is not difficult to see
that some monitoring rule will fire if the nearest skyline neighbor of 0; changes,
so we can assume that the monitored nearest skyline neighbor is always current.)

We also need to prove that all constructed threshold queries are required for correctly
monitoring the skyline. Again, we need to consider the two types of queries separately.

e Queries monitoring domination of a non-skyline object: Recall that only one query
is constructed. If this query is removed for any non-skyline object o;, then the

@ Springer

Distrib Parallel Databases

algorithm will not be able to track the location of o;, possibly masking skyline
updates.

e Queries monitoring dominance of a skyline object: Two queries are constructed

per dimension, with the two immediate skyline neighbors. By removing any of
these queries for a skyline object o;, then we will not be able to track the location
of the object in the corresponding dimension, possibly masking skyline updates.

O

References

10.

12.

13.
14.

16.

17.

18.

19.

20.

21.

22.

23.

. Babcock, B., Olston, C.: Distributed top-k monitoring. In: SIGMOD, pp. 28-39 (2003)
. Balke, W.T., Gntzer, U., Zheng, J.X.: Efficient distributed skylining for web information systems. In:

EDBT (2004)

. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001)
. Burdakis, S., Deligiannakis, A.: Detecting outliers in sensor networks using the geometric approach.

In: ICDE (2012)

. Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: A safe zone based approach for monitoring moving

skyline queries. In: EDBT (2013)

. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluation of probabilistic queries over imprecise data

in constantly-evolving environments. Inf. Syst. 32(1), 104-130 (2007)

. Cormode, G., Garofalakis, M.: Approximate continuous querying over distributed streams. TODS

33(2), 1-42 (2008)

. Cormode, G., Garofalakis, M., Muthukrishnan, S., Rastogi, R.: Holistic aggregates in a networked

world: distributed tracking of approximate quantiles. In: SIGMOD (2005)

. Cranor, C., Johnson, T., Spatscheck, O., Shkapenyuk, V.: Gigascope: A stream database for network

applications. In: SIGMOD (2003)
Cui, B., Lu, H., Xu, Q., Chen, L., Dai, Y., Zhou, Y.: Parallel distributed processing of constrained
skyline queries by filtering. In: ICDE (2008)

. Das, A., Ganguly, S., Garofalakis, M., Rastogi, R.: Distributed set-expression cardinality estimation.

In: VLDB, pp. 312-323 (2004)

Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science.
Addison-Wesley, Upper Saddle River (1989)

HadjAli, A., Pivert, O., Prade, H.: On different types of fuzzy skylines. ISMIS 2011, 581-591 (2011)
Hose, K., Vlachou, A.: A survey of skyline processing in highly distributed environments. VLDB J.
21(3), 359-384 (2011)

. Huang, Z., Lu, H., Ooi, B.C., Tung, A.K.H.: Continuous skyline queries for moving objects. TKDE

18(12), 1645-1658 (2006)

Keren, D., Sharfman, 1., Schuster, A., Livne, A.: Shape sensitive geometric monitoring. TKDE 24(8),
1520-1535 (2012)

Koltun, V., Papadimitriou, C.: Approximately dominating representatives. Theor. Comput. Sci. 371(3),
148-154 (2007)

Lazerson, A., Sharfman, I., Keren, D., Schuster, A., Garofalakis, M.N., Samoladas, V.: Monitoring
distributed streams using convex decompositions. PVLDB 8(5), 545-556 (2015)

Lee, J., Hwang, S.: Scalable skyline computation using a balanced pivot selection technique. Inf. Syst.
39, 1-21 (2014)

Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional query processor
for sensor networks. In: SIGMOD (2003)

Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over distributed data streams.
In: SIGMOD (2003)

Papadias, D., Fu, G., Chase, M., Seeger, B.: Progressive skyline computation in database systems.
TODS 30(1), 41-82 (2005)

Papapetrou, O., Garofalakis, M.N.: Continuous fragmented skylines over distributed streams. In: ICDE
(2014)

@ Springer

Distrib Parallel Databases

24.

25.

26.
27.

28.

29.

30.

31

32.

Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring threshold functions over
distributed data streams. In: SIGMOD (2006)

Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. TKDE 18(2), 377-391
(2006)

Tao, Y., Xiao, X., Pei, J.: SUBSKY: efficient computation of skylines in subspaces. In: ICDE (2006)

Trimponias, G., Bartolini, I., Papadias, D., Yang, Y.: Skyline processing on distributed vertical decom-
positions. TKDE 25(4), 850-862 (2013). https://doi.org/10.1109/TKDE.2011.266

Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: Efficient routing of subspace skyline queries
over highly distributed data. TKDE 22(12), 1694-1708 (2010)

Wu, P, Agrawal, D., Egecioglu, O., El Abbadi, A.: DeltaSky: Optimal maintenance of skyline deletions
without exclusive dominance region generation. In: ICDE (2007)

Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation of the skyline cube.
In: VLDB (2005)

Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using object-based space par-
titioning. In: SIGMOD (2009)

Zhang, Z., Cheng, R., Papadias, D., Tung, A.: Minimizing the communication cost for continuous
skyline maintenance. In: SIGMOD (2009)

@ Springer

https://doi.org/10.1109/TKDE.2011.266

	Monitoring distributed fragmented skylines
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Background: the geometric method

	4 Monitoring fragmented skylines
	4.1 Threshold-crossing query decomposition
	4.2 Local monitoring
	4.3 Synchronization
	4.4 Optimizing communication overhead by eliminating redundant queries
	4.5 Optimizing communication overhead by approximate monitoring

	5 The adaptive method
	5.1 Estimating threshold violation costs

	6 Grouping of threshold queries
	6.1 Basic grouping for pivot
	6.2 Advanced grouping for pivot
	6.3 Grouping for direct

	7 Extensions and additional applications
	8 Experimental evaluation
	8.1 Evaluation of algorithmic components
	8.2 Influence of data characteristics
	8.3 Approximate monitoring
	8.4 Scalability
	8.5 Number and type of functions
	8.6 Summary

	9 Conclusions
	Appendix: Proofs
	References

