"XTRACT: A System for Extracting Document Type Descriptors from XML Documents"

by Minos Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri, and Kyuseok Shim.
Proceedings of ACM SIGMOD'2000, Dallas, Texas, May 2000, pp. 165-176.



Abstract

XML is rapidly emerging as the new standard for data representation and exchange on the Web. An XML document can be accompanied by a Document Type Descriptor (DTD) which plays the role of a schema for an XML data collection. DTDs contain valuable information on the structure of documents and thus have a crucial role in the efficient storage of XML data, as well as the effective formulation and optimization of XML queries. In this paper, we propose XTRACT, a novel system for inferring a DTD schema for a database of XML documents. Since the DTD syntax incorporates the full expressive power of regular expressions, naive approaches typically fail to produce concise and intuitive DTDs. Instead, the XTRACT inference algorithms employ a sequence of sophisticated steps that involve: (1) finding patterns in the input sequences and replacing them with regular expressions to generate "general" candidate DTDs, (2) factoring candidate DTDs using adaptations of algorithms from the logic optimization literature, and (3) applying the Minimum Description Length (MDL) principle to find the best DTD among the candidates. The results of our experiments with real-life and synthetic DTDs demonstrate the effectiveness of XTRACT's approach in inferring concise and semantically meaningful DTD schemas for XML databases.

[ camera-ready paper (pdf) (ps.gz) | journal version (in Data Mining and Knowledge Discovery) | Aris' talk slides (ps.gz) | ACM Digital Review page ]


Copyright © 2000, Association for Computing Machinery, Inc. (ACM). Permission to make digital/hard copy of all or part of this material without fee is granted provided that copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.